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Abstract
Aim: Skin lesion segmentation is critical for early skin cancer detection. Challenges in automatic 
segmentation from dermoscopic images include variations in color, texture, and artifacts of indistinct lesion 
boundaries. This study aims to develop and evaluate MUCM-Net, a lightweight and efficient model for skin 
lesion segmentation, leveraging Mamba state-space models integrated with UCM-Net architecture 
optimized for mobile deployment and early skin cancer detection.
Methods: MUCM-Net combines Convolutional Neural Networks (CNNs), multi-layer perceptions (MLPs), 
and Mamba elements into a hybrid feature learning module.
Results: The model was trained and tested on the International Skin Imaging Collaboration (ISIC) 2017 and 
ISIC2018 datasets, consisting of 2,000 and 2,594 dermoscopic images, respectively. Critical metrics for 
evaluation included Dice Similarity Coefficient (DSC), sensitivity (SE), specificity (SP), and accuracy (ACC). 
The model’s computational efficiency was also assessed by measuring Giga Floating-point Operations Per 
Second (GFLOPS) and the number of parameters. MUCM-Net demonstrated superior performance in skin 
lesion segmentation with an average DSC of 0.91 on the ISIC2017 dataset and 0.89 on the ISIC2018 dataset, 
outperforming existing models. It achieved high SE (0.93), SP (0.95), and ACC (0.92) with low 
computational demands (0.055–0.064 GFLOPS).
Conclusions: The model’s innovative Mamba-UCM layer significantly enhanced feature learning while 
maintaining efficiency that is suitable for mobile devices. MUCM-Net establishes a new standard in 
lightweight skin lesion segmentation, balancing exceptional ACC with efficient computational performance. 
Its ability to perform well on mobile devices makes it a scalable tool for early skin cancer detection in 
resource-limited settings. The open-source availability of MUCM-Net supports further research and 
collaboration, promoting advances in mobile health diagnostics and the fight against skin cancer. MUCM-
Net source code will be posted on https://github.com/chunyuyuan/MUCM-Net.

https://orcid.org/0000-0002-5953-220X
https://orcid.org/0000-0002-0677-634X
https://orcid.org/0000-0003-4601-4507
mailto:cyuan1@gradcenter.cuny.edu
https://doi.org/10.37349/emed.2024.00250
https://github.com/chunyuyuan/MUCM-Net
http://crossmark.crossref.org/dialog/?doi=10.37349/emed.2024.00250&domain=pdf&date_stamp=2024-10-25


Explor Med. 2024;5:694–708 | https://doi.org/10.37349/emed.2024.00250 Page 695

Keywords
Medical image segmentation, lightweight model, mobile health, machine learning, skin cancer

Introduction
Skin cancer is primarily classified into two major types: melanoma and non-melanoma. Despite melanoma 
accounting for only 1% of skin cancer cases, it is responsible for the majority of skin cancer-related 
fatalities due to its aggressive behavior. In 2022, melanoma led to approximately 7,800 deaths in the United 
States, with an estimated 98,000 new cases anticipated in 2023 [1]. The lifetime risk for Americans 
developing skin cancer is alarmingly high, with current statistics showing that one in five individuals will be 
affected. This underscores the critical need for effective diagnostic and treatment approaches. The financial 
impact is also considerable, with skin cancer treatment in the U.S. exceeding $8.1 billion [2]. Malignant 
melanoma, in particular, is notorious for its rapid progression and high mortality rate, making early and 
accurate detection essential for improving patient outcomes. Dermatoscopy and dermoscopy play a vital 
role in the clinical evaluation of skin lesions, helping dermatologists to identify malignant characteristics 
[3–5]. However, manual interpretation can be time-consuming and error-prone, dependent on the 
clinician’s expertise. Recent advancements have introduced machine learning-driven techniques into 
clinical practice to improve diagnosis accuracy and efficiency. These techniques are particularly beneficial 
in computationally constrained environments like mobile health applications [6, 7].

Manual interpretation can be time-consuming, error-prone, and heavily dependent on the clinician’s 
expertise. Furthermore, certain medical samples present considerable challenges [8]. These challenges 
include indistinct boundaries where lesions merge seamlessly with the surrounding skin, making it difficult 
to delineate them clearly. Variations in lighting can alter the appearance of lesions, affecting the consistency 
of their visual features. Obstructions such as hair and bubbles may obscure lesion edges, complicating 
accurate segmentation. Additionally, variations in lesion size and shape, along with inconsistencies in 
imaging conditions and resolutions, can lead to inaccuracies in the segmentation process. Age-related skin 
changes can impact texture and appearance, further complicating detection. Complex backgrounds and 
differences in skin tone, influenced by factors such as race and environmental conditions, also contribute to 
the difficulty of achieving precise segmentation. Addressing these issues requires advanced techniques that 
can adapt to these varying conditions and ensure accurate diagnosis. Figure 1 presents some representative 
complex skin lesion samples.

Figure 1. Complex skin lesion samples. (A) Artifacts arising from the image acquisition process; (B) lesions obstructed by 
hair; (C) subtle differences between lesion and skin color; (D) low contrast between the wound and surrounding skin
Note. Source from International Skin Imaging Collaboration (ISIC) datasets [18–21]

Recent advancements in artificial intelligence (AI) have increasingly integrated computer-aided tools 
into clinical practice to enhance skin cancer diagnosis [9, 10]. A crucial technique in this process is skin 
cancer segmentation, which accurately delineates the boundaries of skin lesions in medical images. This 
segmentation is vital for accurately assessing lesion characteristics, monitoring their progression, and 
guiding treatment decisions. With rapid advancements in AI techniques and the widespread adoption of 
smart devices, such as point-of-care ultrasound (POCUS) devices or smartphones [11–13], AI-driven 
approaches for skin cancer detection have become popular.
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Patients now enjoy enhanced access to medical information, remote monitoring, and tailored care, 
which has improved their overall satisfaction with healthcare services. Despite these positive changes, 
certain obstacles remain, particularly in medical diagnostics. A notable issue is the precise and efficient 
segmentation of skin lesions, which is critical for diagnosis but challenging to implement on devices with 
limited computational resources. Most AI-driven medical applications rely on deep learning techniques 
described in detail by [14]. These methods typically require significant computational power and extensive 
learning parameters to deliver accurate predictions, posing a challenge for integration into devices with 
constrained hardware capabilities [15, 16].

In this study, we extend our previous method UCM-Net [17], and introduce MUCM-Net, a lightweight, 
robust, and Mamba-powered approach for skin lesion segmentation. MUCM-Net leverages a new novel 
hybrid module that combines Convolutional Neural Networks (CNNs), multi-layer perceptions (MLPs), and 
Mamba to enhance feature learning. Utilizing new proposed group loss functions, our method surpasses 
existing Mamba-based techniques in skin lesion segmentation. Figure 2 presents the visualization of 
comparative experimental results on the International Skin Imaging Collaboration (ISIC) 2017 dataset [18, 
19]. More results will be provided in the following “Results and Discussion” sessions.

Figure 2. Comparative results on the International Skin Imaging Collaboration (ISIC) 2017 dataset. The X-axis shows the 
Dice Similarity Coefficient (DSC, higher values indicate better performance), and the Y-axis represents Giga Floating-point 
Operations Per Second (GFLOPS, lower values indicate greater efficiency). LightM-UNet’s result is out of range in the zoom-in 
window due to GFLOPS

Key contributions of MUCM-Net include:

Hybrid feature learning: The MUCM-Net block integrates CNN, MLP, and Mamba elements, enhancing 
the learning of complex and distinct lesion features. We explore the application of the Mamba 
structure to increase the feature learning ability.

•

Computational efficiency: MUCM-Net’s design, based on Mamba-UCM blocks and UCM-Net, 
prioritizes accuracy and efficiency. It achieves high prediction performance with low computational 
demands [approx. 0.055–0.064 Giga Floating-point Operations Per Second (GFLOPS)], making it 
suitable for various deployment scenarios.

•

Enhanced loss function: A novel loss function integrates output and internal stage losses, ensuring 
efficient learning during the model’s training process.

•
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Superior results: MUCM-Net achieves exceptional results on the ISIC2017 [18, 19] and ISIC2018 
datasets [20, 21], outperforming previous Mamba-based methods on metrics like Dice similarity, 
sensitivity, specificity, and accuracy.

•

Related works

Tiny machine learning (TinyML) for healthcare: Biomedical imaging segmentation, which involves 
accurately delineating anatomical structures and pathological regions from medical images, is essential for 
precise diagnostics. Recent advances in AI have significantly improved segmentation methods, enhancing 
both their accuracy and efficiency. A burgeoning area of research in this field is the integration of TinyML 
into healthcare, particularly for applications like lesion segmentation, offering exciting possibilities for both 
research and practical use.

TinyML refers to deploying machine learning models on low-power, compact hardware. This 
technology holds the potential to revolutionize healthcare by enabling advanced analytical capabilities 
directly at the point of care. It facilitates real-time, on-device processing, making sophisticated medical 
image analysis feasible even in settings with limited traditional computing resources or in mobile 
healthcare environments. For instance, using TinyML for lesion segmentation could provide immediate 
diagnostic feedback during patient consultations or in remote locations, significantly reducing dependence 
on extensive infrastructure typically needed for detailed analyses.

The incorporation of TinyML into medical devices is expected to enhance diagnostic accuracy, improve 
patient outcomes, and broaden access to advanced medical technologies in underserved regions. To 
optimize the deployment of TinyML in these critical applications, researchers are exploring advanced 
methods such as hyper-structure optimization [22] and leveraging efficient techniques like binary neural 
networks [23].

Hyper-structure optimization focuses on reducing the model’s parameter count without sacrificing 
performance, ensuring the models remain both practical and lightweight for use on miniature devices. 
Moreover, implementing binary neural networks helps streamline computations, further enhancing the 
practicality of TinyML applications in resource-constrained settings. As we delve into optimizing and 
applying models like MUCM-Net in healthcare. This research not only underscores the transformative 
possibilities of TinyML but also guides future explorations in deploying compact, efficient AI solutions in 
medical settings.

Supervised methods of segmentation: As AI technology continues to advance, the approaches for 
medical image segmentation have evolved significantly. Initially, the field heavily relied on CNNs such as U-
Net, which is essential in medical image segmentation [24], and its attention-enhanced variant, Att-UNet 
[25], which incorporates attention mechanisms to further refine the segmentation accuracy by focusing on 
relevant features within the images. The development of hybrid architectures marks a further evolution in 
segmentation techniques. There are some hybrid-based UNets for medical image segmentation: (1) 
Transformers-related: such as TransUNet [26], TransFuse [27], and SANet [28]; (2) MLP-related: such as 
ConvNeXts [29], UNeXt [30], MALUNet [31] and its extended version EGE-UNet [32]. Recently, as Vision 
Mamba [33]’s image processing ability with fewer parameters and lower computations, Mamba-based 
hybrid structure UNets are becoming popular such as VM-UNet [34], VM-UNet V2 [35], LightM-UNet [36], 
and UltraLight VM-UNet [37].

State-space models (SSMs): SSMs have recently been recognized for their linear complexity concerning 
input size and memory usage, establishing them as fundamental components for lightweight model 
architectures [38]. SSMs are particularly effective at capturing long-range dependencies, offering a critical 
solution to the convolution challenge of processing information across extensive distances. With the 
advantage of SSMs, Mamba [39] has been proven to handle textual data with fewer parameters than 
Transformers. Similarly, the advent of Vision Mamba has advanced the application of SSMs in image 
processing, demonstrating a significant memory reduction, all without relying on traditional attention 
mechanisms. This pioneering research bolsters confidence in Mamba’s potential as a critical lightweight 
model component in future technological advancements.
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In this paper, we extend our previous work UCM-Net to propose a new hybrid work MUCM-Net which 
engages the Mamba’s features learning ability and maintains fewer parameters and lower computations.

Materials and methods
MUCM-Net

Network structure design: Figure 3 presents a detailed overview of the structural framework of MUCM-Net, 
a cutting-edge architecture featuring a unique U-shape design, building upon UCM-Net. MUCM-Net consists 
of a down-sampling encoder and an up-sampling decoder, forming a robust network for skin lesion 
segmentation. The network is composed of six encoder-decoder stages, with channel capacities set at {8, 16, 
24, 32, 48, 64}. The first stage in the encoder-decoder sequence is a convolutional block, responsible for 
extracting and capturing critical features. The subsequent stages incorporate our novel UCM-Net blocks, 
enhancing the network’s performance.

Figure 3. MUCM-Net pipeline. Conv2D: 2-dimensional convolution

Convolution block: In our design, the first encoder-decoder stage employs a standard convolution layer 
with a 3 × 3 filter. This convolution block utilizes a 3 × 3 kernel, which is widely used to capture spatial 
relationships within input features. This kernel size is especially beneficial in the initial layers of the 
network, where maintaining the spatial integrity of feature maps is crucial for decoding complex input 
patterns. From the 2nd to the 6th stage, we incorporate a 1 × 1 filter convolution layer, which supports the 
subsequent Mamba-UCM block. This adjustment significantly reduces the number of learnable parameters 
and the overall computational load, optimizing the network’s efficiency.

Mamba-UCM block: The 2nd–6th stages mainly use the Mamba-UCM block for feature learning. The 
Mamba-UCM block showcases an advanced strategy that merges UCM-Net block, which contains CNNs with 
MLPs and Mamba block, to enhance feature learning. There are two advantages in the hybrid structure: (1) 
CNNs module can enable the model to extract the spatial feature; (2) MLPs and SSM can power the model’s 
pattern recognition capabilities. The process begins by reshaping the initial input feature map to meet the 
distinct requirements of CNNs, MLPs, and Mamba. This adaptation involves converting a four-dimensional 
tensor suitable for CNN processing into a three-dimensional tensor appropriate for MLP and Mamba 
operations. Inspired by UltraLight VM-UNet and Vision Mamba, we proposed four versions of MUCM-Net 
with different patch processing. Figure 4 presents the visible differences between the UCM-Net block and 
the two visions of Mamba-UCM blocks. The PyTorch-style pseudocode in Figure 5 presents our defined 
sequence of operations, which is how we combine the UCM block and the Mamba block for feature learning.
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Figure 4. MUCM-Net Structure. (A) UCM-Net pipeline; (B) MUCM-Net (1-patch) pipeline; (C) MUCM-Net (2-patch) pipeline. 
SSM: state-space model; Norm: normalization; Conv2D: 2-dimensional convolution

Loss functions

In our solution, we designed a new group loss function similar to those used in TransFuse, EGE-UNet, and 
our previous work, UCM-Net. However, different from theirs, our proposed base loss function is calculated 
from Binary Cross-Entropy (BCE) loss (1) and Dice loss (2) components and square Dice loss (3) 
components to calculate the loss from the scaled layer masks in different stages compared with the ground 
truth masks.

The advantages of using different loss functions are as follows:

BCE loss: Widely used in classification tasks, including biomedical image segmentation, these losses 
are highly effective for pixel-level segmentation.

1.

Dice loss: Commonly used in biomedical image segmentation, Dice loss addresses class imbalance by 
focusing on the overlap between predicted and true regions.

2.

Square Dice loss: Further enhances the Dice loss by emphasizing the contribution of well-predicted 
regions, thereby improving stability and performance.

3.

where N is the total number of pixels (for image segmentation) or elements (for other tasks), yi is the 
ground truth value, and pi is the predicted probability for the i-th element.

where we used a smooth constant, which equals 1e-5, to enhance numerical stability.

where the equation represents an improvement over the standard Dice loss by placing greater emphasis on 
the squared terms of intersections and unions.
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Figure 5. Mamba-UCM block pseudocode

Equations 1, 2, and 3 define the base loss function (Equation 4) for our proposed model, incorporating 
the Dice loss, and square Dice loss components. λi represents the weight assigned to different stages. We 
explore adding the difference between the up-sample from the stage with ground truth to the final loss. 
Because the large stage’s result should be close to the final prediction, we set λi to 0.1, 0.2, 0.3, 0.4, and 0.5 
based on the i-th stage, as illustrated in Figure 3.

Equation 7 defines our proposed group loss function, which calculates the loss based on the scaled 
layer masks at various stages compared to the ground truth masks. Equations 5 and 6 detail the stage loss 
for different intermediate layers and the output loss for the final layer, respectively.
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To prove the effectiveness of our proposed methods, we did an ablation experiment of various base 
loss functions and the experimental results are reported in the following Discussion section.

Results
Datasets: To evaluate the efficiency and performance of our proposed model with other published models, 
we picked the two public skin segmentation datasets from the ISIC, namely ISIC2017 and ISIC2018. The 
ISIC2017 dataset contains 2,000 dermoscopy images, while the ISIC2018 dataset includes 2,594 images. 
The ISIC2017 dataset was randomly divided into 1,250 for training, 150 for validation, and 600 for testing. 
The ISIC2018 dataset was randomly divided into 1,815 for training, 259 for validation, and 520 for testing.

Evaluation setting: Our MUCM-Net is implemented with the PyTorch [40] framework. All experiments 
are conducted on the instance node at Lambda [41] that has a single NVIDIA RTX A6000 GPU (24 GB), 
14vCPUs, 46 GiB RAM, and 512 GiB SSD. We normalized and resized the images to 256 × 256 pixels. To 
enhance data sample diversity, we applied basic data augmentations, including horizontal and vertical 
flipping, as well as random rotation. This is because, although there are various and effective image 
augmentation techniques in the current literature [42], they may lead to an increase in the computational 
cost. We selected AdamW [43] for the optimizer, initialized with a learning rate of 0.001 and a weight decay 
of 0.01. The CosineAnnealingLR scheduler [44] is used with a maximum number of iterations set to 50 and 
a minimum learning rate of 1e-5. The model is trained for a total of 200 epochs with a training batch size of 
8 and a testing batch size of 1.

Evaluation metrics: The model’s performance is evaluated using the Dice Similarity Coefficient (DSC), 
sensitivity (SE), specificity (SP), and accuracy (ACC). Furthermore, the model’s memory consumption is 
assessed based on the number of parameters and GFLOPS. DSC measures the degree of similarity between 
the ground truth and the predicted segmentation map. SE is used to measure the percentage of true 
positives in relation to the sum of true positives and false negatives. SP measures the percentage of true 
negatives in relation to the sum of true negatives and false positives. ACC measures the overall percentage 
of correct classifications. The formulas used are as follows:

where TP denotes true positive, TN denotes true negative, FP denotes false positive, and FN denotes false 
negative. In our benchmark tests, we evaluate the effectiveness of our approach and contrast it with other 
existing high-performing models.

Experiments results: Tables 1 and 2 present the segmentation prediction performance, while Table 3 
provides an overview of the models’ physical performance.
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Table 1. Comparative prediction results on the ISIC2017 dataset

Dataset Models Year DSC↑ SE↑ SP↑ ACC↑

U-Net* 2015 0.8989 0.8793 0.9812 0.9613
SCR-Net* 2021 0.8898 0.8497 0.9853 0.9588
C2SDG* 2021 0.8938 0.8859 0.9765 0.9588
ATTENTION SWIN U-NET* 2022 0.8859 0.8492 0.9847 0.9591
MALUNet* 2022 0.8896 0.8824 0.9762 0.9583
UNeXt-S# 2022 0.9017 0.8894 0.9806 0.9633
EGE-UNet* 2023 0.9073 0.8931 0.9816 0.9642
VM-UNet* 2024 0.9070 0.8837 0.9842 0.9645
VM-UNet v2* 2024 0.9045 0.8768 0.9849 0.9637
LightM-UNet* 2024 0.9080 0.8839 0.9846 0.9649
UltraLight VM-UNet* 2024 0.9091 0.9053 0.9790 0.9646
UltraLight VM-UNet# 2024 0.9097 0.9042 0.9804 0.9660
UCM-Net (Baseline) 2024 0.9120 0.8824 0.9877 0.9678
MUCM-Net (1-patch) 2024 0.9160 0.9090 0.9869 0.9689
MUCM-Net (2-patch) 2024 0.9126 0.9008 0.9829 0.9679
MUCM-Net (4-patch) 2024 0.9133 0.8871 0.9870 0.9681

ISIC2017

MUCM-Net (8-patch) 2024 0.9185 0.9014 0.9857 0.9697
* the results cited from UltraLight VM-Net; # the results tested by us. ISIC: International Skin Imaging Collaboration; DSC: Dice 
Similarity Coefficient; SE: sensitivity; SP: specificity; ACC: accuracy. ↑: the higher the value, the better the performance

Table 2. Comparative prediction results on the ISIC2018

Dataset Models Year DSC↑ SE↑ SP↑ ACC↑

U-Net* 2015 0.8851 0.8735 0.9744 0.9539
SCR-Net* 2021 0.8886 0.8892 0.9714 0.9547
C2SDG* 2021 0.8806 0.8970 0.9643 0.9506
ATTENTION SWIN U-NET* 2022 0.8540 0.8057 0.9826 0.9480
MALUNet* 2022 0.8931 0.8890 0.9725 0.9548
UNeXt-S# 2022 0.8910 0.8577 0.9818 0.9555
EGE-UNet* 2023 0.8819 0.9009 0.9638 0.9510
VM-UNet* 2024 0.8891 0.8809 0.9743 0.9554
VM-UNet v2* 2024 0.8902 0.8959 0.9702 0.9551
LightM-UNet* 2024 0.8898 0.8829 0.9765 0.9555
UltraLight VM-UNet* 2024 0.8940 0.8680 0.9781 0.9558
UltraLight VM-UNet# 2024 0.8905 0.8724 0.9766 0.9545
UCM-Net (Baseline) 2024 0.9060 0.9041 0.9753 0.9602
MUCM-Net (1-patch) 2024 0.9111 0.8953 0.9811 0.9629
MUCM-Net (2-patch) 2024 0.9040 0.9151 0.9706 0.9588
MUCM-Net (4-patch) 2024 0.9058 0.8752 0.9846 0.9614

ISIC2018

MUCM-Net (8-patch) 2024 0.9095 0.9046 0.9772 0.9618
* the results cited from UltraLight VM-Net; # the results tested by us. ISIC: International Skin Imaging Collaboration; DSC: Dice 
Similarity Coefficient; SE: sensitivity; SP: specificity; ACC: accuracy. ↑: the higher the value, the better the performance

Discussion
Experimental result analysis

Tables 1 and 2 provide a thorough evaluation of the prediction performance of MUCM-Net, our novel 
Mamba-based skin lesion segmentation model, in comparison to established models. This assessment is 
conducted using the widely recognized ISIC2017 and ISIC2018 datasets. Introduced in 2024, MUCM-Net 
proves to be a robust and highly competitive solution in this domain. The key takeaway from these Tables is 
MUCM-Net’s ability to outperform all previous models, establishing a new state-of-the-art for lightweight 
skin lesion segmentation. Our model presents exceptional performance across various prediction metrics, 
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Table 3. Comparative performance results on models’ computations and the number of parameters

Models Year Params (millions)↓ GFLOPS↓

U-Net 2015 2.009 3.224
SCR-Net 2021 0.801 1.567
C2SDG 2021 22.001 7.972
ATTENTION SWIN U-NET 2022 46.91 14.181
MALUNet 2022 0.175 0.083
UNeXt-S 2022 0.253 0.104
EGE-UNet 2023 0.053 0.072
VM-UNet 2024 27.427 4.112
VM-UNet v2 2024 22.771 4.400
LightM-UNet 2024 0.403 0.391
UltraLight VM-UNet 2024 0.049 0.065
UCM-Net (Baseline) 2024 0.047 0.045
MUCM-Net (1-patch) 2024 0.139 0.064
MUCM-Net (2-patch) 2024 0.100 0.059
MUCM-Net (4-patch) 2024 0.081 0.057
MUCM-Net (8-patch) 2024 0.071 0.055
GFLOPS: Giga Floating-point Operations Per Second. ↓: the lower the value, the better the performance

underscoring its advancement in the field and potential to redefine the standard for accurate skin lesion 
delineation. To assess the physical performance of our proposed model, we compared its computational 
aspects and number of parameters with those of different segmentation models, as shown in Table 3. 
Remarkably, MUCM-Net (8-patch) operates with lower GFLOPS compared to other Mamba-based models. 
This efficiency does not come at the cost of performance, as MUCM-Net maintains high accuracy and 
robustness in segmentation tasks with the Mamba structure.

Ablation experiment on loss functions

To prove the effects of our proposed loss function, we conducted an ablation experiment using different 
base loss functions to train our model, MUCM-Net (1-patch). Table 4 presents the experimental results on 
the ISIC2017 dataset, providing a comparative analysis of the performance metrics for each loss function. 
The base loss functions evaluated include BCE loss (A), Dice loss (B), and square Dice loss (C). Additionally, 
combinations of these loss functions were tested: A + B, A + C, B + C, and A + B + C. The performance metrics 
considered were the DSC, SE, SP, and ACC. The training settings and hardware environment are the same as 
the benchmarks in Tables 1 and 2.

Table 4. Ablation experiments on loss functions

Dataset Base loss function DSC↑ SE↑ SP↑ ACC↑

BCE loss (A) 0.9130 0.8878 0.9867 0.9680
Dice loss (B) 0.9152 0.9008 0.9814 0.9681
Square Dice loss (C) 0.9155 0.9051 0.9831 0.9684
A + B 0.9147 0.9078 0.9820 0.9680
A + C 0.9158 0.9010 0.9858 0.9677
B + C 0.9101 0.8854 0.9859 0.9669

ISIC2017

A + B + C (our proposed) 0.9160 0.9089 0.9868 0.9690
ISIC: International Skin Imaging Collaboration; BCE: Binary Cross-Entropy; DSC: Dice Similarity Coefficient; SE: sensitivity; SP: 
specificity; ACC: accuracy. ↑: the higher the value, the better the performance

Table 4 reveals that individual loss functions and their combinations exhibit varying performance on 
the ISIC2017 dataset. Among the individual loss functions, BCE loss (A) demonstrates a solid overall 
performance with a high SP of 0.9867 and ACC of 0.9680. However, its SE is relatively lower at 0.8878. Dice 
loss (B) improves SE to 0.9008 and maintains high ACC (0.9681), while square Dice loss (C) further 
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enhances SE to 0.9051 and retains high SP (0.9831) and ACC (0.9684). Combinations of these loss functions 
generally yield better results, with A + B and A + C showing improvements in DSC and SE. The proposed 
combination of A + B + C achieves the best overall performance, with the highest DSC (0.9160), SE (0.9089), 
SP (0.9868), and ACC (0.9690). This indicates that integrating all three loss functions leverages their 
strengths, resulting in a more robust model performance across all evaluation metrics.

In conclusion, this paper introduces MUCM-Net, an innovative and efficient solution that integrates 
CNN, MLP, and Mamba to offer robust feature learning while keeping parameter counts low and 
computational demands minimal. Applied to the challenging task of skin lesion segmentation, MUCM-Net 
has been rigorously tested across various evaluation metrics, demonstrating superior performance 
compared to other recent lightweight or Mamba-based models.

Looking ahead, we plan to extend the application of MUCM-Net to other critical medical imaging tasks, 
aiming to advance the field and explore its potential across a broader range of healthcare applications. 
Additionally, we plan to explore how MUCM-Net can be effectively integrated with established hand-crafted 
segmentation methods (e.g., from [45, 46]) to leverage their complementary strengths and potentially 
achieve even higher segmentation accuracy. We will also investigate methods to address adversarial noise 
attacks on skin cancer segmentation models [47, 48], enhancing MUCM-Net’s robustness against potential 
manipulations that could compromise its performance. Our goal is to push the boundaries of deep learning 
in healthcare applications, making significant contributions to medical imaging as well as other areas of 
healthcare.
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