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Abstract
In recent times, there have been notable advancements in comprehending the potential anti-cancer effects 
of chrysin (CH), a naturally occurring flavonoid compound found abundantly in various plant sources like 
honey, propolis, and certain fruits and vegetables. This active compound has garnered significant attention 
due to its promising therapeutic qualities and minimal toxicity. CH’s ability to combat cancer arises from its 
multifaceted mechanisms of action, including the initiation of apoptosis and the inhibition of proliferation, 
angiogenesis, metastasis, and cell cycle progression. CH also displays potent antioxidant and anti-
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inflammatory properties, effectively counteracting the harmful molecules that contribute to DNA damage 
and the development of cancer. Furthermore, CH has exhibited the potential to sensitize cancer cells to 
traditional chemotherapy and radiotherapy, amplifying the effectiveness of these treatments while 
reducing their negative impact on healthy cells. Hence, in this current review, the composition, chemistry, 
mechanisms of action, safety concerns of CH, along with the feasibility of its nanoformulations. To conclude, 
the recent investigations into CH’s anti-cancer effects present a compelling glimpse into the potential of this 
natural compound as a complementary therapeutic element in the array of anti-cancer approaches, 
providing a safer and more comprehensive method of combating this devastating ailment.
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Introduction
Cancer is a complex condition caused due to abnormal growth of certain cell types, which is uncontrolled 
and in general leads to spread of tumor causing cells, while disturbing the normal functioning of 
surrounding cells. The treatment strategies for cancer are being widely explored since the foundation of the 
concept of healthcare itself [1, 2]. Among the available treatment options in cancer, chemotherapy is the 
last and final choice of the healthcare practitioners with few promising results. Comprising of molecular 
level changes (such as, epigenetically); the various stages of cancer offer multiple entry points where 
possible intervention could lead to beneficial chances of treatment/reversal in the development of cancer 
before it is set to enter the stage of becoming malignant [3]. Modern medications can kill tumor cells rather 
effectively, but they also impact the patient’s normal healthy cells and can have strange side effects. 
Additionally, chemotherapeutic drug resistance has constantly been a risk. Therefore, it is vitally necessary 
to synthesize novel chemotherapeutic medications to combat the threat of drug resistance [4]. However, in 
this evolving field of cancer therapy, treatment options including natural products are important to be 
thoroughly researched and explored for their potential application in preventing the growth and spread of 
cancerous cells affecting the tissue and organ functioning. Several studies targeting cancer initiation and 
progression have shown the potential of naturally occurring molecules as pharmacological agents targeting 
chemoprevention [5]. Moreover, through targeting essential components in cancer-related signaling 
pathways, tissue differentiation-inducing non protein coding RNA (TINCR), which has been reported to be 
highly dysregulated in many malignancies, influences tumour formation and progression [6]. Chrysin (CH) 
is one such flavonoid that has been reported to show a significant potential application in this area. It is a 
naturally occurring flavonoid compound found in honey, propolis, passion flowers, Passiflora caerulea and 
Passiflora incarnata. Flavonoids are plant-based poly-phenolic phytochemicals that are reported to have 
anti-cancer and chemo-preventive properties [7]. Phytochemicals such as coumarin, gallic acid’s anti-
cancer activities are unaffected by a number of biological processes, including the activation of 
programmed cell death, cell cycle arrest, reluctance of tumour migration, and inflammation and now CH is 
being extensively researched for its anticancer effects and till now a plethora of evidence-based studies are 
predicting a mixed overview on its anticancer potential [8, 9]. Several in vitro and in vivo studies have 
shown potential anti-cancer effects of this flavonoid in breast cancer, prostate cancer, and lung cancer, etc. 
The anticancer effects of CH are accounted to its ability to interfere with the signalling pathways associated 
with inflammation and apoptosis (Table 1). The flavone has also been reported for interesting 
pharmacological properties such as anti-diabetic, immunomodulatory, anti-depressant, etc. It has been 
shown to induce apoptosis in cancer cell lines and inhibit angiogenesis in certain tumor types [10]. Till date 
the explored molecular targets of CH include: apoptotic proteins like B-cell lymphoma-2 (Bcl-2), caspases; 
cell cycle regulation proteins: cyclins, cyclin-dependent kinases (CDKs); phosphoinositide 3-kinases 
(PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) pathway proteins; transcription 
factor nuclear factor-kappaB (NF-κB); reactive oxygen species (ROS) producing oxidative stress pathway 
proteins; angiogenesis related proteins; metastasis pathway involved in cancer cell migration and invasion; 
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estrogen receptors (ERs) like ERβ; growth factor signaling pathway proteins like epidermal growth factor 
receptor, etc. [11]. The present review will focus on the molecular targets of CH in cancer research, their 
interpreted mechanism of action and the future prospects of utilization of CH as integration to drug 
development against different types of cancers (Table 2).

Table 1. Anticancer effects of CH based on in vitro studies

Type of cancer Study model Effects Mechanisms Concentration References
SK-ML-28, MelC 
and B16F10

Anti-
proliferative, 
inhibits 
angiogenesis

↓ Cancer cell proliferation, ↑ arrest in the 
G2/M phase, ↓ cell numbers in the G0/G1 
phase, ↑ tetraploid cells, ↑ DNA damages, 
↑ γ-histone 2AX (γH2AX), ↓ ataxia 
telangiectasia and Rad3-related (ATR), ↑ 
p-check point kinase1 (Chk1), ↑ p-ataxia-
telangiectasia mutated (ATM), ↑ p-p53 
(Ser15), ↓ vascular endothelial growth 
factor (VEGF), ↓ VEGF-receptor 2 
(VEGFR2), ↓ hypoxia-inducible factor-1 
alpha (HIF-1α), ↓ HIF-1β, ↓ p-signal 
transducer and activator of transcription 3 
(STAT3, pY705), ↑ ROS

0 µmol, 20 µmol, 40 
µmol, and 80 µmol

[12]

A375SM and 
A375P

Induces 
apoptosis and 
autophagy

↓ Viability of cancer cells, ↑ nuclear and 
chromatin condensation, ↑ Bcl-2-
associated X (Bax), ↑ c-polyadenosine-
diphosphate-ribose polymerase (PARP), ↓ 
Bcl-2, ↑ light chain 3 (LC3), ↑ beclin 1, ↑ 
autophagic vacuoles, ↑ acidic vesicular 
organelles, ↓ p-mTOR, ↓ p-70-kDa 
ribosomal protein S6 kinase (P70S6K), ↓ 
p-S6K, ↓ p-eIF4E-binding protein (4EBP1)

0 µmol, 20 µmol, 40 
µmol, 60 µmol, 80 
µmol and 100 µmol 

[13]

Melanoma

B16F10, 
RAW264.7, 
DC2.4

Improve tumor 
immune 
response

↓ Cancer cell viability, ↑ major 
histocompatibility complex I (MHCI), ↑ 
interleukin-12 (IL-12), ↓ IL-10, ↑ STAT4, ↑ 
interferon-γ (IFN-γ), ↑ tumor necrosis 
factor-ɑ (TNF-ɑ)

- [14]

Myeloid Myeloid-derived 
suppressor cells 
(MDSCs), 
granulocytic 
MDSC (G-
MDSC), and 
monocytic 
MDSC (M-
MDSC)

Induces 
apoptosis

↑ G0/G1 cell cycle arrest, ↓ proliferation of 
MDSCs, ↓ arginine-1 (Arg-1), ↓ 
cyclooxygenase-2 (COX-2), ↓ inducible 
nitric oxide synthase (iNOS), ↓ nitric oxide 
(NO), ↑ p-Akt

10 µmol (low dose) 
and 20 µmol

[15]

Leukemia U937 Induces 
apoptosis

↑ Bax, ↓ Bcl-2, ↑ caspase-3, ↑ 
phospholipase C-1 degradation, ↓ X-linked 
inhibitor of apoptosis protein (XIAP), ↓ Akt

- [16]

Mucoepidermoid MC-3 Induces 
apoptosis and 
autophagy

↓ Cancer cell viability, ↑ nuclear 
condensation and shrinkage, ↑ apoptotic 
bodies, ↑ c-PARP, ↑ Bax, ↓ Bcl-2, ↑ LC3-II, 
↑ beclin 1, ↓ sequestosome 1 (p62), ↓ p-
mTOR, ↓ p-extracellular signal-regulated 
kinases 1/2 (ERK1/2), ↑ p-Jun N-terminal 
kinase (JNK), ↑ p-p38

0 µmol, 50 µmol, and 
100 µmol

[17]

Nasopharyngeal 
carcinoma 

CNE1 Induces 
apoptosis

↑ Cancer cell death, ↑ sub-G1 population, 
↑ cell shrinkage, ↑ chromatin 
condensation, ↑c-PARP cleavage, ↑ c-
caspase 8

10 µmol, 20 µmol, 
and 40 µmol

[18]

MDA-MB-231 Induces 
apoptosis

↓ HIF-1α, ↑ Bax, ↑ p53, ↓ Bcl-2, ↓ cyclin 
D1, ↓ p-STAT3

CH and 
radiotherapy, 
combination index 
(CI) of 0.495

[19]

Artemisinin and CH 
encapsulated 
poly(lactic-co-
glycolic acid) 
(PLGA)-
poly(ethylene glycol) 

Brest cancer

T47D Induces 
apoptosis

↑ Cytotoxicity towards cancer cell, ↓ 
hTERT gene

[20]
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Type of cancer Study model Effects Mechanisms Concentration References
(PEG) nanoparticles 
(NPs), IC50 = 12.51 
μM

Breast and 
BT474

Induces 
apoptosis and 
anti-
proliferative

↑ Destabilization of the genome, ↓ cancer 
cell survival, ↑ γH2AX, ↑ PKcs-pS2056, ↓ 
p53-binding protein 1 (53BP1), ↓ RAD51

0 µmol, 5 µmol, 10 
µmol, 15 µmol, 20 
µmol, and 30 µmol

[21]

MDA-MB-231 
and MDA-MB-
231_luc cells

Inhibits 
metastasis

↓ Cancer cell viability, ↓ PI3K, ↓ NF-κB, ↓ 
matrix metalloproteinases-10 (MMP-10), ↓ 
MMP-2

0–100 µmol [22]

MDA-MB-231 Anti-
proliferative 
and induces 
apoptosis

↑ Cytotoxicity towards cancer cell, ↑ cell 
accumulation in G2/M phase, ↑ apoptosis 
frequency, ↑ microRNA-132 (miR-132), ↑ 
miR-502c, ↓ HN1 and P65

Curcumin and CH 
encapsulated PLGA-
PEG NPs, 
combination index 
(CI50) = 0.47

[23]

MCF7 Induces 
apoptosis

↓ Cancer cell viability, ↑ apoptosis 
frequency, ↑ apoptotic cell bodies

5 mmol/L, 
10 mmol/L, 20 
mmol/L, and 30 
mmol/L

[24]

Lung A549 Induces 
apoptosis

↓ Cancer cell viability, ↑ caspase-3 and 
caspase-9, ↑ Bax/Bcl-2 artio, ↑ Bax, ↓ Bcl-
2

IC50 = 49.2 (48 h) 
and 38.7 (72 h)

[25]

AGS Inhibits 
metastasis

↓ Endogenous and inducible receptor 
originated from nantes (RON) expression, 
↓ growth response-1 (Egr-1), ↓ NF-κB, ↓ 
phorbol-12-myristate-13-acetate-(PMA)

0–100 µmol [26]Gastric

AGS miRNA 
related

↑ Cytotoxic towards cancer cell line, ↑ 
miR-9, ↑ Let7-a, ↓ miR-18a, ↓ miR-21, ↓ 
miR-221

PLGA-PEG 
encapsulated CH 
(0–160 µmol)

[27]

Hepatoma HepG2 Induces 
apoptosis

↑ Cancer cell death, ↑ sub-G1 population, 
↑ cell shrinkage, ↑ chromatin 
condensation, ↑ c-PARP cleavage, ↑ c-
caspase 8

10 µmol, 20 µmol, 
and 40 µmol 

[18]

Pancreatic MIA PaCa-2 Induces 
apoptosis

↓ Cancer cell viability, ↑ caspase-3, ↑ c-
PARP, ↑ G protein-coupled estrogen 
receptor, ↑ G2/M phase cells, ↓ ERα, ↓ c-
Myc

0–100 µmol [28]

SW48, SW480, 
SW620, HT-29 
and HCT-116

Induces 
autophagy

↓ Cancer cell viability, ↑ LC3II, ↓ p-mTOR, 
↑ p-adenosine monophosphate-activated 
protein kinase (AMPK), ↓ p-Akt, ↑ ROS 
production

0 µmol, 20 µmol and 
50 µmol

[29]Colorectal

HCT-116 Induces 
apoptosis

↑ Cancer cell death, ↑ sub-G1 population, 
↑ cell shrinkage, ↑ chromatin 
condensation, ↑ c-PARP cleavage, ↑ c-
caspase 8 

10 µmol, 20 µmol, 
and 40 µmol

[18]

PC-3 Induces 
apoptosis

↓ Vasculogenic mimicry (hypoxia-induced) 
↓ HIF-1α, ↓ vascular endothelial-cadherin 
(VE-cadherin), ↓ VEGF, ↓ Bcl-2, ↑ c-
PARP, ↑ caspase-3, ↓ sphingosine kinase-
1 (SPHK-1), ↓ p-Akt, ↓ p-glycogen 
synthase kinase 3β (GSK-3β)

10 µmol [30]Prostate

PC-3 Induces 
apoptosis

↓ Cancer cell viability, ↑ cell shrinkage, ↑ 
apoptosis frequency

10 µmol, 20 µmol, 30 
µmol, and 40 µmol

[31]

Endometrial HEC1Aand 
Ishikawa

Induces 
autophagy 
and apoptosis

↓ Proliferation and colony formation 
activity, ↑ apoptotic cells, ↑ Bax, ↓ Bcl-2, ↑ 
LC3II, ↑ Beclin 1, ↓ p62, ↑ ROS 
accumulation, ↓ pAkt, ↓ pmTOR

0 µmol, 10 µmol, 20 
µmol, 40 µmol, and 
80 µmol

[32]

Cervix Hela Induces 
apoptosis

↑ Cancer cell death, ↑ sub-G1 population, 
↑ cell shrinkage, ↑ chromatin 
condensation, ↑ c-PARP cleavage, ↑ c-
caspase 8

10 µmol, 20 µmol, 
and 40 µmol 

[18]

↑: over expression; ↓: down expression; -: blank
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Table 2. Anticancer effects of CH based on in vivo studies

Type of 
cancer

Animal models Effects Mechanisms Dosage Duration References

C57BL/6JRj 
mice 
xenografted with 
B16F10

Inhibits 
angiogenesis

↓ Tumor volume, ↓ vascular segments, ↓ 
vascular network length, ↓ VEGF-A, ↓ 
phosphorylated histone H2AX on Serine 139 
(pS139-H2AX), ↓ HIF-1α, ↓ Nrf1, ↓ superoxide 
dismutase 1 (Sod1), ↓ peroxiredoxin 4 
(Prdx4), ↓ glutathione peroxidase (Gpx)

50 mg/kg 16 days [12]

C57BL/6 mice 
xenografted with 
B16F10 

Improve tumor 
immune 
response

↓ Cancer cell growth in tumors, ↑ survival rate 
in mice↑ vaccine efficacy, ↑ cluster of 
differentiation 80 (CD80), ↑ CD86, ↑ MHCI, ↑ 
MHCII, ↑ CD8+ T cells

650 mg/kg 21 days [14]

Melanoma

C57BL/6 mice 
xenogafted with 
B16F10

Inhibits 
angiogenesis 
and inhibited 
tumor growth

↓ Tumor volume and weight, ↓ G-MDSCs 
buildup in marrow and spleen, restore T cell 
proliferation, ↓ activation of RhoA, ↓ HIF-1α, ↓ 
microvessel density, ↓ vascular permeability ↑ 
vascular perfusion

20 mg/kg 
and 40 
mg/kg

22 days [15]

Breast BALB/c nude 
mice xenogafted 
with MDA-MB-
231

Induces 
apoptosis, 
inhibits 
metastasis

↓ Tumor growth, ↓ Ki-67, ↑ apoptosis 
frequency, ↓ MMP-1, 2, 3, 9, 10, and 13, ↑ 
MMP-8, ↓ tissue inhibitor of 
metalloproteinase-1 (TIMP-1), ↓ PI3K, ↓ p-
Akt, ↓ GSK-3β, ↓ NF-κB

CH-
NPs—10 
mg/kg

21 days [22]

Pancreatic BALB/c-nude 
mice 
xenogarfted with 
MIA PaCa-2

Induces 
apoptosis

↓ Tumour growth, ↓ Ki-67, ↓ c-Myc 50 mg/kg 35 days [28]

Prostate Male BALB/c 
nude mice 
xenograted with 
PC-3 cells

Induces 
apoptosis

↓ Tumor spheroid formation and growth, 
inhibited PC-3 tube formation, ↓ HIF-1α, ↓ VE-
cadherin (under normoxic as well as hypoxic 
conditions), ↓ Ki-67, ↓ SPHK-1, ↓ cyclin D1, ↓ 
c-caspase-3, ↓ VEGF

50 mg/kg 25 days [30]

↑: over expression; ↓: down expression

Chemistry of CH
CH is a flavone with the chemical formula 5,7-Dihydroxyflavone or 5,7-Dihydroxy-2-phenyl-4H-1-
benzopyran-4-one. It has a 15-carbon polyphenolic skeleton called as flavonoid. Structurally this flavonoid 
consists of two benzene rings (A, B) and an oxygen-containing ring (C). CH possesses a 2 to 3 carbon double 
bond and a carbonyl group at carbon 4. Additionally, two hydroxyl groups are present at carbons 5 and 7 
[33]. The chemical formula of CH is C15H10O4 and it has a molar mass of 254.241 mol/g. Unique to this 
flavone is the presence of C2-C3 double bond in ring C and the absence of oxygenation at C-3, in comparison 
to the other flavonoids that have either C-3 or C-4 di-ortho hydroxyl groups in the ring-B while CH shows 
absence of oxygenation in this particular ring. The other molecular derivatives of CH like wogonin, baicalein 
and oroxylin A are known to be formed by the oxygenation of ring A of the molecule. In comparison to other 
flavonoids the absence of oxygenation at the B and C rings are considered to be one of the major 
contributing factors in the antioxidant and anti-inflammatory activitiy of this flavone [34].

CH mediated apoptosis induction and cell cycle arrest
The CH mediated mechanism of apoptosis initiation in cancer cells is a collection of numerous pathways 
with precise involvement of several molecular partners, though the ensuing of a specific mechanism 
depends on cancer cell types. The explored key mechanisms involve: activation of mitochondria-dependent 
intrinsic pathway, caspase activation, regulation of Bcl-2 Family of proteins, modulation of cell survival 
signaling pathways, induction of oxidative stress and regulation of apoptotic regulators [35] (Figure 1). 
Initially, CH prompts apoptosis induction by influencing the intrinsic mitochondrial pathway via 
interrupting the stable existence between pro-apoptotic (Bax, Bak) and anti-apoptotic [Bcl-2, Bcl-extra 
large (Bcl-xL)] proteins within the mitochondrial membrane. Such a disproportion causes permeabilization 
of outer membrane mitochondria, with concomitant releasing of cytochrome c and other apoptogenic 
proteins from the mitochondrial environment into the cytoplasm, consequently ensuing apoptosis [36]. 
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Members of the Bcl-2 family, which is frequently increased in human malignancies, include the anti-
apoptotic proteins Bcl-2 and myeloid cell leukemia 1 (Mcl-1), which are linked to chemotherapeutic 
resistance and relapse. The cleavage and inactivation of Mcl-1 by caspase-3 on the onset of apoptosis 
amplifies the cascade of caspase activation. Caspase-8 is activated by pro-apoptotic extracellular signaling, 
which cleaves and activates Bid, which binds to and inhibits Mcl-1. In order to maintain the integrity of the 
mitochondria, Mcl-1 uses its antiapoptotic activity to combat the activation of Bax and Bak [37]. Moreover, 
CH has shown the propensity to obstruct cell survival signaling pathways that are often observed to be 
hyperactive during autophagy in cancer cells. As such, CH can compromise the normal working of PI3K/Akt 
and MAPK/ERK pathways (foremost therapeutic targets in cancer treatment) by suppressing mTOR 
expression, thus inhibiting autophagic thrust with simultaneous enhancement of apoptosis progression in 
cancer cells [13]. In addition, CH can also manipulate the expression and regulation of other apoptotic 
partner activities such as by enhancing the p53-mediated apoptosis in response to DNA damage with 
simultaneous inhibition of CDK2 and CDK4, forkhead box O (FOXO) pathway and HIF-1α expression. This 
CH mediated disruption has been reported to interrupt cellular signals which prompt cells to move from 
one phase of the cell cycle to the next and thus preventing cancer cells from dividing any further [38]. 
Furthermore, CH is reported to promote the production of reactive oxygen species which leads to 
generation of oxidative stress within cancer cells, and as a consequence such enhanced levels of reactive 
species are prone to damage cellular components like DNA, proteins and lipids in cancer cells [29].

Figure 1. CH mediated apoptosis and autophagy. TRAIL: TNF-related apoptosis-inducing ligand; APAF1: apoptotic protease 
activating factor-1; Bid, Bax, Bak: pro-apoptotic factors
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Since such mechanisms are highly intricate, therefore a precise mechanism of CH mediated apoptosis 
induction is suggested to differ based on specific cancer type, genetic constitutes of cells and the 
concentration of CH administered. Ongoing investigations foster deeper understanding of such mechanisms 
in order to substantially exploit the apoptotic properties of CH for therapeutic interventions.

Anti-angiogenesis and anti-metastasis properties of CH
CH has been extensively studied for its distinguished anti-angiogenesis and anti-metastasis properties in 
context to treating cancer. Since angiogenesis is fundamental for proliferation of its associated 
tumorigenicity in affected tissues, the inhibitory potential of CH in such circumstances has been well 
reported to be mediated through various mechanisms such as: inhibition of VEGF and MMPs, modulation of 
signaling pathways and anti-metastasis properties, regulation of epithelial-mesenchymal transition (EMT), 
and anti-inflammatory effects. VEGF is a key regulatory protein involved in promoting angiogenesis and CH 
has been reported to inhibit the expression and simultaneous inactivation of VEGF, thereby limiting the 
augmentation of new blood vessels leading to restricted blood supply to cancer cells [39]. The ability of 
cancer cells to invade surrounding tissues and promote angiogenesis is highly dependent on MMPs activity 
and CH has been shown to significantly inhibit such activation, consequently hampering MMPs (MMP-9) 
expression by suppressing AP-1 activity via blocking JNK/c-Jun and ERK/c-Fos signaling pathways in 
cancer cells [40]. The PI3K/Akt/mTOR pathway, besides being involved in regulating apoptosis is also 
implicated in promoting angiogenesis in cancer cells and CH intervention is suggested to obstruct such 
pathways efficiently, thereby limiting their capacity to establish secondary tumors in distant organs [12, 
15]. Moreover, CH has shown to inhibit hypoxia-driven progression of vasculogenic mimicry during 
angiogenesis, which is a common characteristic feature observed in tumour microenvironments by 
reducing the expression of HIF-1α, SPHK-1 and phospho-Akt/GSK-3β signaling in cancer cells [30].

However, anti-metastasis properties of CH are mainly attributed to its ability to inhibit cell migration 
and invasion in surrounding tissues. This is achieved by disrupting the assembly of diacylglycerol kinase-α 
(DGKα)/focal adhesion kinase (FAK) signalosome with concomitant inhibition of FAK/Akt pathway 
involved in cell adhesion and mobility, thus reducing adhesion of cancer cells to extracellular matrix and 
their susceptibility to proliferate further [41]. CH is also involved in modulating EMT, a process wherein 
cancer cells lose their epithelial features to gain mesenchymal characteristics, thus enabling them to 
migrate and invade. CH can suppress such EMT related factors (like snail, slug, and twist) via inhibition of 
cartilage oligomeric matrix protein (COMP) expression and helps to maintain cancer cells in a less invasive 
state, thus considered as a potential therapeutic target [42] (Figure 2).

In addition, CH ability to modulate immune response has shown to potentially influence dynamic 
interactions between cancer cells and immune cells within the tumour micro-environment, thus limiting 
the ability of tumors to metastasize. Furthermore, additional investigations are required to strengthen our 
understanding of CH efficacy for offering such defensive mechanisms and their clinical applications.

Anti-inflammatory mechanisms
The seventh cancer-related hallmark identified is inflammation [43]. CH has been demonstrated to have a 
number of advantageous pharmacological effects including anti-cancerous properties through modulating 
signaling pathways involved in inflammation [11]. Numerous in vivo and in vitro models have shown the 
anti-inflammatory properties of CH. Numerous studies have looked at in vitro inflammation in 
lipopolysaccharide (LPS)-treated murine macrophages (Raw 264.7). CH derivative (CM1) inhibited LPS-
induced expression of pro-inflammatory cytokines IL-6 and TNF-α, COX-2, and iNOS-mediated NO by up-
regulating toll-interacting protein expression [44] and via the ER stress-CHOP pathway in polyinosinic-
polycytidylic acid -induced macrophages [45]. CH has antioxidant properties and lowers the macrophage 
inflammatory protein (MIP), MIP-2, MIP-1α, and MIP-1β production [45]. Further, CH treatment down 
regulate the inflammatory mediators like IL-6, COX-2, TNF-α, NF-κB, iNOS and prostaglandin E2 (PGE2) in 
ferric nitrilotriacetate induced renal cancer [46, 47]. CH prevented C-C chemokine ligand 5 (CCL5) 
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Figure 2. Anti-angiogenetic and anti-metastatic properties of CH. SRC is also known as proto-oncogene c-Src. VCAM1: 
vascular cell adhesion molecule 1

expression by targeting the inhibitor of κB (IκB) kinase (IKK), via binding to its ATP-binding pocket 
subsequently, prevent IκB degradation and NF-κB activation and thus attenuate the inflammatory 
responses [48] (Figure 3). By modifying the immune system’s response to various stimuli, inflammasomes 
play a significant part in tumorigenesis. It has been demonstrated that nucleotide-binding oligomerization 
domain and leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome upregulation 
contributes to tumour development and metastasis in a variety of human cancers [49]. Inflammation is 
prevented by CH treatment because it decreased lipid metabolism by inhibiting AMPK and inflammasome 
activation by blocking NLRP3 [50]. CH may treat inflammation and prevent fibrosis by decreasing the 
inflammatory response and fibrosis induced by TGF-β1 in synovial fibroblasts (SFs) via inhibiting 
thioredoxin-interacting protein (TXNIP)-NLRP3 interactions in TGF-β-induced SFs [51]. CH reduces 
hypercholesterolemia-mediated atherosclerosis via modulating the inflammatory genes expression 
including TNF-α, toll-like receptors (TLR4), IL-17, and NLRP3 in the intestine and aorta compared with 
hypercholesterolemia control rats [52]. ERK1/2, a type of extracellular regulated kinase that is found to be 
activated in a number of cancers [53] regulates a range of processes from metabolism to inflammation [54]. 
Moreover, CH was found to be linked with reduced p-ERK/ERK and p-Akt/Akt protein expression in 
colorectal cancer cells SW620 [33, 55]. These findings imply that CH has anti-inflammatory mechanisms 
against inflammatory diseases and may be helpful in the treatment of chronic inflammatory diseases like 
cancer.
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Figure 3. Anti-inflammatory mechanism of CH. TREM: triggering receptors expressed on myeloid cells

Nanoformulation of CH
Natural flavone CH, which has anti-inflammatory and anticancer properties without harming healthy cells 
or having any negative side effects, is a standout candidate for promoting health benefits [33]. Despite the 
fact that CH has been shown to be effective in treating cancer, there are significant obstacles that prevent 
wider clinical application. CH has unfavourable properties that can limit its therapeutic effects, including 
low physicochemical stability, poor solubility in water, rapid hepatic and intestinal metabolism, and low 
cellular uptake [56, 57]. A promising approach to enhance compound delivery to cancer cells while 
assisting in increased bioavailability and reduced in vivo degradation rate is to use nanotechnological 
methods that allow slow, sustained, and controlled release of the encapsulated agents. Therefore, the 
properties and anticancer efficacy of such active substances can be enhanced by encapsulating them in 
shells (liposomes, NPs, etc.). More often than not, polymeric NPs outperform liposomes in terms of size 
distribution, stability, harmonic physicochemical features, sustained and controllable drug-release profiles, 
and loading capacities for weakly water-soluble agents [58]. Polymeric NPs have attracted remarkable 
interest from academia, the medical community, and business due to these distinctive qualities. Several 
natural polymers, including polysaccharides and chitosan, as well as a number of Food and Drug 
Administration (FDA)-approved synthetic materials, including polycaprolactone (PCL), PLGA, and PEG, 
have all been extensively studied for NP synthesis [59–61]. The two primary techniques for creating PEG-
PLGA NPs are nanoprecipitation and double emulsion-solvent evaporation; both make use of the self-
assembly of PEG and PLGA at a particular temperature and ratio [62]. When compared to free CH, CH-
loaded PEG-PLGA NPs had higher solubility and growth-inhibitory activity against AGS cells and 
upregulated miR-34a [63]. Due to increased uptake by gastric cancer cells, CH-PLGA-PEG NPs were more 
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effective than pure CH in upregulating miR-9 and Let-7a [27]. Additionally, PEG-PLGA NPs co-loaded with 
5-fluorouracil or curcumin showed substantial synergistic anticancer effects in the treatment of colorectal 
cancer [64, 65].

CH has also several drawbacks that limit its biological function, such as a short half-life, limited 
solubility, poor biological availability, a short circulatory stability length, and fast metabolism and 
degradation [66]. However, improvements in nanotechnology have considerably mitigated these 
drawbacks. To improve the water solubility of CH, a colloidal delivery system comprising nanoemulsion 
(NE) was made as CH-NE using an oil-in-water system. Results showed that the solubility of CH has 
increased to 160 µg/g when compared to the parent form at 20 µg/g [67]. Chemical conjugation with other 
compounds has been performed to improve CH’s functions. The anti-inflammatory function of CH is 
elevated when conjugated with indole and barbituric acid [68]. CH has the ability to increase the expression 
of miR-9, an onco-suppressor factor in gastric cancer. The use of NPs can significantly increase miR-9 
expression compared to pure form [27]. CH and docetaxel-loaded micelles can increase cytotoxicity in 
tumor cells. They can increase ROS levels and cause accumulation as micelles [69]. NPs can also act as 
carriers for the co-loading of CH with other phytochemicals or anti-tumor compounds, such as curcumin. 
This combination provides a synergistic response and maximizes the cytotoxicity of these phytochemicals 
against tumor cells [64]. Polymeric NPs are also found to enhance cellular uptake of CH in breast cancer 
treatment. CH-loaded polymeric NPs have shown targeted delivery of CH at tumor sites, leading to 
increased anti-tumor activity [70]. In general, to overcome the conventional drawbacks of CH, such as poor 
bioavailability, rapid metabolism and elimination, and a short half-life, which all limit its therapeutic 
efficacy, researchers are testing the use of nanocarriers or NPs to encapsulate CH, which can meet all the 
limitations and improve its targeted delivery, thereby improving therapeutic efficacy.

Challenges in delivery
CH is a naturally occurring compound that has shown potential anticancer effects through selective cell 
signaling mechanisms. Anyhow, its delivery to target tissues in cancer treatment faces challenges, partly 
due to its low bioavailability, poor solubility, short half-life, and rapid metabolism and degradation [71]. 
The poor solubility of CH in water and under physiological conditions has been recognised as a primary 
challenge that restricts its bioavailability and therapeutic efficacy. Various pharmaceutical studies have 
demonstrated that the oral bioavailability of CH is very poor, less than 1%, due to its low aqueous solubility 
and extensive metabolism [72]. Recent data demonstrates that poor absorption, rapid metabolism, and 
systemic elimination are responsible for poor bioavailability of CH in humans, which subsequently restricts 
its therapeutic effects [73]. CH is rapidly metabolized and eliminated in the human body, leading to its low 
bioavailability [74]. In cells like hepatocytes and enterocytes, through sulfation and glucuronidation 
reactions, CH is highly biotransformed into the body, resulting in the formation of conjugated metabolites 
such as CH sulfonate and glucuronide [75]. This all accounts for the short half-life of CH. In a recent study 
after the oral administration of a 400 mg single dose of CH to healthy human subjects, the peak plasma 
concentration of the parent compound was only 16–63 nmol, whereas its metabolites appeared 
approximately at 400–800 nmol concentrations in the circulation [74]. CH’s metabolites may not have the 
same biological activity as the parent compound [33]. Therefore, CH’s poor stability in the body and 
bloodstream is a significant factor in its poor efficiency. Many attempts have been made over the past years 
to overcome these major drawbacks by using nanoemulsions, nanosuspensions, micronization [76], 
nanomicelles, host-guest complexes, and different formation approaches [77]. Among these uses, the 
nanotechnological approach is found to be a promising one that enhances compound delivery to cancer 
cells while assisting in increased bioavailability and reducing in vivo degradation rates.

Safety concerns
While CH shows promise as a potential therapeutic option for cancer treatment, there are safety concerns 
that need to be addressed before it can be widely used in clinical settings. One significant challenge with CH 
is its limited bioavailability, meaning the extent to which it can be absorbed and utilized by the body [78]. 
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CH has low water solubility and undergoes rapid metabolism in the liver, which can lead to poor systemic 
distribution. This limits its efficacy and raises concerns about whether sufficient levels of CH can reach 
target tissues to exert anticancer effects [73, 78]. It is generally considered safe when consumed through 
dietary sources like fruits, vegetables, and honey. However, at high concentrations, it may have cytotoxic 
effects on healthy cells along with cancer cells. Finding the right balance between an effective dose against 
cancer cells and minimal harm to healthy cells is critical. CH’s potential interactions with other drugs also 
pose safety concerns [79, 80]. It can inhibit certain enzymes in the liver that are responsible for 
metabolizing various medications. This inhibition could lead to altered drug concentrations in the body, 
potentially resulting in adverse effects or reduced efficacy of other medications [80]. Geisen and Sturla have 
extensively reviewed a few examples of such drug-drug interaction problem with CH intake [81]. 
Furthermore, CH’s ability to modulate hormone-related pathways is considered both a potential benefit and 
a concern. It has been found to have estrogenic and anti-estrogenic effects, which could affect hormone-
sensitive cancers [82]. These effects need to be carefully studied, as they might interact with hormonal 
therapies commonly used in treatment of breast and prostate cancer. It is to be noted that individuals can 
vary in their response to natural compounds like CH due to genetic, metabolic, and physiological 
differences. This variability can impact both the effectiveness and safety of CH as a therapeutic option. 
Several studies have reported the neuroprotective role of CH against xenobiotics, however, limited research 
exists on the long-term safety of CH supplementation [83, 84]. The potential cumulative effects of CH on 
various organs and systems over extended periods of use are not well understood. While preclinical studies 
have shown promising results, there is a lack of well-designed human clinical trials evaluating CH’s safety 
and efficacy. Therefore, rigorous clinical research is essential to establish the appropriate dosage, 
formulation, and overall safety profile of CH in cancer patients.

At the end, while CH holds potential as an anticancer therapeutic, its safety concerns, particularly 
regarding bioavailability, toxicity, drug interactions, and long-term effects, necessitate thorough 
investigation. Before CH can be considered a viable and safe treatment option for cancer patients, 
comprehensive clinical trials are essential to determine optimal dosing, administration methods, and its 
overall risk-benefit profile in a clinical context.

Conclusions
In conclusion, this manuscript sheds light onto the multifaceted potential of CH as a promising candidate for 
combating cancer through various mechanisms. The exploration of CH’s effects, as outlined in the different 
sections, reveals its remarkable therapeutic attributes and provides a foundation for further research in the 
field of oncology. CH’s intricate chemistry discussed in the present review serves as a testament to its 
bioactive properties. Its ability to induce apoptosis offers a powerful tool in the fight against cancer by 
promoting programmed cell death in malignant cells, ultimately inhibiting their uncontrolled growth. 
Additionally, the anti-angiogenic effects of CH hold significant promise in curbing tumor progression by 
thwarting the formation of new blood vessels that nourish tumors. Furthermore, the manuscript highlights 
CH’s potential in combating metastasis, a critical factor contributing to cancer’s lethality. By impeding the 
invasion and migration of cancer cells, CH could play a pivotal role in limiting the spread of the disease to 
other tissues and organs. Moreover, the anti-inflammatory effects of CH underscore its role in modulating 
the tumor microenvironment, potentially creating an inhospitable milieu for tumor growth and 
progression.

One of the notable advancements discussed here involves the nano formulation of CH for targeted 
delivery. This innovative approach holds promise in enhancing the specificity and efficacy of CH, 
minimizing potential off-target effects and maximizing its therapeutic impact on cancer cells. Presumably, 
several challenges and safety concerns must be addressed before CH can be considered a viable therapeutic 
option in clinical practice. Considering individual variations in response to CH is crucial. Personalized 
medicine approaches, based on patients’ genetic and metabolic profiles, could help identify those who 
might benefit most from CH treatment and mitigate potential adverse effects. Clinical trials, translational 
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research, and investigations into potential synergistic effects with existing treatment modalities are 
avenues that warrant exploration. In summation, this manuscript underscores CH’s potential as a multi-
pronged approach to cancer treatment. Collective evidence discussed in this manuscript paints a picture of 
CH as a multifaceted warrior in the battle against cancer. As the scientific community forges ahead, building 
upon these findings, CH’s potential to reshape the landscape of cancer treatment becomes an exciting and 
hopeful prospect.
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