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Abstract
According to research, hepatocellular carcinoma (HCC), ranks third globally in terms of cause of death and 
is the fifth most common type of cancer overall. Finding novel means of diagnosis and treatment is 
therefore crucial. The use of nanotechnology as a cancer treatment has drawn a lot of interest recently. 
Despite significant advancements in detection and treatment, there is still a long way to go before this 
disease is completely eradicated. Therefore, it’s critical to find innovative ways to diagnose and cure 
conditions. In particular, the substantial inertness of metallic nanoparticles (NPs) and their nanoscale 
structures, which have sizes comparable to many biological molecules, attract a great deal of interest in the 
biomedical field. Due to their exceptional optical qualities, chemically modified surface through the 
attachment of various ligands, biocompatibility (bio-inertness and low cytotoxicity), and superior optical 
properties, gold NPs (AuNPs) have garnered significant interest. The current review discusses the efficiency 
of AuNPs in various fields, including imaging, immunotherapy, and photothermal therapy for treating liver 
cancer. Finally, this review summarized the limitations of the prospects of the AuNPs.
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Introduction
One of the main causes of death globally is cancer, and over the next 20 years, there will likely be 22 million 
new cases of the disease, partly as a result of the aging population [1]. The World Health Organization 
(WHO) reports that cancer was the world’s biggest cause of death in 2007 with 7.9 million deaths. 
Therefore, to develop the most efficient methods of cancer detection, monitoring, and therapy, the 
boundaries of cancer research are always being tested. The discoveries that occurred in cancer research 
would undoubtedly help humanity and save many lives. These days, chemotherapy, radiation therapy, and 
surgery are the primary therapeutic modalities utilized to treat cancer. These treatments can be given 
singly or in different combinations [2].
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Medications that have a cytotoxic impact and interfere with the processes that allow cancer cells to 
proliferate quickly are given as chemotherapy treatments [3–5]. Because of the partially non-selective 
uptake of the chemotherapeutics into both healthy and malignant cells in tissues and organs, conventional 
chemotherapy is recognized for its severe side effects despite its effectiveness. The development of 
nanomedicine has led to significant advancements in recent times, offering chemotherapy a novel and 
valuable supplement [6, 7]. Chemotherapeutic medications kill not only cancer cells but also healthy cells 
such as the immune system and bone marrow cells by specifically targeting fast-dividing cells [8]. The 
patient’s body experiences extensive “collateral damage” as a result. To kill tumor cells, radiation therapy 
uses high-intensity radiation, such as X-rays and gamma rays, which invariably hurts healthy tissues nearby 
[9].

Hepatocellular carcinoma (HCC), another name for liver cancer, is a prevalent malignancy [9], yet 
nearly all of its patients pass away within a year due to its extremely high fatality rate. Hepatitis virus 
infection was the cause of the elevated death rate. However, there is currently no effective radiosensitizer 
available for therapeutic use, and liver cancer cells are not radiation-sensitive. Therefore, developing a safe 
and effective radiation therapy for hepatocellular cancer is of utmost importance. Thus, it is critical to 
develop an effective and safe method for HCC radiation therapy.

Targeting therapeutic chemicals to specifically target tumor cells while sparing healthy tissues from 
injury is a vital step toward improving cancer therapy, given the inadequacies of current cancer treatment 
approaches. One of the newest areas of interest in nanotechnology research is this. The creation of 
materials with nanoscale dimensions ranging from 1 nm to 100 nm is referred to as nanotechnology [10]. 
These nanoparticles (NPs) are special because of their small size, which gives them different chemical and 
physical characteristics from their bulk counterparts [11]. Research on nanomaterials is growing at a rapid 
pace, which bodes well for the development of new diagnostic techniques and treatments for human 
diseases in the future [12]. The National Institutes of Health in the United States has dubbed this area of 
nanotechnology used in illness detection, monitoring, and therapy “nanomedicine” [10].

Gold nanoparticles: synthesis and properties
This review will concentrate on gold NPs (AuNPs) and their potential as tumor sensors, drug delivery 
agents, and enhancers in plasmonic photothermal treatment for the eradication of malignancies, among the 
various nanomaterials being explored for nanomedicine applications [13]. Scientists and technicians find 
AuNPs, also known as AuNPs, to be particularly appealing among these NPs. AuNPs come in both spherical 
and non-spherical shapes, including tetrahedral, sub-octahedral, octahedral, decahedral, icosahedral 
multiple twined, multiple twined, irregular shapes, and nanorods [14, 15]. Metal NPs are created via a 
variety of chemically, physically, and biologically synthesized methods, and they are typically classified into 
two groups: top-down and bottom-up [15–17]. While many techniques exist for the simple synthesis of 
pure AuNPs, the chemical reduction of a metal salt in the presence of a stabilizing agent is the most 
standard way [18–20]. Because of their distinct physicochemical and optical characteristics, AuNPs are 
employed in a variety of domains in contemporary medical and biological research. These days, there is a 
vast array of uses for these particles, including pathology and disease detection and therapy [21], wound 
healing [22], genomics [23], immunoassays [24], optical equipment [25], and electronic [26]. As AuNPs 
have outstanding optical qualities and may be chemically changed by attaching various ligands with low 
cytotoxicity and bio-inertness, they are promising prospects in the field of cancer nanotechnology [27]. The 
use of AuNPs is growing in popularity across a number of academic disciplines for a number of reasons. To 
begin, AuNPs are believed to be relatively biologically non-reactive and so suitable for in vivo applications 
in contrast to the very toxic cadmium and silver NPs [28]. Strong optical characteristics are provided by 
localized surface plasmon resonance (LSPR) in AuNPs [29], surface chemistry is easily programmable, 
allowing for a variety of surface functional group additions [30], and particle size and shape may be easily 
controlled during synthesis [31, 32]. Additionally, other functionalized nanomaterials based on fullerenes 
and magnetic NPs also proved to be beneficial for medical diagnostics and therapy [33–37].
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AuNPs can be synthesized in several ways, both chemically and physically. To be more precise, there 
are two types of these manufacturing methods: top-down and bottom-up [38]. The production of 
homogenous AuNPs with diameters ranging from 5 nm to 40 nm using the radiation technique was 
reported by Tue Anh et al. [39]. The outcomes demonstrated that producing AuNPs with a controlled size 
and high purity may be accomplished by the irradiation technique. It has been documented that AuNPs can 
be synthesized using the sonochemical approach, which is quick, simple, affordable, appealing, and 
environmentally benign. Fuentes-García et al. [40] used varying ultrasonic irradiations (60 W, 150 W, and 
210 W) to synthesize AuNPs. After 60 min of radiation exposure, colloidal AuNP solutions were obtained 
from gold acid (HAuCl4) and sodium citrate [40]. The Brust and Turkevich strategies are the most widely 
used bottom-up approaches for producing AuNPs. To produce uniform, spherical AuNPs that range in size 
from 10 nm to 20 nm, the Turkevich method relies on decreasing metallic ions [41]. Sodium citrate is 
typically employed to create a colloidal dispersion that inhibits particle aggregation in addition to its role as 
a reducing agent and stabilizer [42]. Moreover, amino acids, ascorbic acid, and UV radiation can be utilized 
in place of citrate [43]. First published in 1994 [41], the Schiffrin–Brust technique is based on many 
procedures that are beneficial for the synthesis of AuNPs in an organic system with excellent stability. 
Particle sizes as small as 2 nm can be obtained with this technique, which uses tetrabutylammonium 
bromide as a transfer agent from organic to inorganic solutions [44]. In addition to these methods, the 
“growing seed” process is frequently employed to create AuNPs in other shapes, including nanocubes and 
nanorods [45, 46]. The Au ion ratio, which can be anywhere between 5 nm and 40 nm [47], determines the 
size of the particles that are created.

Another key aspect here is the size and shape of the NPs which influences the therapeutic and other 
applications. Different-sized AuNPs, ranging from 10 nm to 50 nm, were tested on human dendritic cells 
(DCs) due to their significant potential in biomedical applications for cancer diagnostics. The findings 
suggested that the effect was notably more pronounced with the use of AuNPs measuring 10 nm, which 
inhibited the production of IL-12 p70 in DCs when exposed to lipopolysaccharide [47]. Research indicates 
that small-sized NPs (10–15 nm) are the most effective at controlling cancer cells among the three different 
sizes studied. Their tiny size allows them to easily enter cells and interact with organelles [48].

Diagnostic applications of AuNPs in HCC
Strong surface area-to-volume ratios of metal NPs allow for easy bioconjugation with therapeutic 
compounds and/or ligand targeting to a cancer location. The enhanced permeability and retention (EPR) 
effect of these substances allows them to passively collect within tumor locations and pass through 
physiological barriers [49, 50]. Theranostic NPs are those that can function as agents with both therapeutic 
and diagnostic capabilities at the same time. LSPR, an optical phenomenon, is the basis for the majority of 
AuNPs used in nanomedicine [51]. SPR is a synchronized oscillation in the conduction-band electrons that 
can occur when a metal particle is exposed to electromagnetic waves of a certain wavelength caused by a 
dielectric [52]. Gold is a common metal with assignable SPR bands. Mie theory states that the dielectric 
constant of the surrounding medium, as well as the particle size, shape, structure, and composition, all 
affect the LSPR band location of the AuNPs. AuNPs can provide tunable absorption in the visible and near-
infrared (NIR) wavelength ranges by adjusting these parameters. Light can penetrate deeply into soft 
tissues when the long photoperiod (LSPR) band shifts to the NIR region in the 700–900 nm range, 
sometimes known as the “transparent window”. This makes the light useful for in vivo medical applications, 
such as the detection, diagnosis, and therapy of malignant cells [53, 54]. We covered recent developments 
in the use of AuNPs for various liver cancer nanotechnology applications in this review.

The superior optical property known as SPR of AuNPs, like that of many valuable metals, enables their 
use in NIR resonant medical imaging modalities, such as computed tomography (CT) [54], X-ray scatter 
imaging [55], fluorescence imaging [56], photoacoustic imaging (PAI) [57], and magnetic resonance 
imaging (MRI) [58]. AuNPs also have low toxicity and are nonimmunogenic. Since the processes for creating 
AuNPs are simple, it is possible to control their size, shape, and surface modification. All of these 
characteristics suggest that AuNPs can be tailored in different ways for controlled and targeted medication 
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administration as well as for the localized hyperthermia of cancer tissue [59]. Based on all these features, it 
appears that AuNPs can be customized in various ways for both localized cancer tissue hyperthermia and 
targeted and regulated drug delivery [60]. Size is one of the key components of AuNPs that affects the 
body’s circulation half-life, systemic toxicity, tumor formation, and other elements crucial for therapeutic 
and diagnostic applications. It is crucial to comprehend the underlying effects of AuNPs of various sizes as 
the number of applications for AuNPs increases. The fluorescence of AuNPs is influenced by a variety of 
parameters, such as surface chemistry, oxidation state, size, and surrounding environment.

Radiation therapy for cancer is intimately linked to AuNPs’ capacity for cellular absorption, which is 
influenced by both particle size and surface chemistry [61–65]. The high zeta potential of bare AuNPs 
makes them known to be unstable and likely to congregate in blood [66]. It has been shown that a surface-
stabilized coating increases the cellular absorption and stability of AuNPs in blood [67–69]. For instance, it 
has been observed that bare AuNPs generated 150 nm particles that were taken up via micropinocytosis 
[70]. On the other hand, AuNPs coated with polyethylene glycol (PEG) were endocytosed and exhibited a 
relatively steady absorption rate [71–73].

AuNPs for molecular imaging in cells and biological systems were compiled by Bouché et al. [74], while 
applications of AuNP aggregation were covered in studies conducted by Alizadeh and Nazari [75]. The 
synthetic approaches and latest developments in fluorescence sensing using AuNPs were reported by 
Halawa et al. [76]. The processes involved in creating monodisperse AuNPs and their potential therapeutic 
uses were not the subject of any of this research.

One of the basic core characteristics of AuNPs is SPR, which is mostly dictated by their size and form 
[77]. Plasmon occurs when specific light wavelengths interact with the material interface’s conduction 
band, resulting in a dipole oscillation that depends on the incident light’s ionic lattice and electromagnetic 
field. Plasmon is a collective oscillation of the free electrons at the material interface. SPR is the name for 
the maximum oscillation that occurs at a specific light frequency [78]. Depending on their size, AuNPs can 
absorb light very intensely, and the SPR band extends from the visible to the infrared spectrum.

SPR also provides surface plasmon scattering, which is the result of light striking AuNPs and producing 
electron oscillation, which reemits photons at the same wavelength due to photon energy. The wavelength 
can be used for imaging and diagnosing different diseases, including lung, prostate, and breast cancers. This 
is because changing the material’s interface with different receptors and the ensuing interaction with 
different structures, including cells, affects the wavelength [79]. The reduction of bulk gold size to 
nanoscale dimensions results in a rise in the surface-to-volume ratio, which influences the surface energy of 
AuNPs and enhances atom alignment on the NP surface. Therefore, to improve their biocompatibility, 
AuNPs can interact with a wide variety of substances [80].

AuNPs must have their surfaces modified in order to increase biocompatibility and lessen toxicity 
brought on by surfactants. The key method for functionalizing AuNPs is the thiol gold reaction, which 
depends on the strong affinity between Au and thiols. By replacing the cetyl trimethyl ammonium bromide 
(CTAB) with thiolated species, AuNPs using CTAB as a surfactant could be detoxed and stably dispersed [81, 
82]. Gold-sulfur bonding was utilized by Jiang et al. [83] to create stably dispersed AuNPs with varying 
sizes—about 2 nm, 4 nm, and 6 nm, covered with zwitterionic ligands. Alea-Reyes et al. [84] produced 
AuNPs with a size of roughly 5 nm stabilized with double-pyridine salt for use in cancer treatment. Han et 
al. [85] combined DNA with trimethyl ammonium mixed monolayer protection cluster-adjusted AuNPs to 
construct a DNA-delivery device via electrostatic interactions. Kim et al. [86] synthesized 
triethylenetetramine-terminated ligands with a 2 nm gold core that interacted electrostatically with 
negatively charged siRNA.

AuNPs with a size of roughly 6 nm might be eliminated from the blood by the kidney filtering them into 
the bladder, as Zhou et al. [87] showed that particle size influences renal clearance efficiency. By building an 
AuNP illness detection platform, Loynachan et al. [88] indirectly showed that monodisperse ultrasmall 
AuNPs may be eliminated from the body through the kidney and liver. Therefore, the inherent qualities of 
monodisperse AuNPs enhance their potential for cancer diagnosis and treatment. There is an urgent need 



Explor Med. 2025;6:1001272 | https://doi.org/10.37349/emed.2025.1001272 Page 5

for a thorough evaluation of monodisperse AuNPs and their theragnostic applications because they have 
made significant strides in disease detection and therapy as a revolutionary nanomedicine.

AuNPs have potential applications in the diagnosis and treatment of cancer [89, 90]. The other side of 
the coin, which is the unanticipated health repercussions, must be addressed, though. Numerous studies 
have already been carried out to examine the physiological response, biodistribution, retention time, 
effectiveness, cytotoxicity, and impact of NP size on the toxicity of AuNPs. However, a lot of them seem to 
contradict each other. The absence of reliable data regarding the true effects of NPs could lead to problems 
and negatively impact human health. Although the issues raised are generally relevant to all NPs, the 
examples that follow are specific to AuNPs. Concern has long been raised about AuNPs’ toxicity to biological 
systems [91]. The toxicity of AuNPs is influenced by their size, shape, targeted ligand, surface chemistry, 
and composition, among other factors. It has been demonstrated that the surface charge of AuNPs affects 
their toxicity, with positively charged particles being more lethal than negatively or neutrally charged 
particles [92]. There was no toxicity found in other teams’ findings when it came to positively charged 
particles [93] or negatively charged AuNPs [94]. There is currently no standardized assay that can be used 
to detect the toxicity of all NPs, and this discrepancy stems from the unique physiochemical character of 
NPs.

The size and biodistribution of nanomaterials are significant factors to take into account in addition to 
toxicity assessment. Smaller AuNPs of about 8 nm coated with reduced glutathione were more hazardous to 
a human hepatic cell line than bigger particles of about 37 nm, according to Gao et al. [95]. According to 
Rosli et al. [96], 50 nm AuNPs were more harmful to breast cancer cells than their 13 nm and 70 nm 
equivalents. A variety of AuNP sizes were tested for their cytotoxicity on human leukemia cells by Connor et 
al. [97], who found that no size was detrimental to cellular activity. Particle form is also important. 
According to a study, spherical AuNPs are more absorbed by cells than rod-shaped AuNPs [98]. According 
to Goodman et al. [99]’s experiments, charge plays a role in toxicity as well. Positively charged particles 
were shown to be more toxic than negatively charged particles. Positively charged CTAB-coated AuNPs 
were less biocompatible with cell membranes than positively charged poly(diallyldimethyl ammonium 
chloride)-coated AuNPs, according to an experiment [99].

Therapeutic applications of AuNPs
HCC is still the fourth most common cause of cancer-related deaths worldwide, and its annual global 
burden is rising [100–102]. The most researched and used systemic treatments in recent years have been 
targeted therapy and immunotherapy, which are becoming more and more crucial in the care of patients 
with advanced HCC [103, 104]. The primary challenges in creating customized HCC treatments are the 
considerable intratumoral heterogeneity of the disease and the non-negligible drug resistance of the 
targeted medications [105–108]. Traditional tumor models have historically hampered the development of 
individualized treatment for HCC by failing to capture the heterogeneity of various HCC patients or be 
utilized for research on targeted drug resistance in various patients. Preclinical models of liver cancer 
derived from patients that reflect the intricate features of tumors can now be created thanks to 
advancements in bioengineering techniques. This holds great promise for improving clinical outcomes and 
facilitating the development of personalized medicine for patients with HCC [109].

Due to the intricacy of HCC, monotherapy frequently causes significant adverse effects (AEs) that are 
time- or dose-dependent, which force patients to stop their treatment because they become intolerable. As 
a result, after an overall survival time of 14–16 months, the effectiveness of single medications like tyrosine 
kinase inhibitors (TKI) or immune checkpoint inhibitor (ICI) has reached a bottleneck. This implies that 
modifications should be made to the targeted drug development process. Thus, over the last two years, 
research on HCC-targeted therapy has focused on different combinations of ICI and anti-VEGF monoclonal 
antibodies, which has significantly increased the survival rate of patients with advanced HCC and produced 
a new combination for targeted therapy [110].
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The transport of chemicals into cells is one of the most common uses for AuNPs. The simplicity of 
synthesis and functionalization, relative biocompatibility, and minimal toxicity in preliminary experiments 
have led to the description of AuNPs as “promising nanocarriers for therapeutics” [111–113]. However, 
while creating a drug delivery system, many considerations must be taken into account. It has been 
demonstrated that characteristics of AuNPs, such as size, charge, and surface chemistry, influence both 
their absorption into cells and their eventual intracellular fate (Figure 1). It’s crucial to keep an eye out for 
any harmful consequences of any components left in the cell after AuNPs are utilized exclusively as carriers; 
ideally, the NP vector should be biodegradable and have a lifespan restricted to the drug’s therapeutic 
window [114]. While numerous approaches have been suggested to initiate drug release at the tumor site, 
they can be mainly classified into three categories: photothermal or light release [115, 116], glutamate-
mediated release [117], and non-covalent encapsulation of the active drug followed by membrane diffusion 
off-loading [118]. The others are essentially variations on one or a mix of these techniques. So far, 
Gholipourmalekabadi et al. [118]’s in vitro research has produced encouraging outcomes. More research is 
needed to determine whether these approaches are feasible for use in vivo, though. AuNPs are also being 
investigated as possible drug delivery vehicles for the introduction of medications into tumor cells in the 
context of cancer therapy [119]. Colloidal AuNPs of different sizes and shapes are reported to be absorbed 
by cells [120] by non-specific or specific mechanisms, such as ligand-receptor interaction (Figure 2). In 
order to target tumors, Huang et al. [121] have reported two techniques: the first involves conjugating 
AuNPs to PEG, and the second involves conjugating AuNPs with particular antibodies that bind distinctive 
biomarkers expressed on tumor cells. PEG prolonged AuNP retention in circulation and inhibited their 
aggregation. Due to the increased permeability of poorly differentiated blood vessels surrounding tumors 
after angiogenesis and the decreased clearance rate brought on by the absence of functional lymphatic 
vessels in tumors, this allowed AuNPs to accumulate preferentially in tumor cells over healthy cells [122]. It 
has been documented that conjugating AuNPs with methotrexate (MTX) can cause cytotoxicity in vitro and 
anti-tumorigenic effects in vivo [123]. Compared to tumor cells treated with free MTX, Au-MTX was found 
to accumulate in tumor cells more quickly and at larger concentrations. In comparison to an equivalent 
dosage of free MTX, this led to increased cytotoxic effects in a number of tumor cell lines. These findings are 
promising and point to the potential of AuNPs as drug carriers that specifically target tumor cells. They also 
imply that conjugating AuNPs with a chemotherapeutic agent like MTX was more effective than 
administering free MTX alone.

Figure 1. Anticancer mechanism of gold nanoparticles into cancer cells. The Figure was partially created with permission 
from BioRender.com

Comparing the biodistribution of functionalized cetuximab with the bifunctional chelating agent 
pisothiocyanatobenzyl-desferrioxamine moiety labeled with 89Zr (89Zr–Df–Bz–NCS–cetuximab) coupled and 
unconjugated to AuNPs was done utilizing quantitative PET imaging. AuNPs-plasma-polymerized 
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Figure 2. Targeting mechanism of gold nanoparticles (NPs) into cancer cells. Created with permission from BioRender.
com

allylamine (PPAA)-cetuximab-89Zr offered a high tumor-to-background ratio, according to immuno-PET 
study analysis, but it did not affect tumor accumulation or the effectiveness of epidermal growth factor 
receptor (EGFR)-targeted NPs [124]. Additionally, the surface-enhanced Raman scattering immunosensor 
for α-fetoprotein and telomerase measurement used gold-silica@4-mercaptobenzoic acid and gold-
silica@Nile blue. Because the protein biomarkers were placed on the substrate, a limited plasmonic field 
was created, which increased the electromagnetic field. As a result, the molecules under investigation were 
exposed to a high density of “hot spots”, which increased sensitivity and the Raman signal [125]. HepG2 
cells (liver cancer cells) have asialoglycoprotein receptors (ASGPRs), which makes it easier for lactobionic 
acid (LA)-conjugated mercaptosuccinic acid-coated AuNPs to pass through cell membranes. As a result, 
they could identify liver cancer cells in particular and produce a strong fluorescent signal [126]. 
Remarkably, doxorubicin (DOX)-loaded A-AuNC@polyacrylic acid (PAA)/mesoporous silica (mSiO2) NPs 
demonstrated effective tumor ablation in H-22 carrying mice without causing any systemic harm. 
Additionally, they have demonstrated the possibility of fluorescence imaging and dual-modal CT as contrast 
agents [127]. In order to enhance the surface area and biocompatibility of AuNPs and decrease the 
cytotoxicity of NPs, polymer films were coated. Increased liver reticuloendothelial system (RES) escape and 
plasma half-life were demonstrated by AuNPs-PEG [128]. In mice and rats, intravenous injections of AuNPs 
functionalized by gadolinium chelates were utilized as a contrast agent for both MRI and X-ray CT [129]. 
Compared to iodine-free AuNPs, methoxy PEG-iodine capped AuNPs significantly enhanced contrast at the 
heart, aorta, liver, and kidney after five days of injection in mice [130]. This was observed without any 
obvious harm. The X-ray attenuation property of low-generation poly(amidoamine) (PAMAM) dendrimer-
stabilized AuNPs (Au DSNPs) was roughly similar to that of Omnipaque while imaging in vivo using CT. The 
outcomes demonstrated much greater performance than Omnipaque in CT imaging of the main organs of 
rats in vivo [131]. The xenoplanted tumor model and human HCC (HepG2 cells) demonstrated targeted CT 
imaging using the LA-modified dendrimer-entrapped AuNPs (LA-Au DENPs) both in vitro and in vivo [132]. 
In a model of metastatic liver cancer, the glycol chitosan (GC)-coated AuNPs (GC-AuNPs) demonstrated a 
tumor-targeting CT contrast agent [133]. In mice carrying CT26 tumors, the nanoprobe (MNPAPF-Au) 
created by co-loading AuNPs and aggregation-induced emission (AIE) red dye into 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-N (DSPE)-PEG2000 micelles demonstrated a long blood circulation half-

https://www.biorender.com/
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life, enhanced tumor-targeting ability, and good fluorescence and CT imaging effects [134]. When 
polyethylenimine-entrapped AuNPs loaded with gadolinium (Gd@Au PENPs) were injected intravenously 
into mice, only veins were clearly visible after small dose administration; however, with bigger dose 
administration, both veins and arteries were clearly seen with excellent resolution. Even at low doses of 
administration, MRI demonstrated veins and arteries concurrently, and at higher doses, greater resolution 
was observed [135]. In orthotopic liver cancer animal models, indocyanine green loaded gold 
nanorod@liposome core–shell NPs (Au@liposome–ICG) showed efficiency in tumor detection and surgery 
guiding by using photoacoustic and fluorescent dual-modality imaging probes [136]. According to a 2014 
study, AuNPs made with the phytochemical 3-butoxy-2-hydroxypropyl 2-(2,4-dihydroxyphenyl) acetate 
from Cajanus cajan can cause apoptosis in HepG2 cells, which are used to treat liver cancer [137]. 
Moreover, AuNPs made by the thermophilic fungus Humicola spp. were employed to deliver drugs to 
hepatic malignancy, or liver cancer.

Green synthesis-produced AuNPs and the anticancer medication DOX were conjugated so that targeted 
drug distribution could be achieved without the use of targeting agents such as pullulan [138]. In 
photodynamic therapy (PDT), a photo-sensitizing (PS) chemical is administered topically or intravenously, 
allowed to accumulate in cancer cells, and then stimulated with a particular wavelength of light.

PDT can kill malignant cells by causing reactive oxygen species (ROS) to be released. Because PS 
medications are hydrophobic, one of their drawbacks in this approach is their low tissue penetration. 
Stated differently, it is helpful in the therapy of surface tumors [139]. AuNPs can lower this threshold by 
making PS medications more soluble. When they are subjected to the right visible or NIR wavelength, they 
can also produce heat. Furthermore, it enhances the field of light surrounding the AuNPs, which boosts PS’s 
excitation efficiency by LSPRs [140].

AuNPs are also a good carrier for PS medication delivery to cancer cells. However, Vankayala et al. 
[141]’s research shows that AuNPs’ excellent drug delivery is mostly responsible for the increased killing 
effect of cancer cells in PDT [142]. Additionally, singlet oxygen (1O2) can be produced by the AuNPs alone 
[143]. The impact of AuNPs on the effectiveness of PDT for the treatment of liver cancer has been the 
subject of numerous investigations to date [144–146]. Gum Arabic-conjugated AuNPs (GA-AuNPs) and laser 
combination studies conducted both in vitro and in vivo revealed that this technique decreases the activity 
of histone deacetylase in HepG2 cells as well as cell viability. The findings showed that GA-AuNPs, in 
combination with or instead of laser radiation, might cause cancer cells to undergo apoptosis by stimulating 
caspase-3 and death receptors (DRs, DR5). They can also prevent the production of preneoplastic lesions 
(PNLs) and their initial marker, placental glutathione S-transferase (GST-P). Moreover, laser-stimulated GA-
AuNPs reduced tumor necrosis factor-α (TNF-α) levels. Thus, the GA-AuNPs and laser together triggered 
the extrinsic apoptotic pathway and suppressed inflammation, which can avert PNLs in the liver [147]. Au-
DOX-Gel, a thermosensitive hydrogel based on Pluronic® F127, was optimized at a 22% F127 concentration 
to load AuNPs and develop DOX using the “cold method” for intratumoral injection. When in vitro and in 
vivo release characteristics were compared with the control group, they revealed continuous release of 
DOX and AuNPs. In human hepatocellular liver carcinoma (HepG2) and mouse melanoma (B16) cells, the 
combined administration of DOX and AuNPs under radiation exhibited inhibitory effects on tumor cell 
growth and proliferation, as well as on cell viability and the surviving percentage of the cells. When 
measured by Au-DOX-Gel, mouse tumor sizes were considerably smaller than those of the controls. Au-
DOX-Gel can be presented as a promising technique to enhance chemotherapy because their safety was also 
established by skin safety testing, histological examinations of the organs, and body weight alterations 
[148]. Because the AuNPs are positively charged, microRNA (miR)-122 can be conjugated with them 
through simple electrostatic contact with folic acid-coated AuNPs (G). In HepG2 cancer cells, miR-122 
releases from the AuNPs-miR-122-FA nanocomplexes and causes apoptosis [149]. According to Xue et al. 
[150], AuNP-miR-375 can effectively transfer miR-375 into HCC cells, suggesting that it may be utilized for 
HCC therapy.
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PDT, a well-known non-invasive cancer treatment, has been used extensively to treat intraperitoneal 
tumors, cutaneous malignancies, and premalignant and malignant disorders of the head and neck with 
significantly lower morbidity and deformity [151–153]. When exposed to light with a wavelength that 
matches the photosensitizer’s absorption spectrum, the administered photosensitizer combines with 
nearby substrates or molecular oxygen to create ROS, which cause in situ, targeted damage to tumor 
tissues. Rose Bengal (RB), a well-known anionic photosensitizer among the many agents employed in PDT, 
with a 1O2 quantum yield of over 76% when exposed to light at 532 nm [154]. However, because of its 
limited intracellular absorption capabilities as a hydrophilic photosensitizer, RB is not suitable for treating 
solid malignancies [155]. The use of NPs as a carrier to conjugate with RB to increase the absorption 
efficiency by cancer cells has been demonstrated in recent research [156]. Additionally, by incorporating 
the DNA polymerases of cancer cells, RB, an anionic water-soluble xanthene dye, has been shown to have 
selectivity to oral cancer cells [157].

Gold nanoshells functionalized with a short peptide have been used in the photothermal treatment of 
hepatocarcinoma, according to research by Liu et al. [158]. With minimal cytotoxic action, the 
functionalized gold nanoshells have demonstrated good targeting performance in liver tumor cells BEL-
7404 and BEL-7402; nevertheless, they are ineffective against HL-7702, a normal, healthy liver cell. 
Additionally, their fluorescence photos have demonstrated that, following treatment with a NIR laser 
irradiation, the gold nanoshells may cause the liver cancer cells to die during in vitro trials. A 
semiconducting polymer was employed by Sun et al. [159] for orthotopic liver cancer treatment under laser 
irradiation. They have demonstrated that, under comparable circumstances, a 1,064 nm laser inhibits the 
growth of orthotopic liver cancer cells more effectively than an 808 nm laser [160, 161]. AuNPs are suitable 
for photothermal cancer treatment since they produce heat when exposed to NIR laser light [162, 163]. For 
imaging and photothermal therapy, Xia et al. [164] produced AuNPs with a size of roughly 12 nm using folic 
acid and the reduction of a bovine serum albumin conjugation. In addition, several techniques, including 
electrostatic adsorption, are employed to modify the surface of AuNPs via the thiol gold reaction. 
Additionally, gold nanorods (AuNRs) covered with mSiO2, also known as Janus NPs, with a core-shell type 
demonstrated efficient entry into HepG2 cells for both photothermal effect and cellular imaging [165].

Limitations of AuNPs
Most of the research that has been included in this review thus far has emphasized how generally safe 
AuNPs are. Nonetheless, a number of additional investigations have sparked worries about these NPs’ 
potential toxicity. It has been established that the physicochemical characteristics of AuNPs, including their 
size, charge, shape, and surface chemistry, affect their toxicity. According to an in vitro investigation, AuNPs 
shielded by Ph2PC6H4SO3Na and P(C6H4SO3Na)3 ligands exhibited toxicity toward various cell lines that 
were both size-dependent and cell type-independent [166]. Up to 60 times more cytotoxicity was 
demonstrated by 1.4 nm AuNPs than by 15 nm AuNPs. Subsequent research by the same working group 
revealed that 1.4 nm triphenylphosphine monosulfonate-coated AuNPs induce the production of ROS, up-
regulation of genes linked to stress and inflammation, a shift in mitochondrial permeability, and ultimately 
the death of HeLa human cervix carcinoma cells [167]. According to another study, neither 13 nm nor 
45 nm AuNPs can enter the human dermal fibroblasts’ nucleus or mitochondria because they remain in 
cytoplasmic vacuoles [168]. They also reported that 45 nm AuNPs also caused more cell damage because of 
their distinct uptake mechanism, which led to an increased release in the cytoplasm. An in vivo 
investigation revealed that the toxicity of AuNPs following intraperitoneal and oral administration is 
greater than that following tail vein administration [169]. Another in vivo study using Drosophila 
melanogaster demonstrated that 15 nm naked AuNPs had a mutagenic effect [170]. These investigations 
demonstrated that the intrinsic properties of AuNPs, specifically their size, shape, charge, and surface 
ligand, are the primary cause of their toxicity [171]. Therefore, more research is needed to determine the 
best combination of AuNP characteristics for targeted drug delivery in order to address toxicity issues.
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Conclusions
Metallic NPs have demonstrated a valuable and prevalent role in the last 20 years in the treatment of cancer 
by offering better drug delivery and targeting. Furthermore, they provide outstanding control over energy 
deposition in tumors through their functionalization with targeting ligands. Gold has been used in medicine 
for centuries due to its bacteriostatic, anti-oxidative, and anti-corrosive qualities. Furthermore, due to its 
photothermal and photoacoustic characteristics, as well as its nanoscale synthesis and functionalization 
with a variety of drugs and targeting molecules, AuNPs have gained recognition as an excellent 
multifunctional material for cancer therapeutics. PET, CT, and MRI were the most widely used AuNPs-based 
liver tumor imaging techniques. Because of their high ability to load genes and drugs onto their surface, 
AuNPs delivery systems have demonstrated encouraging results in the treatment of liver cancer.
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