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Abstract
Aim: Head and neck squamous cell carcinoma (HNSC) is a major contributor to the global cancer burden. 
The serine protease inhibitor Kazal-type (SPINK) gene family has been linked to various cancers. This study 
explores the prognostic value of SPINK genes in predicting overall survival (OS) in HNSC patients.
Methods: We analyzed RNA sequencing and clinical data from 504 cancer and 44 non-cancer samples from 
the TCGA database. Differential expression and functional enrichment analyses gene ontology and Kyoto 
encyclopedia of genes and genomes (GO and KEGG) were performed using clusterProfiler. Protein-protein 
interaction (PPI) networks were built with STRING and visualized. Immune infiltration was evaluated using 
single-sample Gene Set Enrichment Analysis (ssGSEA). Survival analysis utilized Kaplan-Meier curves and 
Cox regression models.
Results: Our results showed that SPINK5, SPINK7, SPINK8, SPINK9, and SPINK14 were significantly 
overexpressed in normal tissues compared to carcinoma tissues, whereas SPINK1, SPINK4, and SPINK6 
showed higher expression in carcinoma tissues. Correlation analysis revealed significant relationships 
among SPINK family members. GO and KEGG analyses highlighted their involvement in processes such as 
negative regulation of peptidase activity and serine-type endopeptidase inhibitor activity. PPI network 
analysis indicated close interactions between several SPINK proteins and other relevant proteins. Immune 
infiltration analysis showed that NK cells and Th2 cells were negatively correlated with SPINK genes, while 
mast cells and neutrophils were positively correlated. Survival analysis revealed that high mRNA 
expression levels of SPINK1, SPINK5, and SPINK6 were significantly associated with OS in HNSC patients. 
Receiver operating characteristic (ROC) curve analysis indicated that these genes have diagnostic value. We 
developed a nomogram model that combines tumor stage and SPINK gene expression providing a 
predictive tool for patient prognosis.
Conclusions: This study elucidates the multifaceted roles of the SPINK gene family in HNSC. These findings 
offer valuable insights into their potential as diagnostic biomarkers and therapeutic targets.
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Introduction
Head and neck cancer is the sixth most common cancer and is a major source of the global cancer burden, 
accounting for about 6% of all cancer cases worldwide [1]. About 90% of head and neck cancers belong to 
the head and neck squamous cell carcinoma (HNSC) category [2]. There are more than 650,000 new HNSC 
cases annually worldwide, with 140,000 in Europe, and the incidence rate in men is higher than that in 
women [3, 4]. In 2018, there were reports in Europe that 3.1 percent of new HNSC patients were men, while 
the estimated mortality rate of HNSC in all cancer cases was 2.8 percent [5]. If HNSC is found at an early 
stage, there will be a higher cure rate in terms of 5-year survival rate. Over the past decade, knowledge 
about the molecular mechanisms driving tumor transformation and progression in HNSC has grown rapidly 
[6]. However, there are still some shortcomings, not only a limited number of biomarkers used in clinical 
practice, but also very few that have reached the stage of routine verification [7].

The serine protease inhibitor Kazal-type (SPINK) gene family consists of many family members. 
Presently, the members that have been discovered and identified include SPINK1 to SPINK12 [8]. The SPINK 
proteins are expressed in various tissues and help maintain the balance of protease activity by regulating 
serine proteases [9]. In addition, SPINK, a trypsin and trypsin-like inhibitor, contains at least 1 Kazal 
domain and 6 cysteines used to form 3 disulfide binding patterns [10, 11]. Studies have shown that the 
imbalance between SPINK protein and protease may lead to the occurrence of various cancers [12, 13]. 
However, in the context of HNSC, whether the SPINK family can be used as a prognostic biomarker has not 
been reported. Therefore, in this study, we will explore the prognostic value of mRNA expression in HNSC 
with a single SPINK family subunit.

Materials and methods
Data preparation

RNAseq data from the TCGA database (https://portal.gdc.cancer.gov) for the TCGA-HNSC project were 
downloaded and organized, including Trusted Platform Module (TPM) format data and clinical data 
(accessed by August 1, 2024). We conducted differential analysis on the original counts matrix using the 
DESeq2 package, following standard procedures [logFC (1) and P.adj (0.05)]. Additionally, we normalized 
the counts matrix using the variance stabilizing transformations method from the DESeq2 package. The 
HNSC expression data extracted from TCGA included 504 cancer mRNA sequences and 44 non-cancer 
mRNA sequences for subsequent analysis. The total number of samples with clinical information was 528. 
We visualize the results of the differential analysis using the ggplot2 package in R v4.2.1. The data for this 
study were obtained from the TCGA database and the use of this data did not require approval from the 
Ethics Committee. Data collection and application in accordance with TCGA release guidelines and data 
access policies.

SPINK family mRNA expression levels and correlation analyses

To clarify the expression differences of the SPINK gene family in HNSC, we performed a statistical analysis 
using the stats package in R v4.2.1. The results were visualized with the ggplot2 package. We assessed the 
co-expression relationship among SPINK genes using Pearson correlation coefficient analysis in R v4.2.1 
and visualized the data with the ggplot2 package.

Functional analyses of SPINK genes

Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses can yield gene 
expression data specifically for common SPINK genes. We utilized the clusterProfiler package in R v4.2.1 to 
conduct enrichment analysis, followed by data visualization with the ggplot2 package to clarify the 
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functions of the gene family. The functional analysis based on GO includes three categories: biological 
process (BP), cellular component (CC), and molecular functionality (MF).

Construction of protein-protein interaction and genetic interaction network

Protein-protein interaction (PPI) networks offer insights into the relationships among drugs, target genes, 
and proteins, as well as visual representations of this information. This study utilized the STRING tool and 
Cytoscape v3.10.2 to evaluate PPI, focusing on the functions and physical relationships of SPINK proteins. 
Genetic interaction (GI) networks leverage gene function prediction sites to elucidate complex interactions 
among relevant genes, generated through the Gene Multiple Association Network Integration Algorithm 
(GeneMANIA: https://genemania.org/, accessed by August 1, 2024). Both SPINK genes and the predicted 
genes were displayed concurrently for comparative analysis.

Immune infiltration analysis

Using the single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm from the R package Gene Set 
Variation Analysis (GSVA), we calculated the immune infiltration status of the cloud dataset based on 
markers from 24 immune cells described in the immunity article [14]. Specific markers for the 24 immune 
cells can be found in the relevant references, and the violin plot illustrates the differences in immune cell 
abundance across different groups.

Survival analysis and diagnostic analysis

Patients were categorized into high-expression and low-expression groups based on the median value of 
each SPINK mRNA. The prognosis of HNSC was evaluated based on overall survival (OS). The log-rank test 
and Kaplan-Meier estimator were used to calculate the log-rank P-value and assess OS for the SPINK gene 
family. Clinical information, including gender and race, was also considered. We generated receiver 
operating characteristic (ROC) curves to evaluate the diagnostic value of the SPINK genes. For survival 
analysis, we utilized the survival package to conduct proportional hazards hypothesis testing and to fit a 
survival regression model. The results were visualized using the survivminer and ggplot2 packages. For the 
column charts, the survival package was used to test hypotheses regarding proportional hazards, and Cox 
regression analysis was performed. The rms package was utilized to create and visualize models related to 
nomograms. The survival curves, ROC curves, and nomograms were all generated using R v4.2.1.

Expression of SPINK gene family in tumor stages I–IV

We investigated the expression of the SPINK gene family across different tumor stages. To do this, we 
utilized the stats package in R v4.2.1 and applied the Kruskal-Wallis test and Dunn’s test from the car 
package to analyze molecular expression differences among clinical variable groups.

Statistical analyses

R v4.2.1 was used to create correlation plots, survival curves, nomograms, ROC curves, and other data 
visualization. Furthermore, a P-value < 0.05 was deemed statistically significant.

Results
The mRNA expressions of SPINK in human normal tissues and carcinoma tissues

This study screened 10,666 differentially expressed genes (Figure 1). There are a total of 8 differentially 
expressed genes in the SPINK gene family, namely SPINK1, SPINK4, SPINK5, SPINK6, SPINK7, SPINK8, 
SPINK9, and SPINK14 (Figure 2). In normal tissues, the mRNA expression levels of SPINK5, SPINK7, SPINK8, 
SPINK9, and SPINK14 were significantly higher than in carcinoma tissues. Conversely, the mRNA expression 
levels of SPINK1, SPINK4, and SPINK6 were higher in carcinoma tissues than in normal tissues.

Pearson correlation coefficient analysis was used to identify correlations in the mRNA expression 
levels of SPINK genes (Figure 3, Table S1). Asterisks denote correlated molecules, with red indicating 
positive correlations and blue indicating negative correlations. The strength of the correlations is 
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Figure 1. Differential expression analysis of the TCGA data set. Volcano plot of differential expression analysis of the HNSC 
data set. Not sig: genes that did not meet the significance criteria in the statistical analysis; HNSC: head and neck squamous 
cell carcinoma

Figure 2. The boxplots about SPINK gene expressions in normal tissues and carcinoma tissues. Boxplot for SPINK1, 
SPINK4, SPINK5, SPINK6, SPINK7, SPINK8, SPINK9, and SPINK14 expressions. SPINK: serine protease inhibitor Kazal-type; 
*: P < 0.05; **: P < 0.01; ***: P < 0.001

categorized as follows: |r| > 0.95 indicates significant correlation; |r| ≥ 0.8 indicates high correlation; 0.5 ≤ |
r| < 0.8 indicates moderate correlation; 0.3 ≤ |r| < 0.5 indicates low correlation; |r| < 0.3 indicates weak 
correlation. Genes in the SPINK gene family that show a correlation greater than 0.5 include SPINK5 with 
SPINK7 and SPINK6 with SPINK7.

SPINK genes’ function, pathway, and co-expression enrichment analyses

The biological functions of SPINK genes were identified using Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) based on GO and KEGG analyses (Figure 4A, Table S2). The analysis revealed 
that SPINK genes were primarily enriched in several categories: They are involved in the negative 
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Figure 3. Pearson correlation coefficients for SPINK gene expression levels. The darker the color the greater the 
correlation. SPINK: serine protease inhibitor Kazal-type

regulation of peptidase activity, endopeptidase activity, proteolysis, and hydrolase activity of BP; lamellar 
body of CC; serine-type endopeptidase inhibitor activity, peptidase inhibitor activity, endopeptidase 
inhibitor activity, and endopeptidase regulator activity of MF. However, no relevant pathways were 
identified as enriched in the KEGG analysis.

The protein level gene co-expression is illustrated using a PPI network via STRING (Figure 4B). SPINK7, 
6, 4, and 14 exhibit stronger associations with other proteins. A GI network illustrating the interactions 
among the mRNA expressions of SPINKs is presented through GeneMANIA (Figure 4C). The top 10 most 
related genes include SPINK13, RECK, SPINK2, FST, FSTL3, FSTL4, SLCO1B3-SLCO1B7, MSANTD3-TMEFF1, 
SLCO4C1, and SLCO5A1.

Immune infiltration analysis

To further investigate the role of immune cells in HNSC, we conducted a separate analysis of the TCGA 
dataset. The analysis of immune cell correlations revealed that the HNSC and SPINK gene families had a 
significant negative correlation with NK cells and Th2 cells. In contrast, mast cells showed a positive 
correlation with neutrophils (see Figure 5 and 6).

Survival analysis, diagnostic analysis, and SPINK gene family in tumor stages I–IV

The prognostic significance of SPINK mRNA expressions was assessed using R v4.2.1. SPINK1, 5, and 6 
mRNA expressions were significantly associated with OS in HNSC patients (P = 0.005, 0.006, and 0.003, 
respectively; Figure 7). In addition to these three genes, the mRNA expressions of the remaining SPINK 
genes did not show significant (P > 0.05) correlations with the OS in HNSC patients (Figure 7). The ROC 
curves showed SPINK1, 5, 7, and 8 mRNA expressions were closely related to the occurrence of HNSC 
(AUC = 0.793; AUC = 0.817; AUC = 0.728; AUC = 0.859; Figure 8). Notably, both SPINK1 and 5 served as 
simultaneous diagnostic and prognostic markers. A nomogram was created to predict the survival 
probability of patients with HNSC (Figure 9). The C-index for this model was 0.669. Although it did not meet 
the 0.7 threshold, we believe that the combined analysis of the SPINK gene family can contribute to the 
prognosis prediction for HMSC patients. The model incorporated the tumor stage, the SPINK gene family 
and the annual survival rate. In this study, stage I and II were classified as ‘early stage’, and stages III and IV 
were classified as ‘late stage’. The results showed that SPINK1, 4, 5, and 9 were associated with the tumor 
staging of HNSC (Figure 10).
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Figure 4. Functional analysis. (A) GO analysis for SPINK genes. (B) PPI network. The darker the color and the larger the 
graphic, the closer the connection with other proteins. (C) GGI network. GO: gene ontology; SPINK: serine protease inhibitor 
Kazal-type; PPI: protein-protein interaction; GGI: genetic-genetic interaction; BP: biological process; CC: cellular component; 
MF: molecular functionality

Discussion
This study evaluated the prognostic significance of the SPINK gene family using the TCGA database for 
HNSC. High expression levels of SPINK1, along with low levels of SPINK5, SPINK7, and SPINK8 were 
associated with improved OS in patients with HNSC. The mRNA expression levels of SPINK1, 4, 5, 6, 7, 8, 9, 
and 14 can help predict the development of HNSC. In addition, we performed GO functional analysis to 
explore the relationships between genes and proteins, aiming to predict the functions of the SPINK gene 
family.

SPINKs are a family of protein molecules. Protease inhibitors are crucial for regulating protein 
hydrolysis activity. Besides acting as antiproteases, they also possess significant anti-inflammatory, pro-
inflammatory properties, and antibacterial properties [15]. The SPINK gene family is crucial in the 
development of various diseases, including certain types of cancer. Mature SPINK1 consists of 56 amino 
acids, also known as islet trypsin inhibitor (PSTI) or tumor-associated trypsin inhibitor (TATI). Recent 
studies indicate that SPINK1 promotes tumor cell growth in various cancers, including lung 
adenocarcinoma [16], colon [17, 18], pancreas [19], and ovarian cancer [20]. This indicates that SPINK1 
may promote cancer through a mechanism different from its classical activity as a serine protease inhibitor. 
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Figure 5. 24 immune cells infiltrated. The X coordinate represents the correlation coefficient, and the Y coordinate represents 
the names of 24 immune cells. SPINK1 (A), SPINK4 (B), SPINK5 (C), SPINK6 (D), SPINK7 (E), SPINK8 (F), SPINK9 (G) and 
SPINK14 (H). The left side is negatively correlated, and the right side is positively correlated, the larger the spherical shape, the 
higher the correlation coefficient, and the darker the color, the greater the P-value. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ns: 
not significant

Figure 6. 24 immune cells infiltrated. The relationship between the SPINK gene family is positively correlated in red and 
negatively correlated in blue. The darker the color, the stronger the correlation coefficient and the * represents statistical 
significance

SPINK2 is mainly synthesized in testes and seminal vesicles. It plays a role in the reproductive process. The 
expression of SPINK2 was significantly increased in primary cutaneous large B-cell lymphoma, particularly 
in the germinal center of B-cell-like lymphoma and activated B-cell-like diffuse large B-cell lymphoma. This 
suggests a close association between SPINK2 and the pathogenesis of primary cutaneous large B-cell 
lymphoma [12]. There also is a study indicating the downregulation of SPINK2 in HNSC [21]. SPINK4 was 
originally isolated from pig intestines and was later found to be highly expressed in goblet cells in the 
recess of Lieberkühn in humans and pigs, as well as in monocytes and the central nervous system [22–24]. 
SPINK5 expression has been documented in the thymic and vaginal epithelium, Bartolin’s gland, oral 
mucosa, tonsil, and parathyroid gland [25]. The abnormal expression of SPINK5 is also related to the 
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Figure 7. The Kaplan-Meier survival curves of SPINK genes for OS of HNSC patients. Survival curves for 528 HNSC 
patients according to SPINK1 (A), SPINK4 (B), SPINK5 (C), SPINK6 (D), SPINK7 (E), SPINK8 (F) and SPINK9 (G) 
expressions. SPINK: serine protease inhibitor Kazal-type; OS: overall survival; HNSC: head and neck squamous cell carcinoma

Figure 8. ROC curves for SPINK genes in HNSC. ROC curves for 528 HNSC patients according to SPINK1 (A), SPINK4 (B), 
SPINK5 (C), SPINK6 (D), SPINK7 (E), SPINK8 (F), SPINK9 (G) and SPINK14 (H) expressions. ROC: receiver operating 
characteristic; SPINK: serine protease inhibitor Kazal-type; HNSC: head and neck squamous cell carcinoma

pathogenesis of certain tumors [26]. Studies indicate that in patients with oral squamous cell carcinoma 
and esophageal squamous cell carcinoma who have elevated SPINK5 expression have shorter survival times 
compared to those with low expression. SPINK5 may serve as an independent prognostic factor for tumor 
development [27, 28]. SPINK6 has a broad spectrum, not only in the skin to control kallikrein activity, but 
also in other tissues to control kallikrein activity [29]. Additionally, SPINK6 is a known prognostic factor for 
HNSC [30]. The SPINK7 gene, a tumor suppressor gene, regulates proteasome cascade during 
carcinogenesis and invasion of esophageal cancer through the urokinase-type plasmin activator/plasmin 
MAP kinase signaling pathway [31]. A recent study has shown that a large number of SPINK9 positive 
staining was observed in squamous cell carcinoma [32]. These results indicate that SPINK9 expression may 
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Figure 9. Nomogram for the relationship between medical data and risk score in HNSC patients. SPINK: serine protease 
inhibitor Kazal-type; HNSC: head and neck squamous cell carcinoma

Figure 10. The expression of the SPINK gene family in different tumor stages. The four colors represent the T1–T4 stages 
of the tumor, and the groups with differences are marked with asterisks in the figure. SPINK: serine protease inhibitor Kazal-
type; *: P < 0.05; **: P < 0.01

be related to the progression of squamous cell carcinoma.

The analysis of the SPINK gene family in HNSC has provided significant insights into their roles in 
different BPs. Notably, the GO and KEGG enrichment analyses have shown that SPINK genes are 
predominantly involved in the negative regulation of peptidase activity, proteolysis, and hydrolase activity. 
These findings are consistent with existing literature that highlights the critical roles of peptidase inhibitors 
in cancer progression and immune regulation. For instance, the study by Huang et al. [33] demonstrates 
that the parathyroid hormone-like hormone (PTHLH)-activated network in hepatocellular carcinoma 
negatively regulates peptidase activity. The regulation is vital for inducing apoptosis and protein 
catabolism. This suggests that similar regulatory mechanisms might exist in HNSC, where SPINK genes may 
influence apoptosis and proteolysis by inhibiting peptidases activity.
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Moreover, the regulation of peptidase activity in immune responses is well-established. For example, 
the study by Tanaka et al. [34] demonstrates that soluble CD26 enhances T-cell proliferation through its 
peptidase activity. This suggests that regulating peptidase activity significantly affects immune cell function. 
In the context of HNSC, our findings that SPINK genes are involved in immune cell infiltration further 
support the idea that these genes may influence tumor immunity by modulating peptidase activity.

The STRING analysis has identified key interactions between SPINK proteins and other regulatory 
molecules, such as BRCA1 and DKK1, both of which are involved in cancer-related pathways [35]. This 
complex network of interactions highlights the diverse roles of SPINK genes in cellular processes. These 
include cell cycle regulation, apoptosis, and immune responses. Furthermore, the role of SPINK genes in 
proteolytic processes is supported by research on α2-macroglobulins, which are broad-spectrum 
endopeptidase inhibitors involved in various biological functions, such as defending against external toxins 
and regulation of cytokines and growth factors [36]. This supports the idea that SPINK genes may act as 
critical modulators in the tumor microenvironment by regulating protease activity and influencing 
signaling pathways.

Our analysis of immune infiltration in HNSC revealed significant associations between SPINK gene 
family expression and different immune cell types, especially NK cells and Th2 cells. NK cells are essential 
components of the innate immune system and are known for targeting and destroying malignant cells 
without prior sensitization. Recent research has highlighted their role in tumor immunosurveillance and 
potential therapeutic applications in HNSC. For instance, a study created a prognostic model based on NK 
cell-related genes, demonstrating that NK cell infiltration is vital for positive patient outcomes and 
responsiveness to immunotherapy in HNSC [37]. Additionally, another study identified germline variants in 
NK cells that influence tumor immune microenvironment subtypes and patient prognosis, highlighting their 
significance in cancer immunity [38]. Our findings indicate that NK cells are significantly negatively 
correlated with SPINK gene family expression in HNSC. This inverse relationship suggests that increased 
SPINK gene expression could lead to an immunosuppressive tumor microenvironment. This may reduce NK 
cell activity and promote tumor progression. This finding is consistent with observations that the immune 
landscape of the tumor microenvironment, including NK cell recruitment, is critical for HNSC prognosis and 
therapeutic response [39]. Furthermore, the identified immune-related genes and pathways, such as NK 
cell-mediated cytotoxicity, are important factors in lipid metabolism-mediated tumor immunity in HNSC. 
This underscores the complex relationship between metabolic processes and immune regulation [40].

Th2 cells, a component of the adaptive immune system, promote humoral immunity and are often 
associated with anti-inflammatory responses. Our analysis showed a significant negative correlation 
between Th2 cells and SPINK gene expression, suggesting that higher SPINK levels may inhibit Th2 cell-
mediated immune responses. This is consistent with findings from Tan et al. [41], who reported that 
specific transcription factors in HNSC are associated with immune cell infiltration, including NK and Th2 
cells, and influence tumor progression and patient outcomes.

This study found that higher mRNA expression levels of SPINK1, SPINK5, and SPINK6 were related to 
favorable OS. We constructed a nomogram that indicated the SPINK gene family can participate in 
predicting scores. The contribution of tumor staging increased with the progress of the tumor, and the 
younger the patients tend to have higher scores. Compared with these risk-related factors, the importance 
of tumor staging significantly outweighs that of other effects. Using this model, we can predict the time-
dependent survival rate. Patients with lower total scores had better 1-, 3-, and 5-year survival rates 
compared to those with higher total scores. Previous research has identified a few biomarkers for HNSC 
detection, including programmed cell death-ligand 1 and vascular endothelial growth factor [6]. In this 
study, the ROC curve analysis showed that the expression levels of SPINK1, 5, 7, and 8 can distinguish 
between adjacent normal tissues and HNSC tissues. Moreover, SPINK1, 4, 5, and 9 were linked to the tumor 
staging of HNSC. These findings may provide valuable insights for diagnosing tumor metastasis in clinical 
practice.
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This study systematically explored the multifaceted roles of the SPINK gene family in head and HNSC. It 
examined expression levels, functional roles, PPI, immune infiltration, survival prognosis, and differential 
expression across tumor stages. The findings provide valuable insights into the potential mechanisms of the 
SPINK gene family in HNSC and highlight their significance in disease progression and prognosis. Future 
research, incorporating wet-lab validation and clinical studies, is essential to confirm these findings and 
clearly define the therapeutic and diagnostic potential of the SPINK gene family in HNSC.
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