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Abstract
Outcomes for women with breast cancer have improved dramatically in recent decades. However, many 
patients present with intrinsic drug resistance and others are initially sensitive to anti-cancer drugs but 
acquire resistance during the course of their treatment, leading to recurrence and/or metastasis. Drug 
therapy-induced senescence (TIS) is a form of drug resistance characterised by the induction of cell cycle 
arrest and the emergence of a senescence-associated secretory phenotype (SASP) that can develop in 
response to chemo- and targeted- therapies. A wide range of anticancer interventions can lead to cell cycle 
arrest and SASP induction, by inducing genotoxic stress, hyperactivation of signalling pathways or oxidative 
stress. TIS can be anti-tumorigenic in the short-term, but pro-tumorigenic in the long-term by creating a 
pro-inflammatory and immunosuppressive microenvironment. Moreover, the SASP can promote 
angiogenesis and epithelial-mesenchymal transition in neighbouring cells. In this review, we will describe 
the characteristics of TIS in breast cancer and detail the changes in phenotype that accompany its induction. 
We also discuss strategies for targeting senescent cancer cells in order to prevent or delay tumour 
recurrence.
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Introduction
Breast cancer (BC) is the condition wherein some cells in the breast develop abnormally, leading to 
uncontrolled cell division, and ultimately the formation of tumours. It can be a devastating condition for 
millions of patients and their families worldwide [1]. Overall, BC is the most commonly occurring cancer 
and the most frequently diagnosed cancer in women [2]. Despite advances in detection and improved 
treatment strategies, about 30% of patients with early-stage BC have recurrent disease [3]. The cancer cells 
in these women have already spread to distant sites by the time they are diagnosed. While overall cancer 
survival rates have improved, the survival rates for patients with metastases have not [4]. A growing 
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problem encountered in the clinic are tumours that have intrinsic or acquired resistance to targeted 
therapies. It is thus essential to understand the mechanisms of drug resistance and identify therapies that 
prevent or bypass resistance.

Drug resistance in BC
The development of drug resistance accounts for up to 90% of BC deaths [3]. There are two predominant 
forms of resistance—intrinsic and acquired resistance, each accounting for 50% of patients with drug 
resistance [5].

Intrinsic resistance describes resistance that the patient possesses prior to exposure to drugs. This can 
be due to: (a) a pre-existing genetic mutation present in the tumour cells; (b) heterogeneity in tumours in 
which insensitive subclones are selected by drug treatment; or (c) activation of intrinsic pathways as 
defence mechanisms to certain drugs, such as drug efflux pumps, DNA damage repair (DDR) pathways and 
epigenetic modification.

Acquired resistance refers to the gradually declining efficacy of drug treatment. This can occur by: (a) 
activation of a second proto-oncogene that becomes the new driver gene; (b) mutation or altered 
expression levels of a drug target, rendering it insensitive to the drug; or (c) alterations of the tumour 
microenvironment (TME) [5].

Drug efflux

In some cases, chemotherapy resistance can be caused by decreased intracellular drug accumulation due to 
dysregulated expression of ABC transporter genes. The ABC superfamily consists of 48 genes that can be 
divided into 7 subfamilies (ABCA to ABCG), among which ABCB1, ABCC2, and ABCG2 have been reported to 
play a role in multi-drug resistance.

ABCB1 transporter contains two transmembrane domains that bind and hydrolyse ATP, following 
which multiple sites on the transporter bind and pump substrates such as etoposide, doxorubicin, 
paclitaxel, and vinblastine out of the cell [6–11]. Most tumour types, such as breast, liver, lung, kidney, 
colon, and rectal cancer express high levels of ABCB1 [12–14]. Unlike ABCB1, which pumps out 
amphipathic and lipid-soluble compounds, ABCC1 transporters exclusively pump organic anionic anti-
cancer agents, such as epipodophyllotoxins, camptothecins, and methotrexate [15–18]. Intrinsic ABCC1 
overexpression has been observed in BC, as well as prostate and lung cancer [15, 19, 20].

ABCG2 is largely expressed in BC but has also been reported in lung cancer and leukemia [21, 22]. It 
transports positively- and negatively- charged substrates such as mitoxantrone, bisantrene, and 
flavopiridols, as well as tyrosine kinase inhibitors (TKIs) such as gefitinib and imatinib [6, 21, 23].

Alteration of drug targets

Targeted therapies (e.g., lapatinib, gefitinib, and erlotinib) act on specific target proteins to inhibit tumour 
development. Lapatinib is a dual epidermal growth factor receptor (EGFR)/HER2 inhibitor approved for 
use in HER2+ BC, while erlotinib and gefitinib target EGFR and are used to treat lung cancer. Cells can 
develop resistance to these TKIs through the alteration of drug targets; either via a secondary mutation, or 
by varying expression levels of the target protein [5]. This has been observed in non-small cell lung cancer 
(NSCLC) for EGFR targeting drugs, where 50% of patients treated with erlotinib and gefitinib develop a 
threonine-to-methionine mutation (T790M) within one year. This enhances the receptor tyrosine kinases 
(RTKs) binding affinity for ATP, and impairs drug binding [24–26]. Prolonged exposure to tamoxifen, a drug 
commonly used to treat hormone receptor-positive BC, has been reported to induce downregulation of its 
target estrogen receptor-alpha (ERα), resulting in resistance [27, 28].

Enhanced DNA damage repair

Drugs like cisplatin and 5-fluorouracil (5-FU) cause cell death through the induction of DNA damage. 
However, genotoxic injury can upregulate DDR genes, such as FEN1, FANCG, and RAD23B leading to the 



Explor Target Antitumor Ther. 2024;5:902–20 | https://doi.org/10.37349/etat.2024.00254 Page 904

initiation of senescence and development of insensitivity to chemotherapeutics [29, 30]. A suggested 
strategy to overcome this form of resistance is through the deregulation of DDR, though this might cause 
genomic instability and result in the initiation of another round of carcinogenesis [5].

Epigenetic alterations

Epigenetic modifications such as DNA methylation, histone modification, and lncRNA regulation have been 
implicated in the induction of drug resistance. For example, tamoxifen and fulvestrant resistant MCF7 BC 
cells have been found to express diverse profiles of DNA methylation [31]. Fulvestrant resistance was 
characterised by ERα independent proliferation while tamoxifen resistance maintained ERα dependence 
but resulted in altered receptor-mediated gene regulation. In both cases, hypomethylation was more 
frequently observed than hypermethylation.

DNA methyltransferases (DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L) have been linked to 
tumour resistance. Particularly, overexpression of DNMT3A and DNMT3B was observed in tamoxifen 
resistant BC. It is suggested that radio- or chemo-sensitization of BC could be achieved through targeting 
these methyltransferases [32].

Tumour heterogeneity and the microenvironment

Tumour heterogeneity can result in varying sensitivities to treatment and lead to the selection of cells with 
high tolerance to the drug [33–36]. There are four levels of heterogeneity: genetic, cell-type, metabolic, and 
temporal heterogeneity [37]. The presence of any form of heterogeneity makes it nearly impossible to kill 
all cells within a tumour with a single line of therapeutics. Heterogeneity can be tackled by 
combinatorial/cocktail therapies, such as FEC (5-FU, epirubicin and cyclophosphamide) for BC [5].

Another factor that can influence drug tolerance in cells is the TME. The TME includes extracellular 
matrix (ECM), immune cells, blood vessels, fibroblasts, and various other signalling molecules, and creates a 
permissive environment for cancer cells to survive and proliferate. Each TME factor can contribute to drug 
resistance through a number of strategies.

One such strategy is the manipulation of pH levels. Tumour cells can establish a “reverse pH gradient”, 
with increased intracellular pH and reduced extracellular pH level [38, 39]. Acidic intracellular pH has been 
reported to induce resistance to chemotherapeutics, by impairing the distribution of weak base anticancer 
drugs. This is known as “ion trapping”, and enables cancer cells to evade apoptosis [40, 41].

Epithelial-mesenchymal transition

The process of epithelial cells detaching from each other and acquiring mesenchymal properties is known 
as epithelial-mesenchymal transition (EMT). It is essential for the initiation of metastasis [5]. The 
phenotypic changes associated with EMT can lead to drug resistance [42]. Transforming growth factor β 
(TGF-β) is an important cytokine required for the induction of EMT, and inhibition of its activity has been 
shown to reverse EMT, and increase sensitivity to drugs [43]. Multiple TGF-β inhibitors have been 
developed, but results in clinical trials have been disappointing to date [44]. Wnt and Hedgehog signalling 
pathways have also been reported to promote drug resistance through EMT. Wnt activates the Wnt/β-
catenin pathway to promote an EMT-like phenotype upon treatment with trastuzumab (HER2-targeting 
therapeutic monoclonal antibody), while the Hedgehog pathway mediates resistance by promoting EMT 
upon treatment with anti-EGFR TKIs [45, 46].

Senescence escape
Prolonged periods of targeted and chemotherapeutic treatment have been found to induce phenotypes 
resembling cellular senescence [47]. Cellular senescence is defined as a permanent or temporary cell cycle 
arrest. Senescent cells possess a number of hallmarks, including enhanced beta-galactosidase activity, 
senescence-associated secretory phenotype (SASP), cellular enlargement, and senescence associated 
heterochromatin foci (SAHF) [48–50]. SASP is characterized by a widespread change in protein expression 
in senescent cells, rendering it arrested in cell proliferation but still metabolically active.
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Coppé et al. [51] have extensively characterized the SASP in human epithelial cells, and human and 
mouse fibroblasts. According to their work, the SASP can be classified into early events (alarm signals and 
mediators of tissue repair), and late events (anti-apoptotic proteins and inflammatory signals), which both 
negatively and positively regulate tumour progression, aging, and other pathologies. The wide impact of 
SASP can result in inhibition of cell division via genetic instability, oncogene inactivation, and promotion of 
immune clearance in cells [52].

Senescent cells also differ in shape and size to a normal cell. They show increased protein content, an 
elevation in the amount of anti-apoptotic proteins, increased lysosomal hydrolase activity [presented 
through senescence-associated β-galactosidase (SA-βGal)], DNA damage, and telomere associated foci 
(TAFs) [53]. Some notable factors associated with SASP expression changes include pro-inflammatory 
interleukins (ILs; IL-6, IL-7, IL-1α, IL-1β, IL-13, IL-15), chemokines (GRO-α, GRO-β, MCP-1, MCP-2, eotaxin-
3), growth factors (EGF, bFGF, HGF, VEGF), proteases (MMP-1, MMP-3, MMP-10, MMP-12, MMP-13, MMP-
14, capthesin B), and ECM elements like fibronectin and altered collagen (Figure 1) [51, 53].

Figure 1. Characterization of senescence, senescence markers and SASPs. Characteristics of senescent cells include 
physiological and signalling markers such as growth factors, interleukins, chemokines, and proteases. Not all markers are 
conserved in every type of senescence. SASPs: senescence-associated secretory phenotypes. Created with BioRender.com

Senescence is increasingly recognized as an important mechanism of therapeutic resistance. In the 
following sections, we will provide an overview of the current understanding of the role of senescence in 
BC.

Key senescence markers

In the previous section we discussed SASP, which is a crucial marker of senescence. However, the SASP is 
not conserved in every senescent cell, and there are common and unique features associated with different 
senescent phenotypes [54].

Oxidative stress related proteins have been proposed as potential markers of senescence, due to the 
multiple paths through which oxidative damage is incurred by senescent cells [55]. Upregulation of reactive 
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oxygen species (ROS) acts as an inflammatory mediator for nuclear-factor kappa-light chain-enhancer of 
activated B cells (NF-κB) by upregulating the levels of inflammatory factor IL-1α, an upstream component 
of SASP [56]. Another hallmark of senescence is increased mitochondrial dysfunction, which is unsurprising 
as mitochondria are a major generator of ROS [57].

Alteration of lysosomal activity has been strongly linked to senescence, however, there are conflicting 
reports on whether lysosomal activity increases or decreases. There have been studies that suggest that 
senescence induces a decrease in lysosomal activity [58], while other studies report that pro-autophagic 
activity associated with senescence elevates lysosomal mass [59].

Induction of senescence

Senescence can occur under a variety of circumstances. Cells naturally attain senescence after completing a 
finite number of divisions, at which point they reach the end of their replicative lifespan, called the Hayflick 
limit [60]. This is called replicative senescence and occurs due to the telomerase-induced reduction of 
telomere length after each replication cycle. Due to its intrinsic nature, it is also sometimes referred to as 
intrinsic senescence [61]. In contrast, extrinsic senescence is independent of telomerase activity, and can be 
categorized as onco-induced, tumour-suppressor loss-induced, or therapy-induced [61]. Onco-induced 
senescence (OIS) occurs upon oncogene activation, while tumour-suppressor loss-induced senescence 
(TSLIS) results from the inactivation of tumour suppressors, such as phosphatase and tensin homolog 
deletion on chromosome 10 (PTEN). Both OIS and TSLIS are reported to protect cells from neoplastic 
growth, and further transformation into malignancy [61].

Therapy-induced senescence (TIS) occurs as a result of drug therapy or radiation therapy [60]. Ionizing 
radiation (IR) is commonly employed in cancer therapy and has been shown to induce cellular senescence 
in doses ranging from 2 Gy to 10 Gy [62–64]. p21Waf1/Cip1 plays a critical role in cell cycle inhibition during 
early senescence, and p16Ink4a was shown to maintain this phenotype [64, 65]. There is an upregulation in 
these cell cycle regulators upon the induction of TIS. This type of senescence has been reported to be 
telomere shortening independent, but ATM/Chk2, p38 MAPK, 5’-adenosine monophosphate-activated 
protein kinase (AMPK), NF-κB, and miR-34a dependent [66–68]. Radiation immediately activates the DNA 
damage response through the ATM/Chk2 pathway, followed by a series of slower events, including p38 
MAPK activation, that contributes to SASP production [67]. The AMPK-NF-κB pathways become activated 
upon exposure to radiation and contribute to the induction of senescence by upregulating the expression of 
monocarboxylate transporter 1 (MCT1), which causes the export of lactic acid into the extracellular 
environment [68]. The inhibition of the AMPK-NF-κB pathway counteracts the acidification of the 
extracellular environment by reducing MCT1 levels.

There are other pathways and strategies that cells use to overcome IR-induced senescence. Expression 
of the multi-functional protein securin in IR-irradiated cells pushes them towards apoptosis and away from 
senescence [69]. Inhibition of glycolysis, or deficiency of PTEN also attenuates IR-induced senescence [68, 
70].

A wide range of drugs (chemotherapies and targeted therapies) have been shown to induce senescence 
in tumour cells. In vitro and in vivo studies have reported that various drugs that induce TIS utilize a 
number of different pathways, including DNA damage, oxidative stress, post-translational modifications in 
proteolytic processing and kinase signalling [71]. To identify these senescence inducing drugs, Ewald et al. 
[72] screened a 4,160-compound library of known bioactive compounds and natural products and 
discovered over 225 cytotoxic compounds, 51 of which were potentially senescence inducing. Another drug 
screen identified inhibitors of the aurora kinase mitosis regulators as strong inducers of senescence [73].

In contrast to IR-induced senescence, drug TIS is reported to be independent of p53 status [74]. 
However, it was determined that each drug had its own unique mode of action. The most potent pro-
senescence response was from DNA damaging agents like doxorubicin and cisplatin, while the weakest was 
from drugs targeting microtubules, such as taxol and vincristine [75].
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Dosage is an important aspect of drug TIS and determine whether a cell becomes senescent or 
apoptotic; concentrations that are too low may not produce any effect while higher concentrations may 
induce apoptosis-mediated cell death [72, 76]. It was also noted that senescent markers were usually 
observed after a period of treatment ranging from 3 days to 7 days, and sometimes even longer [71].

A common feature of many senescence-inducing compounds is their ability to induce DNA damage via 
double- or single-stranded breaks [62, 77]. Although TIS does not demonstrate any telomere dependency, 
or telomeric shortening [78, 79], DNA damage in TIS usually occurs through an indirect alteration of DNA 
structure; for example, by inhibiting DNA methyltransferase using 5-azacytidine, or modifying chromatin 
structure using histone DNA acetyl inhibitors like sirtinol [80, 81].

Senescence can also be induced upon oxidative stress caused by chemotherapeutics such as pyrithione, 
which damage mitochondrial function [71]. This dysfunction can affect glycolysis, glutaminolysis, and other 
metabolic pathways that regulate double-strand break (DSB) repair and DNA damage checkpoints [82].

TIS and iron metabolism
Mitochondrial dysfunction correlates strongly with cellular senescence and is accompanied by 
accumulation of intracellular iron (a nearly 30-fold increase in intracellular iron) [83, 84].

Recently, Li et al. [84] reported a direct correlation between increased intracellular iron levels, 
mitochondrial dysfunction, and senescence. Intracellular iron assists in the generation of hydroxyl radicals 
through Fenton’s reaction. Fenton’s reaction involves the oxidation of ferrous iron to ferric iron in the 
presence of peroxide. It generates hydroxyl and hydroperoxyl radicals, which are unstable/reactive oxygen 
pollutants. With the critical role that iron plays in the generation of hydroxyl radicals, it is unsurprising that 
the induction of senescence impacts the expression levels of iron regulatory proteins like transferrin, 
transferrin receptor (TfR), and ferritin (Figure 2).

TfR is an integral membrane protein responsible for the uptake of iron and its expression is tightly 
controlled in normal cells. It transports iron-bound transferrin into the cell and is often overexpressed in 
BC to accommodate the increased iron demand for catalysis and biogenesis [85]. Elevated TfR levels have 
been observed in mouse embryonic fibroblasts induced to undergo IR-induced senescence [83, 86].

Neutrophil gelatinase-associated lipocalin (NGAL) is a secreted protein that can bind iron and plays a 
role in intracellular iron trafficking in mammals. It is correlated with tumour progression and is 
overexpressed in BCs with poor prognosis [87]. NGAL has been identified as a SASP factor in etoposide-
induced senescence BC and mouse models of spinal cord injury [88, 89]. Furthermore, NGAL is upregulated 
in BC cells exposed to conditioned media from TIS and OIS cells [90].

Ferritin is a protein complex that captures intracellular ferrous iron (Fe2+) and converts it into ferric 
iron (Fe3+) through intrinsic ferroxidase activity, in order to reduce intracellular damage caused by ROS 
(Figure 2) [91]. FTH1 (ferritin-heavy chain) is the active component of this protein complex and directly 
correlates with ferritin activity [92]. FTH1 levels are higher in senescent cells and protect against 
ferroptosis, an iron-dependent cell death pathway [83].

Ferroportin is a transmembrane exporter responsible for the release of Fe2+ from the cell. It is 
downregulated in BC cells as a means to retain a larger amount of iron inside the tumour cells [86]. High 
levels of ferroportin have been associated with impaired tumour progression [93], and senescent cells 
display deregulated expression and altered subcellular localization [94]. Ferroportin seems to localise to 
intracellular compartments away from the plasma membrane, likely preventing it from partaking in iron 
efflux [83]. This impaired localization suggests an elevation in inactive transporters in senescent cells, 
which is consistent with senescence associated lysosomal degradation.

Another protein involved in the regulation of oxidative stress and ferroptosis is the nuclear factor-E2-
related factor 2 (Nrf2). Nrf2 is a key transcription factor that regulates intracellular oxidative stress 
damage, and in turn, ferroptosis. It is a basic Leucine Zipper (bZIP) transcription factor that regulates the 
expression of proteins such as glutathione S-transferase, heme oxygenase 1, and NADPH quinone 
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Figure 2. Iron metabolism in senescent cancer cells. Ferric iron is bound to transferrin and endocytosed with the help of TfR. 
Conversion of ferric to ferrous iron is followed by the binding of ferrous iron by ferritin. NCOA4 supports the degradation of these 
molecules via ferritinophagy. TfR is recycled to the plasma membrane and can also be utilized in the activation of the stress 
response via Nrf2 activation. TfR: transferrin receptor; Nrf2: nuclear factor-E2-related factor 2. Created with BioRender.com

oxidoreductase [95]. Nrf2 activation is regulated by Kelch-like ECH-associate protein 1 (Keap1). Keap1 
binds to non-phosphorylated Nrf2 in the cytoplasm, promoting its ubiquitination and proteasomal 
degradation [96]. NF-κB, when stimulated by inhibitor of NF-κB kinase (IKK), activates Nrf2 via 
phosphorylation, leading to the dissociation of Keap1 and its translocation into the nucleus [94, 97]. This 
protein complex then binds to apoptotic/electrophilic response elements, promoting transcription of 
cytoprotective genes [96, 98–101]. TfR can activate IKK and thus play a role in NF-κB signaling and 
activation of Nrf2 [102]. With senescent cells demonstrating a strong anti-apoptotic tendency despite the 
expression of apoptotic proteins, the levels of pNrf2 are a prominent indicator of senescent activity. 
Interestingly, silencing of Nrf2 has been associated with premature replicative senescence in human 
embryonic fibroblasts [80, 98].

In conclusion, TIS impacts iron metabolism in BC cells and affects iron transporters such as NGAL and 
TfR. It also affects the iron carriers such as ferroportin and ferritin, and the corresponding stress response 
pathways [103].

Membrane trafficking pathways and senescence
A crucial element of membrane trafficking is the endosomal recycling pathway (ERP), which plays an 
important role in regulating the composition of the plasma membrane. This involves the internalization of 
cargo from the cell surface by a process called endocytosis. Endocytosed cargo is delivered to an 
intracellular organelle called the early endosome, where its fate is decided. It can either be returned to the 
cell surface via the ERP, or sent to lysosomes for degradation [104]. There are two main recycling 
pathways, based on the rate at which the process is carried out. In the fast recycling pathway, cargo is 
directly transported to the surface from the early endosome; in the slow recycling pathway the cargo is 
transported back to the plasma membrane via a perinuclear localized endosomal recycling compartment 
[105, 106].

https://www.biorender.com/
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A number of studies report that disruption of endocytosis results in the induction of cellular 
senescence [107–109]. For instance, the disruption of clathrin-mediated endocytosis (CME) caused by the 
destabilization of lysosomal membranes, results in DNA damage and changes in mitogenic signaling, 
leading to centrosome overduplication and induction of senescence [108].

There are a number of different mechanisms by which surface proteins can be internalized into the cell 
including CME, and caveolin-mediated endocytosis. Clathrin is a molecular scaffold that mediates the 
formation of vesicles at the plasma membrane [103], and caveolin is a cholesterol-binding protein that 
assists in the formation of cave-like structures in the plasma membrane, called caveolae [110].

Caveolin-mediated endocytosis

Senescent cells have been reported to express high levels of caveolin-1 (Cav1), a major structural and 
functional unit of Caveolae-mediated endocytosis (CavME) [111], and CavME involves the fission of vesicles 
from the plasma membrane, followed by transport to endosomal compartments [112]. Cav1, which is the 
most common isoform of caveolin, is associated with a large number of signaling proteins, including RTKs, 
Src family kinase, and nitric oxide synthase 3 [113–115]. Deletion or overexpression of Cav1 results in 
altered signaling activity [116].

Cav1 also plays a role in lipid metabolism. Impairment of caveolin function, either due to mutation of 
the Cav1 gene or post-translational modifications of protein, leads to decreased levels of free cholesterol 
and increased neutral lipid storage in lipid droplets [117]. It has also been reported that Cav1 inhibits Nrf2 
and other oxidative stress regulators, actively contributing to increasing cellular ROS [80, 118].

By virtue of its involvement in multiple signaling and metabolic pathways, Cav1 appears to play a 
central role in the development of senescence [119].

Clathrin mediated endocytosis

Parallelly, another mechanism of endocytosis is CME, in which a group of adapter proteins are recruited to 
the plasma membrane to form clathrin-coated pits and mediate the invagination and fission of clathrin-
coated vesicles [120]. Amphiphysin-1, a key regulator of CME is downregulated in senescent cells [121]. 
Notably, this downregulation coincided with reduced endocytosis of TfR [121]. Restoration of 
amphiphysin-1 restores the endocytic capacity of the cell. It is possible that downregulation of CME plays 
an important role in the induction of senescence [120].

The coatomer complex-1 (COPI) vesicle system transports cargo to and from the Golgi apparatus. The 
COPI transporters (encoded by COPB2, COPG1, and Arf1) regulate a number of membrane trafficking 
events, by mediating transport in the early secretory pathway [122]. COPI vesicle formation is regulated by 
the Arf family of GTPases. Beta PAK-interacting nucleotide exchange factor (βPIX), a GTPase activator, binds 
to G protein-coupled receptor kinase interacting proteins (GIT) and acts as an adaptor protein with Arf GAP 
activity (Arf GAP is a regulator of Arf family small GTPases, which are part of the COPI pathway) [123]. 
Studies have reported the βPIX-GIT complex plays a critical role in amphiphysin-1 cleavage [120]. βPIX 
levels reduce during the development of senescence, and silencing of βPIX or GIT both induce senescence 
[124]. Reduced βPIX levels result in a corresponding decrease in GIT levels, leading to destabilization of the 
paxillin-calpain complex, causing amphiphysin-1 cleavage and its deactivation [121]. Thus, senescence is 
directly linked to reduced CME via the downregulation of amphiphysin activity.

Targeting TIS as an anticancer strategy
The differences in the morphology and functional properties of senescent cancer cells have led to many 
efforts to identify vulnerabilities that might be exploited to treat drug resistant cancers. One of the reported 
benefits of senescence in cancer is the restriction in tumour progression. It has also been reported that 
senescent properties can spread from one cancer cell to another [62, 125].
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The detrimental effects of senescence induction via therapy include the promotion of EMT and 
concomitant increase in invasiveness of pre-malignant epithelial cells through the IL-6 and CXCL8-
dependant pathways [126].

The SASP provides an opportunity for development of a “one-two punch” strategy in treatment of 
cancers with the use of senotherapeutics, therapeutic agents that target cellular senescence. Senomorphics 
(also known as senostatics) are a class of molecules that suppress some senescent properties and may even 
reverse the senescent phenotype. The field of senotherapeutic research is a growing area of drug discovery 
that encompasses targeted approaches, reverse-pharmacology, drug repurposing and other methodologies 
[127].

Senolytics target and kill senescent cells [53, 127] (Figure 3). Senomorphics suppress SASP, and in 
turn, decrease inflammation. The drawback of using senomorphics is that SASP is critical for wound healing 
[53].

Figure 3. First generation senolytics and their corresponding target SCAPs. Currently approved senolytics, their molecular 
targets and their mode of action. The senolytics have been classified into their respective categories. SCAPs: senescent cell 
anti-apoptotic pathways. Created with BioRender.com

It was first hypothesised that senescent cells upregulate anti-apoptotic and pro-survival pathways. This 
was confirmed by the continued survival of these cells upon upregulation of pro-apoptotic pathways, 
indicating the presence of factors that can counteract this cell death pathway. This led to the development 
of senolytics, which specifically target these anti-apoptotic pathways in senescent cells [128, 129]. 
Senescent cell anti-apoptotic pathways (SCAPs) possess similar properties to the anti-apoptotic pathways 
in B cell lymphoma and leukocytic leukaemia cells, as they release tissue destructive proapoptotic factors, 
but avoid undergoing apoptosis themselves [130, 131]. Senolytic compounds were considered more potent 
if they could target multiple SCAP nodes at the same time, as targeting single-node SCAPs like BCL2 
pathway inhibitors [e.g., N(ABT-263), A1331852, A1155463] tended to affect a restricted range of 
senescent cells, and also increase risk of toxicity through off-target effects such as thrombocytopenia and 
neutropenia [130–132]. Targeting multiple SCAPs would allow them to attack a wider range of senescent 
cell types [133, 134].

https://www.biorender.com/
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Recent studies have identified the COPI pathway as a promising senolytic target in drug therapy-
induced senescent cells [135]. Disrupting COPB2, a component of the COPI complex, results in Golgi 
dispersal and induction of apoptosis in senescent cells, indicating that this transport pathway may be a 
vulnerability in senescent cells [135]. The guanine-nucleotide exchange factor GBF1 is required for the 
activation of Arf GTPases. Conventional GBF1 inhibitors like brefeldin A selectively killed cells undergoing 
OIS, however, they have poor pharmacological properties and are not clinically approved. N-myristoylation 
inhibitors (NMTi), a clinically approved treatment for parasitic protozoan infections, were shown to 
phenocopy COPI inhibitors and act as potent senolytics [135, 136]. These work by preventing the addition 
of a myristoyl group to the amino terminus of Arf GTPases. Lack of this key lipid modification leads to 
reduction in the levels of Arfs 1, 3, 5 and 6 and a corresponding downregulation of the COPI pathway.

Ideal senolytics should target several SCAPs, be administered orally, and be pre-approved by the 
United States Food and Drug Administration (FDA) [137]. A wide-ranging list of senotherapeutics have 
been identified to date, such as dasatinib, quercetin, fisetin, luteolin, curcumin and navitoclax, and are in 
varying stages of clinical development [128, 133, 134, 138–140].

Conclusions
This review explores the various facets of therapy resistance, and drug TIS stands out as a major drug 
resistance mechanism in BC. It involves the induction of irreversible cell cycle arrest and the development 
of SASP in cancer cells in response to chemotherapeutic agents and targeted therapies.

One of the key advantages of TIS is its potential to restrict tumour progression by halting the 
proliferation of cancer cells. However, in contrast to apoptosis, which results in cell death, senescent cells 
remain metabolically active and can influence the TME through the SASP. With both tumour suppressive 
and tumour promoting properties, senescence can be a double-edged sword in cancer treatment.

Challenges remain in effectively harnessing the therapeutic potential of TIS. Senescent cells can 
develop resistance to apoptosis, allowing them to persist within TMEs, and potentially contribute to disease 
relapse. Additionally, the SASP generated can have diverse impacts on tumour progression complicating 
therapeutic strategies.

Substantial effort is currently focussed on developing senotherapeutics which selectively target 
senescent cells, or modulate SASP. These include senolytics, which induce apoptosis in senescent cells, and 
senomorphics which suppress SASP. These represent a promising approach towards eliminating therapy-
resistant cancer cells and enhancing treatment efficacy.

Several studies have explored the impact of senescence on iron metabolism, and the role that 
endocytosis of iron and iron transporters plays in this. These pathways could provide new targets for 
developing novel strategies to overcome drug TIS.

In conclusion, targeting drug TIS holds promise for overcoming drug resistance in BC. TIS has the 
potential to restrict tumour progression and enhance treatment efficacy through the induction of cell cycle 
arrest and modulating the TME. However, further research is required to better understand the impact of 
senescence on tumour progression and to optimize TIS-based therapeutic strategies while mitigating any 
potential adverse effects.
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