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Abstract
Immune checkpoint inhibitors (ICI)-based combinations have become the standard first-line treatment for 
advanced clear cell renal cell carcinoma (ccRCC). Despite significant improvements in survival and the 
achievement of sustained long-term responses, a subset of patients remains refractory to ICI, and most will 
eventually develop resistance. Thus, identifying predictive biomarkers for ICI efficacy and resistance is 
essential for optimizing therapeutic strategies. Up to now, tissue-based biomarkers have not been 
successful as predictive biomarkers in RCC. Circulating blood-based biomarkers offer a promising 
alternative. These biomarkers, including circulating immune cells, soluble factors, tumor-derived markers, 
and those based on metabolomics, are less invasive, offer reproducibility over time, and provide a 
comprehensive assessment of tumor biology and patient immune status, as well as allow dynamic 
monitoring during treatment. This review aims to evaluate the current evidence on the different candidate 
circulating biomarkers being investigated for their potential to predict ICI efficacy in RCC patients.
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Introduction
Renal cell carcinoma (RCC) accounts for around 2% of all adult malignancies [1]. It comprises different 
histological subtypes with different molecular characteristics, biological behavior, and response to systemic 
therapies [2]. Clear cell RCC (ccRCC) is the most frequent histologic subtype representing around 70–80% 
of all RCC [3]. At diagnosis almost 30% of cases are metastatic and around 30% will recur after surgery, and 
will probably require systemic therapy [4, 5].

The treatment landscape of advanced ccRCC has significantly changed during the last decade with the 
incorporation of immune checkpoint inhibitors (ICI) to the treatment armamentarium of advanced ccRCC. 
Combinations of ICI with either another ICI or an anti-angiogenic (AA), have significantly improved survival 
outcomes, becoming the new standard of care in first-line setting [6–14].

Despite this, there is still a notable proportion of patients that will be refractory to ICI while another 
subset will eventually develop resistance to ICI. Additionally, ICI are associated with non-negligible 
toxicities. In this context, research efforts are directed towards identifying reliable biomarkers that can help 
determine the best treatment strategy for our patients (i.e., ICI-ICI, ICI-AA, or even ICI or AA monotherapy).

To date, tissue-based approaches have failed to identify reliable biomarkers that are predictive of 
response to ICI [15]. Immunohistochemical biomarkers, such as PD-L1 or tumor infiltrating cytotoxic T 
cells, have been extensively studied but have failed to demonstrate a predictive role in ccRCC. Gene 
expression signatures developed within ICI-AA combination trials have not been validated when assessed 
in patients treated with dual ICI in the Checkmate 214 trial [16–18].

Circulating biomarkers emerge as an attractive alternative to tissue-based biomarkers. Blood-based 
biomarkers allow repeated evaluations at different time points, are easily accessible and less invasive for 
patients, and may be able to overcome the heterogeneity associated with biopsies. In addition, they may 
provide more information about the host’s immune status and could be useful in determining a patient’s 
potential for developing effective tumor immunity.

This review provides an overview of the different blood-based candidate biomarkers currently under 
study for predicting response to ICI in advanced RCC (aRCC).

Circulating immune cells
The effectiveness of ICI therapy is intricately linked to the host’s capacity to initiate an anti-tumor immune 
response. Consequently, the immune profile of the host theoretically impacts the efficacy of ICI. Effector 
immune cells, including cytotoxic T cells and natural killer (NK) cells, are essential for the effectiveness of 
ICIs, as they directly attack tumor cells when checkpoint pathways are inhibited. Additionally, immune cells 
express checkpoint molecules such as PD-1 and CTLA-4, and the levels and activation status of these 
molecules can impact their function and response to ICIs [19, 20]. Regulatory T cells (Tregs) can suppress 
immune responses and limit the effectiveness of ICIs by inhibiting effector T cells, with high levels of Tregs 
in tumors counteracting checkpoint blockade effects [21]. Antigen-presenting cells (APCs) like dendritic 
cells and macrophages are crucial for presenting antigens to T cells and initiating immune responses, thus 
influencing T cell activation and the overall immune response to ICIs [22, 23]. Furthermore, cytokines 
produced by immune cells can modulate the immune response; for instance, interferon gamma (IFN-γ) 
from activated T cells can enhance PD-L1 expression in tumor cells, affecting the efficacy of ICI [24]. Tumor-
associated macrophages (TAMs) can exhibit pro-inflammatory (M1-like) or anti-inflammatory (M2-like) 
phenotypes, with the balance between these phenotypes affecting the tumor microenvironment (TME) and 
the response to ICIs [25]. Additionally, interactions between immune cells and endothelial or stromal cells 
in the TME can influence tumor vascularization and the immune milieu, further affecting ICI efficacy [26].

Different research groups have investigated how peripheral immune cell populations influence the 
response to ICI therapy across different solid tumors, including ccRCC. Infiltrating cytotoxic T cells, as 
primary protagonists and targets of ICI therapy, have been extensively studied; however, the results in 
aRCC patients remains controversial [16]. Increasing evidence highlights the role of other immune cells in 
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the antitumor response, such as B lymphocytes [27]. Following the encouraging results of different studies 
supporting the role of B cells within tertiary lymphoid structures (TLS) in fostering antitumor responses 
across different solid tumors treated with ICI, fresh blood immune-monitoring of advanced ccRCC patients 
receiving nivolumab within the NIVOREN study revealed that pre-existing high levels of unswitched 
memory B cells (CD19+CD27+IgD+IgM+) were associated with improved clinical outcomes (n = 44) [overall 
survival (OS) HR = 0.08, P = 0.002 and progression-free survival (PFS) HR = 0.54, P = 0.048] [28] (Table 1). 
This B cell subset has the ability to reinitiate B cells response but also initiate a germ center reaction upon 
repeated antigenic stimulation [29, 30]. Interestingly, unswitched memory B cells also correlated with 
circulating T follicular helper (Tfh) cells, which are known to enhance B cell maturation, stimulate the 
expansion of T CD8+ lymphocytes, and with the presence of TLS. These results contrast with those reported 
by a pan-tumor study (n = 78), which included RCC patients, showing that high pretreatment levels of 
circulating B cells were negatively associated with response to ICI (P < 0.001) [31] (Table 1). The results of 
this study also suggest that an increased B cells frequency could identify patients at risk of progression 
after an initial response to ICI [31]. Finally, a small pan-tumor study, including 7 RCC tumors among the 45 
different solid tumors analyzed, found that patients with increased frequency of naive B cells were more 
likely to benefit from ICI [disease control rate (DCR) odds ratio (OR) = 12.31, P = 0.039], while those with 
increased frequency of switched memory B cells were associated with resistance to ICI (DCR OR = 0.06, P = 
0.025) [32] (Figure 1).

Table 1. Circulating immune cells and association with outcomes to immunotherapy in RCC

Candidate 
biomarker

References Year Country N Tumor Type of 
systemic 
therapy

Parameter 
level/trend 
indicator

Detection 
technique

Timepoint Findings

Unswitched 
memory B 
cells

Carril-Ajuria 
et al. [28]

2022 France 44 ccRCC Nivolumab High Flow 
cytometry

Pretreatment Improved 
ORR, PFS 
and OS

B cells Yuan et al. 
[31]

2020 China 78, 
12 
RCC

Pan-tumor
Renal 
carcinoma 
(n = 12, 
15.19%)

ICI High Flow 
cytometry

Pretreatment Decreased 
OPR

Increased PD

Naive B 
cells

Increase Pretreatment No significant 
association, 
neither with 
DCR or ORR

Switched 
memory B 
cells

Barth et al. 
[32]

2022 Austria 45, 7 
RCC

Pan-tumor ICI

Increase

Flow 
cytometry

On-treatment 
changes

Improved 
DCR
Reduced 
DCR

CD8, 
CD4+PD-L1+ 
T cells

Saliby et al. 
[33]

2023 US 60 Variant 
RCC

Atezolizumab 
plus 
bevacizumab

Large 
decrease

Flow 
cytometry

On-treatment 
changes

Worse PFS 
and OS

ccRCC: clear cell renal cell carcinoma; DCR: disease control rate; ICI: immune checkpoint inhibitors; ORR: objective response 
rate; OS: overall survival; PD: progressive disease; PFS: progression-free survival; RCC: renal cell carcinoma; SD: stable 
disease; US: United States

To understand the importance of circulating PD-L1+ T cells, a study investigated their relative changes 
at the third cycle of treatment (atezolizumab plus bevacizumab) compared to baseline levels prior to 
therapy [33] (Table 1). During treatment, all patients experienced a decrease in the percentage of CD8+PD-
L1+ T cells. Patients with therapeutic resistance experienced a greater decrease in the percentage of 
CD8+PD-L1+ T cells compared to those who responded to therapy. This greater decrease in CD8+PD-L1+ T 
cells seemed to correlate with resistance. However, a similar trend was not clearly observed with the 
relative change in CD4+PD-L1+ T cells on-treatment. A larger decrease of PD-L1+ T cells on-treatment was 
associated with worse PFS and OS for both CD4+PD-L1+ T cells and CD8+PD-L1+ T cells.
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Figure 1. Circulating biomarkers & outcomes to immunotherapy in RCC. BAFF: B-cell activating factor; KIM-1: Kidney-Injury 
Molecule-1; NLR: neutrophil-to-lymphocyte ratio; LIPI: lung immune prognostic index; PLR: platelet-to-lymphocyte ratio; SII: 
systemic immune inflammation; NER: neutrophil-to-eosinophil ratio; EV: extracellular vesicle; ctDNA: circulating tumor 
deoxyribonucleic; CTCs: circulating tumor cells; Kyn: kynurenine; Trp: tryptophan; sCD27: soluble CD27

Another small study, including 45 patients with RCC, evaluated whether the baseline diversity of the T-
cell receptor β-chain (TCRB) was associated with prognosis and how the baseline and dynamic RCC tumor 
burdens affected the T-cell repertoire [34]. Higher TCRB diversity was shown to be connected with an 
increased lymphocyte-to-neutrophil ratio, especially indicating elevated naive T cells. In addition, high 
baseline TCRB diversity in stage IV patients was associated with improved OS (HR = 0.195, P = 0.037).

In summary, although evidence on the value of circulating immune cell populations is limited, recent 
findings from small cohort studies provide promising results that warrant further investigation in larger 
prospective studies.

Inflammatory routine blood markers and derived scores
Blood-based inflammatory markers could, in theory, indicate the host’s proinflammatory status and 
systemic immune response to cancer-related inflammation. Systemic inflammation in aRCC is associated 
with a poor prognosis [35, 36]. Different inflammatory routine blood parameters have been associated with 
worse prognosis and resistance to ICI in a variety of solid tumors, including RCC. Some of these parameters 
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(neutrophil count, platelets, or LDH) are well-known prognostic factors in RCC and are included in 
established prognostic scores used in daily clinical practice, such as the IMDC (International mRCC 
Database Consortium) or MSKCC (Memorial Sloan Kettering Cancer Center) scores [35, 36].

The neutrophil-to-lymphocyte ratio (NLR) is one of the most studied inflammatory markers in cancer. 
Reflecting the balance between systemic inflammation and adaptive immune response, it has been 
associated with poor prognosis across different solid tumors, including RCC. This marker has been 
extensively studied in aRCC, with a median NLR cut-off varying between 2.5 and 5 [37, 38] (Table 2). The 
most robust data on the prognostic role of NLR in RCC come from a systematic review and meta-analysis by 
Shao et al. [38] including 6,461 RCC patients. High NLR was associated with a poor prognosis in both 
localized and aRCC. In addition, elevated baseline NLR in ICI-treated aRCC patients was also associated with 
worse OS [38]. Recent data from the JAVELIN Renal 101 trial showed a significant association between high 
baseline levels of NLR (cut-off: median NLR = 2.8) and inferior clinical outcomes in both the avelumab plus 
axitinib (low vs. high NLR OS HR, 0.51; 95% CI, 0.300–0.871) and the sunitinib arms (low vs. high NLR OS 
HR, 0.30; 95% CI, 0.174–0.511), continuing to support the prognostic role of NLR in patients with aRCC 
[39]. Moreover, Rebuzzi et al. [40, 41] developed an improved version of the IMDC score, the “MeetURO 
score” by including the NLR index and the presence of bone metastases, which enabled them to split RCC 
patients treated with ICI into five prognostic groups. Additionally, on-therapy NLR variation has also been 
associated with clinical outcomes to ICI. In a retrospective study including advanced non-small cell lung 
cancer (NSCLC) (n = 75) and RCC (n = 86) patients, any NLR increase at week 6 was associated with worse 
outcomes, compared to NLR decrease [42]. Similarly, Young et al. [43] found that NLR ≥ 3 after 12 weeks of 
ICI-based first-line therapy was associated with worse outcomes (17.5 months vs. 40.3 months, P < 0.001), 
and normalization of NLR in patients with baseline elevation was associated with superior OS (40.3 months 
vs. 14.7 months, P = 0.004) [43]. Monitoring NLR over time could help guide treatment intensification or 
de-escalation strategies; however, validation of these findings in prospective studies is still needed.

The lung immune prognostic index (LIPI), defined by pretreatment levels of derived NLR (dNLR) and 
LDH, was initially developed and assessed in lung cancer patients treated with ICI [44–46]. Subsequent 
studies have confirmed its association with clinical outcomes to ICI across other tumor types [44–50]. Until 
recently, the only evidence of the role of LIPI in aRCC relied on a multi-tumor retrospective study including 
NSCLC, melanoma and RCC (145, 25%) patients treated with ICI [47] (Table 2). In this study, LIPI 
stratification was associated with OS in aRCC patients treated with ICI (P < 0.005) [47]. The most robust 
data to date on the value of LIPI in aRCC come from a recent study evaluating its impact in three different 
prospective studies [NIVOREN study: nivolumab cohort; TORAVA trial: vascular-endothelial growth factor 
(VEGF)/VEGFR targeted therapy; and Checkmate 214 trial: nivolumab plus ipilimumab (nivo-ipi) vs. 
sunitinib] [48]. Initial results showed an association of LIPI stratification with worse outcomes in aRCC 
treated with nivolumab (LIPI-good 30.1 vs. 13.8 months in the LIPI intermediate/poor; HR, 0.47), but no 
associations with clinical outcomes were found in those treated with VEGF/VEGFR therapy, suggesting a 
potential predictive role for LIPI. However, this was not confirmed in the Checkmate 214 trial, where LIPI 
stratification was associated with worse survival outcomes irrespective of therapy type, whether 
nivolumab plus ipilimumab or sunitinib (nivo-ipi: LIPI good vs. intermediate/poor: HR, 0.55; P < 0.001; 
sunitinib: LIPI good vs. int/poor: HR, 0.38; P < 0.001) [51] (Figure 1). Thus, in contrast to NSCLC, LIPI 
appears to have more of a prognostic rather than a predictive value for response in aRCC.

Although their role in the immune antitumor response is less known, pre-clinical studies suggest 
tumor-associated eosinophilia may enhance antitumor response by promoting CD8+ T cell infiltration [52]. 
In the study by Simon et al. [53], higher levels of circulating eosinophils were associated with improved 
response to ICI, and eosinophils from ICI-treated patients were enriched for IFN-γ response signatures, 
which are known to be associated with benefit from ICI therapy. Based on these data, Zahoor et al. [54] 
conducted a retrospective study (n = 90) of aRCC patients treated with nivolumab. They found that patients 
with higher baseline eosinophil counts were associated with a lower risk of progression (HR, 0.54; P = 
0.042). In contrast, the retrospective study (n = 65) conducted by Herrman et al. [55] failed to show a 
significant association between baseline circulating eosinophil counts and outcomes to ICI but found that 
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Table 2. Inflammatory routine laboratory derived scores and association with outcomes to immunotherapy in RCC

Candidate 
biomarker

References Year Country N Tumor Timepoint Type of 
systemic 
therapy

Cut-off/Trend 
indicator

Findings

NLR Bilen et al. 
[39]

2022 US 886 RCC Pretreatment Avelumab plus 
axitinib or 
sunitinib

High Worse OS and 
PFS 

NLR Simonaggio 
et al. [42]

2020 France 161 RCC and 
NSCLC

On-treatment 
changes

Nivolumab Increase Worse OS and 
PFS

≥ 3 at baseline NS trend for 
worse OS

≥ 3 at 12 weeks Worse OS

NLR Young et al. 
[43]

2024 UK 132 RCC Pretreatment
On-treatment 
changes

ICI 
combinations

Normalization of 
pre-treatment 
elevation

Superior OS 
and ORR

NLR Ishihara et 
al. [136]

2019 Japan 58 RCC Pretreatment Nivolumab ≥ 3 Worse OS after 
MVA, worse 
PFS only on 
UVA

NLR Suzuki et al. 
[137]

2020 Japan 65 RCC Pretreatment Nivolumab ≥ 5 Worse OS

NLR Shirotake et 
al. [138]

2019 Japan 54 RCC Pretreatment Nivolumab ≥ Median value 
(2.89)

NS

NLR Zahoor et al. 
[54]

2018 US 90 RCC Pretreatment Nivolumab ≥ 4.2 Worse PFS

NLR Tucker et al. 
[56]

2021 US 110 RCC Pretreatment Nivolumab 
plus 
ipilimumab

≥ 3.42 Worse OS

Good LIPI, 0 factor
Intermediate LIPI, 1 
factor

No difference in 
OS, PFS or 
ORR between 
the good and 
intermediate 
LIPI groups

LIPI Meyers et al. 
[47]

2019 Canada 643 NSCLC, 
melanoma 
and RCC 
(145, 25%)

Pretreatment ICI

Poor LIPI, 2 factors Worse OS and 
PFS

LIPI Carril-Ajuria 
et al. [48]

2024 France 1,084 ccRCC Pretreatment Nivolumab 
plus 
ipilimumab vs. 
sunitinib

Intermediate/Poor 
LIPI (1–2 factors) 
vs. good LIPI (0 
factor)

Worse OS in 
both treatment 
arms

NER Zhuang et 
al. [139]

2023 US 184 RCC Pretreatment ICI High NER > 49.2 Worse OS

No significant 
difference for 
PFS

NER Tucker et al. 
[56]

2021 US 110 RCC Pretreatment Nivolumab 
plus 
ipilimumab

≥ Median value 26.4 Worse PFS, OS 
and ORR

PLR Iinuma et al. 
[59]

2021 Japan 43 RCC Pretreatment Nivolumab 
plus 
ipilimumab

High

Median 215.6

Poor PFS

SII Iinuma et al. 
[59]

2021 Japan 43 RCC Pretreatment Nivolumab 
plus 
ipilimumab 

Median SII of 730 Improved 
survival in the 
SII low

ccRCC: clear cell renal cell carcinoma; ICI: immune checkpoint inhibitors; LIPI: lung immune prognostic index; MVA: 
multivariate; UVA: univariate; NER: neutrophil-to-eosinophil ratio; NLR: neutrophil-to-lymphocyte ratio; NS: non-significant; 
NSCLC: non-small cell lung cancer; ORR: objective response rate; OS: overall survival; PFS: progression-free survival; PLR: 
platelet-to-lymphocyte ratio; RCC: renal cell carcinoma; SII: systemic immune inflammation; UC: urothelial carcinoma; UK: 
United Kingdom; US: United States. Meta-analysis not included

patients experiencing an increase in eosinophils at six weeks of treatment were associated with an 
improved response to ICI. In the same line, Tucker et al. [56] showed that aRCC patients receiving 
nivolumab plus ipilimumab with lower baseline levels of neutrophil-to-eosinophil ratio (NER) presented 
improved clinical outcomes compared to those with higher NER at baseline (OS HR 0.31, P < 0.01) [56]. In 
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addition, the same team evaluated NER on-treatment changes and found that patients with a decreased 
NER at week 6 of treatment were associated with improved clinical outcomes in double ICI-treated aRCC 
patients (HR: 0.67, P-value: 0.002) [57] (Figure 1).

Other scores, such as the platelet-to-lymphocyte ratio (PLR) and the systemic immune-inflammation 
(SII) index, have also been evaluated in the context of aRCC treated with ICI. High PLR has been correlated 
with worse outcomes to ICI across different cancer types [58]. Similarly, Iinuma et al. [59] reported an 
association between high PLR and worse outcomes in aRCC patients receiving nivolumab plus ipilimumab 
(1-year PFS, 75.5% for low PLR vs. 49.7% for high PLR; P = 0.034). In this study, the SII was also associated 
with worse PFS, which is in line with previous studies across different cancer types (P = 0.023) [60].

Circulating soluble factors
Soluble factors, including cytokines and chemokines, play a critical role in anti-tumor immunity [61]. 
Cytokines and chemokines are released by both adaptive and innate immune cells, stromal cells, and tumor 
cells, and can be measured at both tissue and systemic levels. Certain soluble factors, such as IL-6, IL-8, and 
VEGF, are involved in carcinogenesis, myeloid inflammation, and promote immunosuppression, while 
others, such as the chemokine CXCL13 and the B-cell activating factor (BAFF), are involved in B cell 
activation, survival, and differentiation [62–64].

a) IL-6 and IL-8

Both IL-6 and IL-8 contribute to the recruitment of myeloid-derived suppressor cells to the TME, hindering 
the anti-tumor activity of cytotoxic T cells, and have been associated with poor clinical outcomes across 
different tumor types [65–69]. Tran et al. [70] observed a negative association between baseline levels of 
circulating IL-8 and PFS in aRCC patients treated with AAs (P = 0.006).

In a large multi-tumor study conducted by Schalper and colleagues [67], higher pre-treatment levels of 
circulating IL-8 were associated with poor outcomes in lung cancer, melanoma, and aRCC patients receiving 
nivolumab, double ICI, everolimus, or docetaxel, which suggests a more prognostic than predictive role (for 
aRCC, nivolumab OS HR: 2.56, P < 0.001; everolimus OS HR: 2.40, P < 0.001). In a post-hoc analysis of the 
IMmotion150 trial, higher levels of IL-8 in plasma and peripheral blood mononuclear cells (PMBCs) were 
linked to a poor therapeutic response to atezolizumab and lower antigen presentation in metastatic 
urothelial carcinoma (UC) and metastatic RCC (mRCC) patients (plasma IL-8, HR: 2.55, P = 0.017), even in T 
cell-infiltrated tumors [67, 71] (Table 3). Recent data from the NIVOREN phase 2 study not only confirm the 
association between elevated baseline levels of IL-8 and poor outcomes in pretreated aRCC patients treated 
with nivolumab (HR = 2.57, P < 0.001), but also show an association between baseline levels of IL-8 and the 
tissue-based myeloid gene expression signature of the IMmotion150 (P = 0.041) [72, 73]. These results are 
consistent with the findings of Schalper et al. [67], indicating a positive association between circulating IL-8, 
tumor CXCL8 gene expression, and tumor infiltration by neutrophils, suggesting a potential involvement of 
these cytokines in protumoral inflammation.

Elevated circulating IL-6 is associated with a poor prognosis in localized and aRCC, however, few 
studies have analyzed the association between IL-6 levels and clinical outcomes in aRCC treated with ICI 
[74]. A small Korean study (n = 58) found that in aRCC patients treated with pembrolizumab plus axitinib, 
those with high baseline levels of circulating IL-6 exhibited significantly inferior response rates, PFS (HR: 
3.51, P = 0.003), and OS (HR: 7.18, P = 0.001) compared to those with low levels of IL-6 [75] (Table 3). 
Moreover, CD8+ T cells from patients with high baseline levels of IL-6 produced less IFN-γ and TNF-α, 
suggesting a less effective antitumoral immune response [75]. Carril-Ajuria and colleagues [72, 73] also 
observed a negative association between baseline levels of IL-6 and clinical outcomes (PFS and OS) in aRCC 
patients treated with nivolumab within the NIVOREN study (OS HR = 3.28, P < 0.001). Recently, Saliby et al. 
[33] characterized blood- and tissue-based biomarkers in patients with variant RCC histology or any RCC 
histology with sarcomatoid differentiation, and evaluated their association with the response to 
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Table 3. Soluble factors and association with outcomes to immunotherapy in RCC

Candidate 
biomarker

References Year Country N Tumor Detection technique Timepoint Type of systemic therapy Parameter 
level/trend 
indicator

Findings

IL-8 Schalper et al. 
[67]

2020 US 1,344 NSCLC, 
melanoma and 
RCC

MAP immunoassay Pretreatment Nivolumab High Worse OS

IL-8 Yuen et al. [71] 2020 US 1,445 RCC and UC Simple Plex Ella Pretreatment UC: chemotherapy or 
atezolizumab

RCC : atezolizumab plus 
bevacizumab, atezolizumab 
or sunitinib

High Worse OS in 
atezolizumab

NS trend for worse OS 
in atezolizumab + 
bevacizumab
Lower ORR but NS

IL-8 Carril-Ajuria et 
al. [28]

2022 France 233 RCC MSD assay Pretreatment Nivolumab High Worse OS and PFS

IL-6 Sang et al. [75] 2022 Korea 58 RCC Cytometric bead array assay Pretreatment Pembrolizumab plus axitinib High Worse OS and PFS 
Il-6 Carril-Ajuria et 

al. [28]
2022 France 233 RCC MSD assay Pretreatment Nivolumab High Worse OS and PFS

IL-1, IL-6, IL-13, 
MIP-1β, and 
MCP-1

Saliby et al. [33] 2023 US 60 Variant RCC Luminex fluorescent bead array 
platform

Pretreatment Atezolizumab plus 
bevacizumab

High Worse OS and PFS 

VEGF-A and 
sVEGFR2

Mauge et al. 
[140]

2021 France 200 ccRCC NA Pretreatment Nivolumab High Worse PFS 

VEGF Carril-Ajuria et 
al. [28]

2022 France 233 ccRCC MSD assay Pretreatment Nivolumab High Worse OS

VEGF-A Saliby et al. [33] 2023 US 60 Variant RCC Luminex fluorescent bead array 
platform

Pretreatment Atezolizumab plus 
bevacizumab

High Worse OS and PFS

VEGF Choueiri et al. 
[78]

2021 US 886 ccRCC NA Pretreatment Aveluzmab plus axitinib High No association

CXCL13 Carril-Ajuria et 
al. [28]

2022 France 44 ccRCC MSD assay Pretreatment Nivolumab High Worse OS

BAFF Carril-Ajuria et 
al. [28]

2022 France 44 ccRCC MSD assay Pretreatment Nivolumab High Worse OS

sPD-L1 Mahoney et al. 
[82]

2022 US 91 ccRCC ELISA Pretreatment Nivolumab High Worse OS

sPD-L1 Incorvaia et al. 
[85]

2020 Italy 56 ccRCC ELISA Pretreatment Nivolumab High Improved PFS

sCD27 Benhamouda et 
al. [89]

2022 France 81 ccRCC ELISA Pretreatment Nivolumab High Worse OS
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Candidate 
biomarker

References Year Country N Tumor Detection technique Timepoint Type of systemic therapy Parameter 
level/trend 
indicator

Findings

KIM-1 Albiges et al. 
[91]

2024 France 778 RCC Affinity-based proximity 
extension assay (PEA)

High sensitivity 
electrochemiluminescence 
(ECL)

Pretreatment Atezolizumab High Reduced DFS
Better DFS with 
atezolizumab vs. 
placebo

ccRCC: clear cell renal cell carcinoma; DFS: disease-free survival; MAP: human multianalyte profile immunoassay platform; MSD: Meso Scale Discovery assay; NA: not available; NS: non-
significant; NSCLC: non-small cell lung cancer; ORR: objective response rate; OS: overall survival; PFS: progression-free survival; RCC: renal cell carcinoma; sCD27: soluble CD27; sPD-L1: 
soluble PD-L1; SS: statically significant; UC: urothelial carcinoma; US: United States; KIM-1: Kidney-Injury Molecule-1; BAFF: B-cell activating factor; VEGF: vascular-endothelial growth factor

atezolizumab plus bevacizumab. Interestingly, baseline levels of circulating inflammatory cytokines (IL-1, IL-6, IL-13, MIP-1β, and MCP-1) correlated with one 
another, were enriched in poor IMDC patients, and were associated with worse PFS and OS under atezolizumab plus bevacizumab [33].

b) VEGF

Baseline levels of soluble VEGF-A and sVEGFR2 were associated with poor survival outcomes in treatment-naive and pretreated advanced ccRCC patients receiving 
nivolumab in the BIONIKK and NIVOREN trials, respectively [72, 76] (Table 3). A small cohort study found no association between baseline levels of VEGF-A and 
sVEGFR2 and clinical outcomes in advanced ccRCC patients treated with pembrolizumab plus axitinib [77]. These findings could suggest that combining an AA 
with ICI might counteract the detrimental effect of high VEGF seen in ccRCC patients undergoing ICI monotherapy. However, results from different studies are 
conflicting, and the potential predictive role of soluble VEGF is still unclear. Thus, while Saliby et al. [33] reported a significant association between higher baseline 
levels of VEGF-A and worse PFS and OS in patients with advanced variant histology RCC treated with atezolizumab plus bevacizumab, this was not observed in 
aRCC patients receiving avelumab plus axitinib [78]. In addition, previous studies have also found a negative association between baseline levels of soluble VEGF 
and survival outcomes in advanced ccRCC patients treated with AAs [79, 80]. Overall, these findings would therefore suggest a more prognostic role. In the study 
by Saliby et al. [33], the impact of the on-treatment dynamic evolution of circulating VEGF-A on clinical outcomes was also evaluated. A higher increase in plasma 
VEGF-A throughout therapy, compared to baseline, was surprisingly associated with better clinical outcomes [33].

c) B-cell related soluble factors

Following encouraging findings from different studies suggesting B cell tumor infiltration as a predictor of response to ICI across different solid tumors, including 
RCC, circulating B cells populations and B-cell-related soluble factors such as CXCL13 or BAFF have also been evaluated in the context of RCC and ICI. As previously 
mentioned in the NIVOREN study, high levels of baseline circulating unswitched memory B cells were associated with improved response, PFS, and OS in aRCC 
patients treated with nivolumab [28]. Interestingly, this population of B cells was negatively correlated with baseline levels of specific B-cell-related soluble 
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factors: CXCL13 (r = −0.55, P < 0.001), a chemokine involved in the homeostatic organization of B-cell zones 
in secondary lymphoid tissue, and BAFF (r = −0.42, p=0.007), a key factor in B-cell activation [28] (Table 3). 
Consistently, these two soluble factors were associated with worse survival outcomes in aRCC patients 
treated with nivolumab (n = 40). These findings were validated in an independent dataset from the same 
study (n = 313; BAFF HR: 1.73, P = 0.002; CXCL13 HR: 1.52, P = 0.017) (Figure 1).

d) Soluble PD-L1

Tumor PD-L1 is an established poor prognostic factor in aRCC; however, its role as a predictor of response 
to ICI is still unclear [81]. Given that PD-L1 expression can vary dynamically among both tumor and 
immune cells in the TME, soluble PD-L1 (sPD-L1) might offer a more accessible and representative 
surrogate of overall tumor

expression [75]. Building on a previous meta-analysis (n = 1,040) of sPD-L1 in different solid tumors, 
including RCC, which showed a negative association between sPD-L1 and survival outcomes, Mahoney et al. 
[82] analyzed serum levels of sPD-L1 in two cohorts of RCC (Checkmate 009, n = 91) and melanoma 
(Checkmate 038-Part 1, n = 78) patients treated with nivolumab. In the RCC cohort high baseline levels of 
sPD-L1 and an on-treatment increase of sPD-L1 were associated with disease progression under nivolumab 
(Table 3). The association of high baseline sPD-L1 with worse outcomes was confirmed in a meta-analysis 
(n = 1,076) of different solid tumor types, including RCC patients treated with ICIs [83]. It is important to 
note that this negative association between high baseline levels of sPD-L1 and survival has also been 
observed in treatment-naive advanced ccRCC patients treated with sunitinib, which supports a more 
prognostic role [84]. Nevertheless, the results of another small study by Incorvaia et al. [85] show an 
increased PFS in RCC patients treated with ICI with high baseline sPD-L1 levels compared to those with low 
baseline sPD-L1. Thus, the role of sPD-L1 in aRCC treated with ICI still remains controversial.

e) Soluble CD27

CD70 is a costimulatory molecule known to stimulate CD27-expressing T cells, such as naive and central 
memory T cells. The interaction between CD27 and CD70 results in the release of soluble CD27 (sCD27). 
However, prolonged exposure to CD27-CD70 costimulatory signals can exhaust the T-cell pool and lead to 
depletion of naïve T cells [86–88]. Interestingly, ccRCC expresses the highest levels of CD70 among solid 
tumors. In a recent study by Benhamouda and colleagues [89], TME CD27+ T cells from ccRCC patients were 
associated with an apoptotic and dysfunctional signature compared to CD27– T cells. In addition, 
intratumoral CD27-CD70 interaction correlated with sCD27. Consistently, higher baseline levels of sCD27 
were associated with poor OS in ICI-treated patients (HR: 5.02, P = 0.004) but not in patients treated with 
AA therapy (P = 0.35), suggesting that sCD27 could serve not only as a surrogate marker of T cell 
dysfunction in the TME but also as a potential ICI-resistance biomarker [89] (Table 3). However, validation 
in larger prospective randomized clinical trials is needed before incorporation into routine clinical practice.

f) Circulating proteins

The Kidney-Injury Molecule-1 (KIM-1), a transmembrane protein highly expressed in RCC and whose 
ectodomain circulates and can be detected in plasma, has also gained interest in the last years [90].

A post-hoc analysis from the ASSURE trial, which evaluated the benefit of adjuvant sunitinib or 
sorafenib vs. placebo in high-risk resected RCC patients, found a significant association between high levels 
of circulating KIM-1 post-nephrectomy and worse disease-free survival (DFS) (HR: 0.56, P < 0.001) and OS 
(HR: 0.71, P < 0.001) [90]. Recently, the results from an exploratory analysis of the IMmotion010 trial not 
only confirmed the association between high baseline levels of circulating KIM-1 and worse prognosis in 
high-risk resected RCC patients, but also found an association between post-nephrectomy levels of 
circulating KIM-1 and improved clinical outcomes with atezolizumab vs. placebo (HR: 0.72, 95% CI: 
0.53–0.99) (Table 3).These results, therefore, suggest that circulating KIM-1 could be a marker of minimal 
residual disease (MRD) and may also behave as both a biomarker of poor prognosis and a predictive 
biomarker of atezolizumab efficacy in the adjuvant setting [91].
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A recent cohort study including 36 ccRCC patients conducted by Lucarelli and colleagues [92] reported 
that tumor expressing high levels vs. those expressing low levels of the transmembrane glycoprotein mucin 
1 (MUC1) were associated with an altered metabolism, higher vascularization, lower immune infiltration 
and higher M2-tumor associated macrophage response, and lower PD-L1 expression, suggesting these 
tumors would theorically derive less benefit from ICI. They also found that the soluble form of MUC1, the 
cancer antigen (CA) 15.3, was associated with higher nuclear grade, lymph node involvement and visceral 
metastases (P < 0.001), as well as with inferior cancer specific survival and PFS (P = 0.01) [92]. Although 
hypothesis-raising, both MUC1 and circulating CA 15.3 still need to be evaluated in the context of ICI 
treatment.

Circulating tumor-derived biomarkers
The idea of measuring tumor-derived blood biomarkers is not new. For years, and in several cancer types, 
we have used different tumor protein markers such as CA 15.3, CA 125, prostate-specific antigen (PSA), or 
carcinoembryonic antigen (CEA) to detect disease recurrence, progression, and response to therapy [93]. 
However, these tumor markers lack specificity and are not able to predict response to specific treatment 
types and thus guide treatment selection. During the last decade, new tumor-derived biomarkers such as 
circulating tumor cells (CTCs), circulating tumor deoxyribonucleic (DNA; ctDNA) and micro-ribonucleic 
acids (miRNAs) have been developed. This is what we commonly refer to as liquid biopsy, and it has the 
potential to help us detect cancer, guide treatment selection, assess real-time tumor response to therapy, 
and identify resistant clones [94].

a) Circulating tumor cells

CTCs are cancer cells that circulate in the bloodstream after being shed from primary or metastatic tumors. 
CTCs have been shown to be associated with prognosis across different solid tumors [95–99]. Currently, 
there is no standardized CTC detection method [100, 101]. Given that CTCs have been implicated in tumor 
metastasis and recurrence, they are difficult to detect in early-stage RCC. In a recent meta-analysis 
including 12 studies and 767 RCC patients, CTCs were more likely to be found in advanced than in localized 
disease (OR, 2.29; P = 0.002). Curiously, the sensitivity of CTCs in ccRCC (69%) was significantly higher than 
in non-ccRCC subtypes (34%) [100]. CTCs are associated with poor prognosis in both localized and aRCC 
[102–104]. Basso et al. [105] reported worse survival outcomes for aRCC patients receiving first-line AA 
therapy with ≥ 3 CTCs at baseline, although an association with response was not observed (n = 95). Only 
one study has evaluated the role of CTCs in the context of ICI. In this study, Bootsma et al. [106] profiled 
457 blood samples collected longitudinally from 104 aRCC patients receiving ICI, confirming that CTC 
enumeration is prognostic in aRCC treated with ICI (Table 4). Moreover, an on-treatment increase in CTC 
levels was strongly and negatively associated with OS [106] (Figure 1). They also investigated the 
expression of HLA I to PD-L1 (HP ratio) by CTCs. Interestingly, the HP ratio decreased over time in patients 
treated with ICI, raising the hypothesis that tumor cells with high HLA I and low PD-L1 would be more 
likely to be cleared by ICI. Additionally, if a patient’s HP ratio does not drop during ICI therapy, it could 
suggest a poor response [106].

b) Tumor nucleic acids

Extracellular tumor DNA, also known as cell-free DNA (cfDNA), and ctDNA, which represents the portion of 
mutated cfDNA derived from cancer cells, can also be detected in plasma samples [107]. Various studies 
have demonstrated the diagnostic utility of cfDNA. For instance, Feng et al. [108] observed significant 
differences in cfDNA levels between RCC patients and healthy controls, noting correlations with tumor 
stage, grade, and metastatic burden. Additionally, cfDNA methylation has also shown promising results 
[109–111]. Conversely, the detection of ctDNA in renal cancer is lower than in other cancers, which limits 
its use as a diagnostic tool [112, 113]. However, results of a recent Korean study (n = 48) suggest that 
ctDNA could predict pT3a upstaging in cT1a ccRCC tumors [114]. Moreover, results from a recent study 
assessing MRD in the adjuvant setting with 61 RCC patients suggest ctDNA, although not ready for 
primetime, could have the potential to guide adjuvant treatment [115]. In this study, ctDNA negative 
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Table 4. Circulating tumor-derived biomarkers and association with outcomes to immunotherapy in RCC

Candidate 
biomarker

References Year Country N Tumor Timepoint Type of 
systemic 
therapy

Parameter 
level/trend 
indicator

Detection 
technique

Findings

Pre-
treatment

HighCirculating 
tumor cells

Bootsma et 
al. [106]

2022 US 104 RCC

On-
treatment

ICI

Increase

Nikon Ti-E 
microscope with 
automated XYZ 
stage

Worse OS

Circulating 
tumor DNA

Maia et al. 
[119]

2017 Brazil 34 RCC Pretreatment Different types 
of systemic 
therapy, 
including ICI

College of 
American 
Pathology-
accredited 
comprehensive 
plasma assay

No significant 
associations

Circulating 
tumor DNA

Chehrazi-
Raffle et al. 
[120]

2023 US 12 RCC Pretreatment ICI Median 
VAFs

TARDIS Distinguished 
those 
achieving PR 
(0.181%) from 
those with CR 
(0.007%)

EV 
microRNA-
155-3p

Soleimani et 
al. [126]

2024 Canada 40 RCC Pretreatment -Ipilimumab plus 
nivolumab
-Pembrolizumab 
plus axitinib

-Avelumab plus 
axitinib

exoRNeasy 
serum/plasma 
midi kit

Applied 
Biosystems 
TaqMan assays

TaqMan 
microRNA RT 
kit + TaqMan 
miRNA assay

Lower levels in 
responders

CR: complete response; ICI: immune checkpoint inhibitors; OS: overall survival; PR: partial response; RCC: renal cell 
carcinoma; US: United States; EV: extracellular vesicle; miRNAs: micro-ribonucleic acids

patients in the non-adjuvant cohort had a negative predictive value of 92%. Additionally, several studies 
have identified cfDNA levels as prognostic markers in localized RCC [110, 116]. Yamamoto and colleagues 
[117] confirmed the prognostic role of cfDNA levels in both localized and mRCC patients. Regarding the role 
of cfDNA as a predictor of response to systemic therapy, data are still scarce with only a few small cohort 
studies. Feng et al. [108] observed that cfDNA decreased in RCC patients responding to sorafenib, while 
cfDNA levels increased in non-responders. In the study by Yamamoto et al. [117], persistence of detectable 
DNA was associated with an inferior response to AAs. Similarly, cfDNA levels at baseline were associated 
with a higher response and improved PFS/OS in RCC patients receiving either ICI or TKI [118]. Conversely, 
no significant associations between ctDNA levels and OS were observed in RCC patients treated with 
different types of systemic therapy [119]. Recently, Chehrazi-Raffle et al. [120] tested a novel ultrasensitive 
DNA assay (TARDIS, targeted digital sequencing) in 12 RCC patients undergoing ICI-based therapy (either 
nivolumab or nivolumab plus ipilimumab) with promising results (Table 4). TARDIS was able to distinguish 
those achieving partial response (PR) from those achieving complete response (CR), and to prospectively 
identify patients with subsequent progression [120]. Finally, several studies have demonstrated a low gene 
alteration (GA) concordance between ctDNA and tumor tissue sequencing, which raises concerns about its 
potential use to guide treatment selection [118].

miRNAs are small non-coding RNAs that play a key role in regulating gene expression [121]. Although 
several studies have investigated the role of miRNAs in RCC detection, to date, there is only one study, with 
reported results evaluating the role of miRNAs as predictors of response to ICI in aRCC [122–126]. In this 
study, Soleimani et al. [126] investigated the presence of immune-specific extracellular vesicle (EV) miRNAs 
in the plasma of aRCC patients before ICI initiation. miRNA-155-3p was significantly lower in responders 
compared to non-responders (Table 4; Figure 1). These results suggest that miRNA-155-3p could be a 
predictor of response to ICI in RCC, and are consistent with those reported in melanoma patients treated 
with ICI [126–128]. Interestingly, in another study constructing a four-miRNA model for RCC screening, 
miRNA-155-5p was able to distinguish between RCC patients and normal controls, while also displaying a 



Explor Target Antitumor Ther. 2024;5:1199–222 | https://doi.org/10.37349/etat.2024.00271 Page 1211

significant association with prognosis [129]. Although these data warrant further validation, they are also 
supported by a biological rationale. miRNA-155-3p is the result of the MIRHG155 gene, also known as the 
“B-cell Integration Cluster (BIC) gene” or “Master regulator of inflammation”, due to its role in modulating 
the inflammatory response and its critical implication in the diversification of the antibody repertoire 
[130]. This is consistent with the emerging evidence supporting the role of B cells in the antitumor immune 
response.

Overall, liquid biopsy is a non-invasive and repeatable tool that allows to monitor the dynamic 
evaluation of tumors. Although detection rates are low, recent studies have shown promising results 
suggesting further investigation of liquid biopsy components such as cfDNA, ctDNA, and EV miRNAs. These 
studies could potentially help us guide treatment selection and decisions regarding treatment de-escalation 
or intensification in aRCC.

Metabolomics
The tryptophan-kynurenine-aryl hydrocarbon receptor (Trp-Kyn-AhR) pathway contributes to 
immunosuppression in T cell inflammed tumors [131]. Kyn results from Trp catabolism by indoleamine 
2,3-dioxygenase (IDO) or trytpophan 2,3-dioxygenase (TDO) [132]. Trp degradation and depletion 
contribute to tumor evasion, while increasing Kyn metabolites which contribute to immunosuppression 
and cancer progression [132]. Despite promising results in previous preclinical studies showing that 
suppression of this pathway could enhance ICI efficacy, the combination of a selective IDO1 inhibitor and 
pembrolizumab in unselected melanoma patients failed to improve outcomes in a phase 3 randomized 
study [133, 134]. Recently, Li and colleagues [135] conducted a comprehensive study of the Trp-Kyn 
pathway in melanoma and RCC patients treated with nivolumab. In this study, treatment with PD-1 
blockade induced Trp/Kyn conversion. More importantly, the increase of the Kyn/Trp ratio during 
treatment was a predictor of survival in both cohorts of melanoma and RCC, and it was further validated in 
a larger independent study comparing nivolumab vs. everolimus in pretreated RCC patients. At week 4, the 
Kyn/Trp increase was significantly associated with worse OS in the nivolumab arm but not in the 
everolimus arm (Figure 1). These results suggest that serum Kyn/Trp monitoring could help identify which 
patients are more likely to benefit from IDO and PD-1 inhibition and deserve further study.

Conclusions
Current research on circulating biomarkers for predicting response to ICI treatment in RCC is promising, 
although it is still in its early stages (Figure 1). In addition, circulating biomarkers have not been 
extensively studied in the context of ICI combination therapy in aRCC, the standard of care in first-line 
setting. However, these biomarkers, encompassing immune cell populations, soluble factors, ctDNA, CTCs, 
and metabolomic profiles, hold significant potential. Compared to tissue biopsies, they are less invasive, 
potentially more comprehensive, and may enable real-time monitoring. The analysis of immune cell 
populations and circulating soluble factor seems to provide valuable insights into the immune landscape 
and real-time monitoring that could help identify patients who are resistant or responsive to ICI. 
Meanwhile  circulating DNA and CTCs could help guide treatment selection and de-
escalation/intensification strategies, by idenfitying patients at higher risk of recurrence and by discerning 
good from poor responders. Circulating biomarkers hold the potential to help us identify which patients 
will benefit most from double ICI therapy or ICI-AA therapy.

To harness these potentials, it is essential to standardize detection methods and establish consistent 
cut-offs, and validate these biomarkers in large, randomized clinical trials. Moreover, achieving meaningful 
predictive accuracy will likely require the integration of multiple biomarkers and multiomics techniques. 
Studies like the pragmatic European CARE1 trial, which evaluates double ICI against ICI-AA therapy, are 
incorporating integrated circulating biomarkers studies that could provide new insights. Integration of 
biomarker studies into clinical trials will be essential for advancing these biomarkers towards clinical 
practice.
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