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Abstract
Aim: Cervical squamous cell carcinoma (CESC) is a highly prevalent women’s gynecologic disease. Because 
the specific mechanisms associated with the illness are still mostly unclear, more investigation is needed to 
comprehend the triggers of CESC’s initiation and progression. Circular RNAs (circRNAs) are a new type of 
RNA that control microRNAs’ (miRNAs) expressions. Although particular circRNA–miRNA–mRNA 
regulatory axes for CESC have been defined, little is known about this field of research. Therefore, the 
current study aimed to identify new circRNA–miRNA–mRNA axes in CESC.
Methods: GSE102686 and GSE169057 GEO datasets were utilized to identify differentially expressed 
circRNAs (DEcircRNAs). The Cancer Genome Atlas (TCGA) database was used to detect differentially 
expressed miRNAs (DEmiRs) and mRNAs (DEmRNAs). Various in silico tools were used to identify 
interactions between circRNAs, miRNAs, and their potential target genes in CESC. Moreover, enrichment 
analysis, correlation analysis, and survival analysis were performed on potential target genes.
Results: Utilizing publically available data, we found dysregulated circRNAs, miRNAs, and mRNAs in CESC. 
We showed that the circRNA hsa_circ_0000711 may be involved in the CESC process by inhibiting many 
target genes via hsa-miR-338-3p and/or hsa-miR-361-3p. Moreover, we found that hsa_circ_0000515 
circRNA can contribute to CESC by modulating the expression of some target genes via hsa-miR-296-5p.
Conclusions: The findings of this work contribute to a better understanding of the circRNA–miRNA–mRNA 
regulation processes in CESC.
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Introduction
Cervical cancer (CC) is the fourth most common female malignancy. CC death rates rise every year because 
of a lack of early detection [1, 2]. Despite surgery, radiation, or chemotherapy optioning for 80% of initial 
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stages CC cases, there is still an enormous percentage of advanced-stage individuals who have poor 
outcomes [3]. The most prevalent histological subgroup of CC is cervical squamous cell carcinoma (CESC) 
[4]. The main serious issues with CESC are metastasis and recurrence. Because the particular pathways 
remain unclear, more study into the underlying tumor initiation and development processes is required for 
CESC [3, 4]. Non-coding RNAs are well-known actors in cancer biology, serving as a critical part of gene 
regulation that, when disrupted, contributes to the development of cancer [5]. microRNAs (miRNAs), which 
are non-coding RNAs with a length of around 20–25 nucleotides, function as critical regulators in the cell by 
controlling target genes’ expressions [6, 7]. Circular RNAs (circRNAs) are covalently closed, endogenous 
biomolecules in cells with tissue-specific and cell-specific expression patterns that function through specific 
miRNAs [5, 8, 9]. Unlike ordinary linear RNA, circRNAs have a characteristic closed-loop structure [10]. As a 
result, circRNAs are resistant to destruction and are expressed in a wide range of organisms. Following 
miRNA binding by miRNA response elements (MREs), circRNAs may be essential in tumor development as 
tumor suppressors or proto-oncogenes [11, 12]. Determining the circRNA–miRNA–mRNA axes is critical for 
understanding the molecular mechanism of cancers. For instance, circ_VPRBP has been found to reduce cell 
proliferation, migration, and invasion and also induce CC cell apoptosis via modulating the miR-93-5p/
FRMD6 [13]. circRNA_101996 has been shown to increase the development of CC by influencing the miR-
1236-3p/TRIM37 axis [14]. In another investigation, circRNA_400029 has been shown to increase the 
aggressiveness of CC by controlling the miR-1285-3p/TLN1 axis. Recent studies have uncovered several 
circRNA–miRNA–mRNA pathways in CC. However, we are still in the early stages of unraveling the 
complicated interactions between thousands of circRNAs, miRNAs, and mRNAs found in the cells. 
Therefore, in the current study circRNA–miRNA–mRNA axes were investigated using various 
bioinformatics data.

Materials and methods
Selection criteria for circRNA–miRNA–mRNA interactions

The recognized functioning principles of the circRNA–miRNA–mRNA axis guided the selection. Before 
selecting circRNAs, miRNAs, and mRNAs from the relevant Gene Expression Omnibus (GEO) datasets, Log2 
Fold Change (log2FC) and p-values were considered. The overexpressed circRNAs were the intended focus 
of this research. Downregulated miRNAs were considered for sponge miRNAs. The selection of mRNAs was 
also limited to elevated ones.

GEO is a publicly available functional genomic data resource. Microarrays or sequence-based studies 
are accepted. Users can use the supplied tools to query and download experiments and determine gene 
expression profiles. Identifying molecules (circRNA, miRNA, mRNA, etc.) whose expressions alter in 
common among various datasets may be useful to obtain more accurate information about the association 
between these molecules and diseases before in vitro or in vivo studies.

Identification of circRNAs

Gene Expression Omnibus 2R (GEO2R) is an interactive web application that enables users to compare two 
or more sets of samples from a GEO series to find differentially expressed genes, miRNAs, circRNAs, etc. 
GSE102686 dataset (including 5 CC patient’s tissue samples and 5 adjacent normal tissue samples) and 
GSE169057 (including 3 CC patient tissue samples and 3 adjacent normal tissue samples) datasets were 
downloaded from the National Center for Biotechnology Information (NCBI) Geodatabase and the 
differential expression of circRNAs between tumor and normal samples was analyzed via GEO2R. When 
selecting upregulated circRNAs from the datasets, first we paid attention to the log2FC and p-value of 
circRNAs (log2FC > 1, p < 0.001). circRNAs that met these criteria and overlapped in both datasets were 
selected.

Detection of miRNAs

The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) is a fundamental cancer genomics 
program, that molecularly analyzed approximately 20,000 primary cancers and matched normal samples 
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from 33 different types of cancer. In the TCGA database, miRNAs with log2FC > 2 and p < 0.05 were 
identified in 307 CESC tissue samples and matched 3 normal tissue samples. UALCAN [15] and 
CancerMIRNome [16] are user-friendly platforms for investigating miRNA dysregulation in various cancer 
samples from the TCGA. For miRNA expression analysis these web tools were used.

mRNA selection

The Gene Expression Profiling Interactive Analysis (GEPIA2) [17] is beneficial and well accepted online tool 
for gene expression, survival analysis, etc., using tumor and normal specimens from the TCGA and 
Genotype-Tissue Expression (GTEx) databases. Overexpressed genes with log2FC > 2 and p < 0.01 criterion 
were chosen in TCGA constructed from 307 CESC patients and 3 adjacent normal tissue samples using 
GEPIA2 tool (ANOVA method was selected using GEPIA2 tool).

Determination of circRNA–miRNA–mRNA interaction

circRNA interactome (CircInteractome) identifies miRNAs that might possibly target the circRNAs using the 
Targetscan prediction tool [18]. The CircInteractome web tool was used to identify potential sponge 
miRNAs of selected circRNAs from the GSE102686 and GSE169057 datasets. miRNet 2.0 is a user-friendly, 
web-based tool that integrates user data with existing information using network-based visual analytics to 
assist in unraveling miRNA functions [19]. The putative target genes of the selected miRNAs were defined 
via miRNet 2.0. Then, those matched genes with the log2FC > 2, p < 0.01 criterion in the TCGA database 
were chosen.

Enrichment analysis

The biological processes, cellular components, and molecular activities in which the selected genes were 
involved were determined by creating the EnrichR tool (https://maayanlab.cloud/Enrichr/, pathways with 
p < 0.05 were considered).

Correlation analysis

Selected genes’ correlation analysis was constructed via Correlation AnalyzeR [20] and GEPIA2 (http://
gepia2.cancer-pku.cn/) tools.

Survival analysis

Kaplan-Meier plotter (KM plotter) is an online platform for determining genes/miRNAs’ expression and 
survival rates in many cancer types. It also enables publicly accessible transcriptome data, such as TCGA. 
The prognostic values of chosen miRNAs in CESC were determined utilizing the KM plotter database. In 
brief, the miRNAs were entered into the database. Then KM survival plots were constructed, with the 
hazard ratio (HR), 95% confidence intervals (CI), and log-rank p-value provided on the website. p < 0.05 
were considered statistically significant.

Statistical analysis

Publicly available platforms were used to conduct functional enrichment assessments. When choosing 
upregulated circRNAs from the datasets, we evaluated the log2FC and p-value (for GSE102686 analysis: 
log2FC > 1, p < 0.001; for GSE169057 dataset: log2FC > 1; p < 0.001). For DEmiRs log2FC > 2 and p < 0.05; 
overexpressed genes with log2FC > 2 and p < 0.001 were used. The KM method was utilized for 
determining overall survival (OS), and the log-rank test was used to determine differences (via KM plotter 
tool). The statistical cut-off for OS analysis and enrichment analysis in tools was set at a p < 0.05. GraphPad 
Prism 10 was employed to perform statistical calculations and visualize figures.

Results
circRNA identification

In GSE102686, 137 upregulated circRNAs met the log2FC > 1, p < 0.001 criteria among the circRNAs whose 
expression changed in cancer tissue samples compared to normal tissue samples; in GSE169057, 145 
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upregulated circRNAs met the log2FC > 1, p < 0.001 condition. In both datasets, three overlapping circRNAs 
(hsa_circ_0000711, hsa_circ_0000515, and hsa_circ_0001855) have been chosen by the required 
parameters (Table 1).

Table 1. Overlapping circRNAs between GSE169057 and GSE102686 datasets

GSE169057 GSE102686circBase ID

p-value log2FC log2FC p-value

hsa_circ_0000711 4.28e–02 1.57 1.37 7.30e–02
hsa_circ_0000515 3.66e–03 3.75 1.28 4.39e–06
hsa_circ_0001855 2.99e–02 1.79 1.02 4.52e–02

miRNA selection results

Following study on the circinteractome tool that suggested potential targets of the three selected circRNAs, 
26 miRNAs were identified as common targets as seen in Figure 1. Three hundred fifty-nine upregulated 
miRNAs met the log2FC > 2 and p < 0.05 requirements in the TCGA database in CESC tissue samples 
compared to normal tissues. The 26 miRNAs were screened among these 359 miRNAs to detect overlapping 
miRNAs. Six possibly sponge miRNAs were overlapped. Among these 6 miRNAs, 3 miRNAs (hsa-miR-296-
5p, hsa-miR-338-3p, and hsa-miR-361-3p) with decreased expression were selected (because selected 
circRNAs were upregulated) (Table 2).

Figure 1. Potential sponge miRNAs of three hsa_circRNAs. According to the circinteractome and circMine tools, it is estimated 
that hsa_circ_0000711 has 18 potential sponge miRNAs, hsa_circ_0000515 has 7 potential sponge miRNAs, and 
hsa_circ_0001855 has 2 potential sponge miRNAs

Table 2. Overlapping miRNAs between TCGA database and selected upregulated circRNAs’ potential sponge miRNAs in 
circinteractome and circMine tools

miRNAs Log2FC Adj. p-value

hsa-miR-296-5p –2.18 1.43e–12
hsa-miR-326 2.12 1.39e–33
hsa-miR-330-5p 5.41 1.27e–21
hsa-miR-331-3p 4.47 2.40e–12
hsa-miR-338-3p –8.9 3.75e–15
hsa-miR-361-3p –7.72 1.45e–28 
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mRNAs analysis results

Among the overexpressed genes in CESC tumors compared to normal tissues in the TCGA database, it was 
defined that 778 genes met the conditions of log2FC > 2 and p < 0.05.

circRNA–miRNA–mRNA interaction results

Using miRNet 2.0 and miRTarBase v8, the target genes of the 3 selected miRNAs were examined and 355 
genes matching these miRNAs were identified (Figure 2). Seven hundred seventy-eight genes which were 
identified from the TCGA database were compared to 355 genes shown as probable targets of 3 chosen 
miRNAs, in the end, 10 overlapping genes were selected (Table 3). The heatmap of these 10 genes that are 
upregulated in CESC is shown in Figure 3. In summary, three circRNAs were chosen because they had the 
potential to regulate the expression of ten genes via three miRNAs.

Figure 2. Three selected miRNAs and their possible target genes: a complicated network. Red squares represent selected 
miRNAs, yellow circles represent possible target genes whereas big yellow circles represent overlapping genes. The figure was 
created utilizing the miRTarbase v8. and miRNet tools. A p < 0.05 value was used to determine significances

Table 3. Selected 10 upregulated genes that could be potential targets for selected downregulated 3 miRNAs

Gene Approved name Log2FC Adj. p-value

S100A2 S100 calcium binding protein A2 9.183 2.74e–11
ZWINT ZW10 interacting kinetochore protein 5.099 1.16e–43
KIFC1 Kinesin family member C1 4.492 6.97e–47
MMP9 Matrix metallopeptidase 9 3.920 1.01e–9
PLK1 Polo like kinase 1 3.732 9.80e–32
CDC6 Cell division cycle 6 3.678 2.47e–29
HMGA1 High mobility group AT-hook 1 3.585 4.56e–26
SLC7A5 Solute carrier family 7 member 5 2.941 4.60e–7
HIST1H2BJ H2B clustered histone 11 2.333 2.42e–4
UBALD2 UBA like domain containing 2 2.190 1.81e–17
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Figure 3. Heatmap image of selected genes. All selected genes were overexpressed in CESC samples. (Tumor and normal 
samples were compared in heatmap analysis: TCGA Tumor samples vs. TCGA normal and GTEx normal tissue samples)

Enrichment analysis results

Pathway analysis showed that selected potential 10 target genes have been associated with many critical 
molecular cellular processes like cell cycle, and DNA replication Figure 4A. Enrichment analysis results 
showed that these genes could have crucial roles in the cancer process as seen in Figure 4B. They are also 
connected with many essential hub proteins, including the MYC oncogene and the TP53 tumor suppressor 
gene, as demonstrated in Figure 4C. A correlation study of selected genes revealed that four of them are 
connected with CDK1 and CDK2 genes, which are known key cancer-related genes in CESC, as can be seen in 
Figure 5.

Figure 4. Enrichment analysis. (A) Selected potential 10 target genes have been linked to various fundamental molecular 
cellular processes. (B) Selected genes have been found to be related to many cancers according to the Disgenet database. (C) 
Hub proteins of selected 10 genes (Figure has been created using Enrichr. p < 0.05 for each of the figure’s bars)

Expression change in selected miRNAs may affect overall survival

The all 3 selected miRNAs were found to have reduced expression in CESC samples compared to the control 
group (Figure 6). OS analysis in TCGA for CESC patients was performed for 3 selected miRNAs and 10 genes. 
It was found that the miR-361-3p and miR-296-5p miRNAs have prognostic importance for the OS rate of 
CESC patients (Figure 7). However, any one of the genes did not have a statistically significant effect on the 
OS of the CESC patients.
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Figure 5. Selected target genes’ correlation analysis with CDK1 and CDK2 genes. ZWINT1, PLK1, KIFC1 and CDC6 genes 
found to be correlated with CDK1 and CDK2 genes

Figure 6. Selected 3 miRNAs’ expression rates in 307 tumor vs. 3 Normal CESC samples in TCGA database and these 
miRNAs effect on survival rates of CESC patients. Selected (A) hsa-miR-361-3p, (B) hsa-miR-296-5p, (C) hsa-miR-338-3p 
miRNAs have been found to be significantly downregulated in tumor samples (p < 0.001)
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Figure 7. The effect of selected 3 miRNAs’ on overall survival rates of 307 CESC patients in the TCGA database. (A) 
Downregulated miR-361-3p was related to a lower overall survival rate. (B) A high miR-296-5p level was associated with a 
decreased overall survival rate. (C) Altered hsa-miR-338-3p expression level was not altered with CESC survival rates

Discussion
In human cells, the number of unique circRNAs formed (~100,000) is significantly greater than that of 
protein-coding genes (~20,000). Despite their widespread prevalence, the biological significance of most 
circRNAs remains unclear, and they have not been functionally characterized [21]. Studies have shown that 
miRNAs can serve as potent regulators of various cellular activities, including cell growth, differentiation, 
development, and apoptosis in many cancers [22–24]. The circRNA–miRNA–mRNA regulation axis plays a 
crucial role in the progression of several diseases, including malignancies, diabetes, Alzheimer’s disease, 
and cardiovascular disease [25–28]. These networks participate in the signaling mechanisms of several 
human illnesses by controlling the expression profile of genes linked to pathogenicity. To comprehend the 
complicated biological processes of cancer, the interaction between circRNAs/miRNAs and mRNAs needs to 
be clarified [29].

Large-scale bioinformatics databases have been increasingly used in medical research since genetic 
screening techniques were developed. Among these, GEO datasets stored in the NCBI and TCGA may be 
useful in the quantitative investigation and analysis of alterations in gene expressions of many diseases, 
including CESC [30]. For instance, based on GEO and the TCGA databases, Gao et al. [31] identified 4 
miRNAs (miR-223, miR-99a, miR-188, and miR-125b) influencing the survival rate of individuals with CESC. 
In another study, Qi et al. [32] revealed 3 novel miRNAs (miR-7641, miR-585-5p, and miR-216b-5p) 
expression patterns might be used as a biomarker to indicate the poor prognosis of CESC. Recent studies 
have shown that circRNAs play key roles in CESC processes by altering the regulation of numerous 
oncogenes or tumor suppressor genes via miRNAs. For example, it has been found that circ0001955 
enhances CESC carcinogenesis and metastasis via the miR-188-3p/NCAPG2 axis [33]. The circ_POLA2/miR-
326/GNB1 axis has been found to be important in the development and progression of CESC [34].

Using various in silico approaches, circRNAs–miRNAs–mRNAs axes that may be significant in the CESC 
cancer process have been identified in current study. 3 circRNAs (hsa_circ_0000711, hsa_circ_0000515, and 
hsa_circ_0001855) that may be more associated with CESC were identified. To our knowledge, two studies 
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in the literature regarding the relationship between hsa_circ_0000711 circRNA and cancers exist. However, 
there is no information about the relationship between hsa_circ_0000711 and CESC. In the study of Li et al. 
[35], it has been suggested that hsa_circ_0000711 may have a significant role in colorectal cancer and may 
be a possible biomarker for colorectal cancer diagnosis and prognosis. The increased expression of 
hsa_circ_0000711 has been shown to promote hepatoma cell proliferation and prevent apoptosis by 
binding has-miR-103a-3p [36]. Among the selected miRNAs in the current study, hsa-miR-338-3p and hsa-
miR-361-3p, which are among the candidate potential sponges of hsa_circ_0000711, were shown to be 
downregulated in many cancers, including CESC. For instance, according to Luan et al.’s study [37], miR-
338-3p was considerably downregulated in CC cells and tissues, while lncRNA XLOC_006390 was found to 
act as a ceRNA and accelerate CC progression and metastasis by reverse regulating miR-338-3p expression. 
In the study of Meng et al. [38] circUBAP2 has been shown to be a prognostic marker and it may contribute 
to tumor growth and metastasis in CESC by influencing the miR-361-3p/SOX4 axis. In Pubmed, there are 
two research that indicate a link between ‘hsa_circ_0000515’ and cancers. Cai et al. [39] showed that 
hsa_circ_0000515 is involved in developing breast cancer via the miR-296-5p/CXCL10 axis. Another study 
emphasized that hsa_circ_0000515 may play a role in the development of CESC through miR-326/ELK1 axis 
[40]. miR-296-5p found a candidate sponge miRNA of hsa_circ_0000515 in the current study is an 
important miRNA in many cancers including CESC. For example, KCNQ1OT1 has been demonstrated to 
accelerate the malignant behavior of CESC and promote tumor formation by altering the miR-296-5p/
HYOU1 axis. The third circRNA that may be associated with CESC, ‘hsa_circ_0001855’, has not yet been 
associated with any cancer in the literature, and only one study has stated that it may be associated with 
preeclampsia [41].

The genes in our study’s proposed axes are involved in critical biological functions such as cell division 
and DNA replication and are linked to various malignancies (Figure 4). All of the selected 10 genes for our 
investigation have previously been proven to be elevated in many cancers including CESC. For instance, a 
recent study identified S100A2 as a hypoxia-induced immunosuppressive factor that regulates the 
expression of PD-L1. S100A2 has also been identified as an oncogene that enhances the proliferation and 
migration of CC cells, suggesting that it might be a potential therapeutic target for CESC [42]. There is 
sufficient evidence supporting PLK1 overexpression in CESC, and it has been documented that PLK1 
overexpression contributes to the clinical progression of CESC patients [43]. ZBRK1 has been implicated as 
inhibiting CC metastasis, perhaps by modulating MMP9 expression [44].

Increasing evidence indicates that circRNAs have the potential to serve as indicators for early cancer 
detection, clinical diagnosis, prediction, and even in the evaluation of therapy response [21]. To reveal the 
effects of the hsa_circ_0000711/hsa-miR-338-3p/HMGA1, HIST1H2BJ, ZWINT, MMP9, KIFC1 and 
hsa_circ_0000515/hsa-miR-296-5p/S100A2, PLK1, SLC7A5, HMGA1 axes in CESC, it is necessary to conduct 
both in vitro and in vivo research. If the appropriate confirmation is achieved, these axes may be used as a 
biomarker for early diagnosis and in creating targeted therapy.

Conclusions

According to the findings, this reserch suggest that hsa_circ_0000711 may be involved in the CESC process 
hsa-miR-338-3p/HMGA1, HIST1H2BJ, ZWINT, MMP9, KIFC1 axis and also via hsa-miR-361-3p/KIFC1, 
UBALD2, CDC6 axis. Moreover, the results suggest that hsa_circ_0000515 may affect CESC processes by 
changing the expressions of S100A2, PLK1, SLC7A5, and HMGA1 genes through hsa-miR-296-5p. These 
circRNAs–miRNAs–mRNAs axes, which are considered to be associated with CESC, should be confirmed in 
vitro and in vivo with new investigations.

Limitations of the study

Although this study was conducted using TCGA data containing a large number of patient samples in mRNA 
and miRNA selection, GSE102686 and GSE169057 GEO datasets containing a small number of patient 
samples were used in determining circRNAs. The small number of patient samples can be considered as a 
limitation of the study. Despite this, circRNA is a new topic, we considered that our study can be considered 
a clue for in vitro and in vivo studies.
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