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Abstract
Multikinase inhibitors (MKIs) and highly selective tyrosine kinase inhibitors (HS-TKIs) positively impact 
the progression-free survival (PFS) of locally advanced and metastatic thyroid cancer cases. Moreover, 
disease-specific survival (DSS) and overall survival (OS) improvements were observed in some instances, 
suggesting a general benefit in disease control. In advanced and metastatic thyroid cancers, other 
conventional treatments are often ineffective when surgery cannot be performed due to the extension of 
the disease and/or the invasion of vital neck structures (such as the larynx, trachea, esophagus, recurrent 
laryngeal nerve, and carotid artery). In these cases, systemic treatments with MKIs and HS-TKIs have 
recently been evaluated for their potential to block tumor growth and reduce tumor size to make surgery 
possible or improve the control of metastatic disease. The study aimed to evaluate the performance of these 
systemic drugs in the neoadjuvant treatment of thyroid cancer patients, focusing on their efficacy according 
to the different histology.
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Introduction
The action of several drugs on tyrosine kinase receptors led to an improvement of progression-free survival 
(PFS) and, in some cases, disease-specific survival (DSS) and overall survival (OS) in many human cancers, 
including thyroid [1–3]. In thyroid cancers, these drugs are usually used in advanced metastatic disease, 
particularly when the disease progresses. However, in locally advanced cases characterized by the presence 
of large thyroid tumors with invasion of the neck structures such as the larynx, trachea, pharynx, 
esophagus, recurrent laryngeal nerve, carotid artery, surgery is not feasible, and the disease cannot be 
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safely removed [4]. In such cases, surgical removal of the disease is less effective and rarely performed. 
External beam radiotherapy (EBRT) can slow tumor growth, but it cannot consistently shrink the tumor 
enough to make surgery possible. Recently, systemic treatments using multikinase inhibitors (MKIs) or 
highly selective tyrosine kinase inhibitors (HS-TKIs) have been explored to manage tumor growth and 
reduce its size. These treatments are promising for thyroid cancers that cannot be surgically removed, as 
they may improve outcomes by enabling tumor removal after shrinkage and controlling metastatic disease 
if present. The present study aims to evaluate the available literature about the use of MKIs and HS-TKIs in 
a neoadjuvant setting, focusing on the action of these drugs and their efficacy according to thyroid cancer’s 
different histology.

Treatment of advanced thyroid cancer: what drugs we have
Differentiated thyroid cancer

Sorafenib and lenvatinib are the only two drugs approved by the Food and Drug Administration (FDA) and 
the European Medicines Agency (EMA) for the first-line treatment of locally advanced or metastatic 
radioiodine-refractory differentiated thyroid cancer (DTC).

Sorafenib is a drug able to inhibit the RAS and BRAF/mitogen-activated protein kinase (MEK)/ERK 
signaling pathways; ligand-dependent REarranged during Transfection receptor (RET)/PTC receptor 
tyrosine kinase activation and pathways involving vascular endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF) and their receptors [2]. Lenvatinib is a multitargeted inhibitor of VEGF 
receptor (VEGFR) 1, 2, and 3, fibroblast growth factor receptor 1-4 (FGFR 1-4), PDGF receptor α (PDGFRα), 
RET, and v-kit Hardy Zuckerman 4 feline sarcoma viral oncogene (KIT) signaling pathways [2]. Both these 
drugs demonstrated a potent inhibition of VEGFR and, therefore, have been defined as antiangiogenic 
drugs. They have been approved according to the results of phase 3 studies in which an improvement in 
PFS was demonstrated against a placebo [5, 6].

Recently, cabozantinib [7], an MKI that inhibits several tyrosine kinase receptors, including hepatocyte 
growth factor (HGF) receptor (MET), VEGFR2, and AXL, which are involved in tumor growth, angiogenesis, 
and metastasis, has also been approved as second-line treatment for radioiodine-refractory 
advanced/metastatic DTC that has progressed after treatment with other TKIs [8].

By targeting specific molecular alterations in locally advanced or metastatic DTC that carry RET/PTC 
rearrangement, selpercatinib is another therapeutic option. Selpercatinib is a selective inhibitor of the RET 
receptor tyrosine kinase, blocking the signaling pathways that promote tumor growth and survival in RET-
altered cancers [9].

Among the selective RET drugs, pralsetinib is another selective RET kinase inhibitor authorized by the 
FDA but not by EMA for treating advanced or metastatic RET fusion-positive DTC [8].

NTRK (neurotrophic tyrosine receptor kinase) fusions are genetic alterations characterized by the 
fusion of one of the NTRK genes (NTRK1, NTRK2, or NTRK3) with another gene, resulting in the production 
of a hybrid protein that can drive tumorigenesis via the RAS/RAF/MAPK pathway [10].

NTRK inhibitors can be used in both first-line and subsequent lines of therapy, depending on the 
specific clinical context and previous treatments [11–13]. Clinical trials have demonstrated the efficacy of 
these drugs across various tumor types, with durable responses in many cases. By targeting this actionable 
mutation, entrectinib can be used in advanced DTC patients carrying this fusion [14]. Entrectinib is 
designed to inhibit several kinases, including NTRK, reactive oxygen species (ROS; ROS1), and anaplastic 
lymphoma kinase (ALK), which are involved in cancer cell growth and survival. Entrectinib is indicated for 
patients with advanced or metastatic DTC harboring NTRK gene fusions, especially in cases refractory to 
standard treatments [8, 15–18].

Also, larotrectinib is a highly selective inhibitor of NTRK fusion proteins [19] involved in cell growth 
and differentiation and shares the same therapeutic indication as entrectinib.
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In locally advanced and metastatic DTC and poorly differentiated thyroid cancer (PDTC) patients who 
carry the valine to the glutamic acid substitution of BRAF gene (BRAFV600E) mutation, the therapy with 
dabrafenib (a BRAF inhibitor) and trametinib (a MEK inhibitor) is a viable option [20–22].

Immunotherapy is an evolving treatment area for DTC, particularly for advanced cases refractory to 
other therapies. These agents block immune checkpoints (like PD-1, PD-L1, and CTLA-4), enhancing the 
immune response against cancer cells. Clinical trials are assessing the efficacy of nivolumab (anti-PD-1) and 
pembrolizumab (anti-PD-1) in DTC, especially in BRAF-mutant and advanced cases [23] (ClinicalTrial.gov—
NCT05852223, NCT02973997, NCT03246958, NCT03914300).

Combining immunotherapy with MKIs or other targeted drugs is under investigation to enhance 
therapeutic effectiveness and overcome resistance.

Anaplastic thyroid cancer

MKIs and immunotherapy have been combined for advanced metastatic anaplastic thyroid cancer (ATC) 
[23–29]. A few reports have demonstrated that combining MKIs and pembrolizumab can impact survival 
[23, 25, 26]. The use of HS-TKIs is based on the presence of specific gene mutations in the ATC. Indeed, 
molecular biology plays a pivotal role in the treatment options of advanced and metastatic ATC patients.

In almost all published reports, lenvatinib plus pembrolizumab has been used as adjuvant treatment 
for metastatic ATC after surgical treatment and/or radiotherapy and chemotherapy.

The other two drugs used in ATC patients are dabrafenib and trametinib. These drugs act sequentially 
by blocking the MAP kinase pathway’s RAF/MEK/ERK. Their use on BRAFV600E-mutated ATC patients has 
been promising [30–32]. Indeed, combining trametinib with dabrafenib enhances the therapeutic effect, as 
it addresses resistance mechanisms that may arise with BRAF inhibition alone. Moreover, larotrectinib and 
entrectinib can also be used in ATC if NTRK fusions are found [33, 34].

Medullary thyroid cancer

Two MKIs were approved for treating advanced metastatic medullary thyroid cancer (MTC) cases 
according to the phase 3 studies: vandetanib [35] and cabozantinib [36]. In some cases, according to a 
phase 2 study [37], the salvage therapy with lenvatinib has been used with some success [38]. Developing 
drugs specifically targeting RET mutations has recently marked a new era in treating advanced MTC cases, 
both in patients previously treated with MKIs and in naive patients [39–41]. FDA and EMA have approved 
selpercatinib for treating RET mutant advanced/metastatic MTC patients who require systemic therapy. 
Also, pralsetinib, another potent, highly selective RET inhibitor, was previously approved by the FDA 
according to a phase 1/2 study [42, 43]. Still, recently, the manufacturers involved in its development have 
chosen to withdraw the indication for advanced/metastatic MTC; therefore, it is no longer available.

Figure 1 and Table 1, respectively, report an overview of the tyrosine kinase receptors targeted by the 
available drugs and each drug’s half-maximal inhibitory concentration (IC50).

Treating thyroid cancer in a neoadjuvant setting
Anaplastic thyroid cancer

ATC is one of the rarest (1–2%) and most aggressive forms of thyroid cancer, characterized by rapidly 
growing tumors with a poor prognosis (median survival—5 months) [44, 45].

The clinical presentation of ATC is characterized by symptoms like neck swelling, difficulty swallowing, 
and hoarseness and by fast progression and high mortality rate. If possible, the treatment of ATC is surgery 
following radiotherapy and/or chemotherapy [29, 46]; however, only in a few cases a complete surgical 
resection (R0) is possible because of the frequent invasion of critical structures of the neck (i.e., larynx, 
trachea, pharynx, esophagus, recurrent laryngeal nerve, and carotid artery). In some cases, despite 
incomplete surgery, the following radiotherapy and/or chemotherapy can improve the prognosis [24, 29, 
47]. According to the severity of the disease, supportive care to manage symptoms and improve quality of 
life is crucial for ATC patients.
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Figure 1. Overview of the main tyrosine kinase receptors targeted by the most used tyrosine kinase inhibitors for the 
treatment of advanced thyroid cancer. EGFR: epidermal growth factor receptor; VEGFR: vascular endothelial growth factor 
receptor; KIT: v-kit Hardy Zuckerman 4 feline sarcoma viral oncogene; MET: hepatocyte growth factor (HGF) receptor; RET: 
REarranged during Transfection receptor; FGFR: fibroblast growth factor receptor; MEK: mitogen-activated protein kinase; 
PDGFR: platelet-derived growth factor receptor; TRK: tropomyosin receptor kinase; pTEN: phosphatase and tensin homolog

Table 1. The half-life of the main drugs used in clinical practice to treat advanced thyroid cancer and the half-maximal 
inhibitory concentration (IC50) of these drugs against the most common tyrosine kinase receptors

Drug Half-life RET PDGFR FGFR EGFR VEGFR BRAFV600E NTRK Other molecular targets

Lenvatinib 28 h 35 
nM

39 nM 46 
nM

- 22; 4; 5.2 
nM*

- - c-KIT, KIF5B-RET, 
CCDC6-RET, NcoA4-
RET

Sorafenib 25–48 
h

47 
μM

57 μM - - 9; 28; 7 μM * 38 μM - c-KIT, FLT3

Cabozantinib 55 h 4 nM 234 
nM

- - 12; 0.035; 6 
nM*

- - c-KIT, MET, KIF5B-RET

Selpercatinib 32 h 0.4 
nM

- - - 0.92–67.8 
nM**

- - -

Vandetanib 19 
days

130 
nM

- - 500 
nM

40; 110 nM# - - RET-KIF5B

Pralsetinib 14.7 h 0.4 
nM

- - - 35 nM° - - KIF5B-RET, CCDC6-
RET, FLT3

Entrectinib 20–40 
h

- - - - - - 0.002; 0.00057; 
0.0011 nM^

ROS, ALK

Larotrectinib 3 h - - - - - - 6.5; 8.1; 10.6 
nM^

-

Dabrafenib 8 h - - - - - 0.5 nM - -
Trametinib 127 h - - - - - 0.48 nM - MEK
RET: REarranged during Transfection receptor; PDGFR: platelet-derived growth factor receptor; FGFR: fibroblast growth factor 
receptor; EGFR: epidermal growth factor receptor; VEGFR: vascular endothelial growth factor receptor; BRAFV600E: valine to the 
glutamic acid substitution of BRAF gene; NTRK: neurotrophic tyrosine receptor kinase; KIT: v-kit Hardy Zuckerman 4 feline 
sarcoma viral oncogene; KIF5B-RET, CCDC6-RET and NcoA4-RET: RET gene fusions; FLT3: Fms-like tyrosine kinase 3; MET: 
hepatocyte growth factor (HGF) receptor; MEK: mitogen-activated protein kinase; ROS: reactive oxygen species; ALK: 
anaplastic lymphoma kinase; - : no pharmacological action against these tyrosine kinase receptors. * respectively for VEGFR1, 
VEGFR2 and VEGFR3; ** range of inhibition on VEGFR1 and VEGFR3; # respectively for VEGFR2 and VEGFR3; ° only for 
VEGFR2; ^ respectively for NTRK-1, NTRK-2 and NTRK-3
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Because of the disease’s high aggressiveness, it is crucial to make the correct diagnosis [48] and set up 
treatment as soon as possible. Molecular biology's role in finding the potential driver mutations of ATC has 
become a pivotal point in treating this tumor.

Romei et al. [48] evaluated the molecular profile of 21 ATC and 21 PDTC. This analysis showed that 
ATC had a higher prevalence of TP53 and TERT mutations (47.6% and 42.8%, respectively), while in PDTC, 
TERT and BRAF mutations were the most prevalent (33.3% and 19%, respectively). Moreover, genetic 
heterogeneity (> 2 mutations) was more frequent in ATC (28.6%) compared with PDTC (4.7%) (P = 0.03). 
The authors concluded that ATC and PDTC may be characterized by different clinical, pathological, and 
genetic profiles; in particular, ATC, but not PDTC, were positive for TP53 and phosphatase and tensin 
homolog (PTEN) alterations, and genetic heterogeneity was more frequent in ATC than PDTC.

In a larger series, Pozdeyev et al. [49] also evaluated the genetic profiles of 583 advanced DTC and 196 
ATC. The two most frequently mutated genes in ATC were TP53 (65%) and TERT (65%). Moreover, 41% of 
ATC had BRAF gene mutations, and 27% had RAS gene mutations. ATC had more genetic alterations per 
tumor compared to other thyroid cancer histotypes, and DNA mismatch repair deficit and activity of 
APOBEC cytidine deaminases were identified as mechanisms associated with a high mutational burden.

Therefore, a specific drug should be started if an actionable mutation is detected. BRAFV600E is the most 
common molecular alteration found in ATC [50] with a variable rate according to the different series. 
Because of this high prevalence of BRAFV600E in ATC in several tertiary referral centers, the search for this 
mutation is performed simultaneously with histology by immunohistochemistry [29, 51]. In case of a lack of 
BRAFV600E mutation, the American Thyroid Association (ATA) ATC guidelines [29] recommend evaluating 
other somatic mutations/fusions. This approach offers the potential for surgical treatment in tumors 
previously defined as unresectable.

BRAFV600E mutant ATC

The BRAFV600E mutation occurs in 25–45% of ATC [52–54]. In ATC BRAFV600E mutant patients, only in a few 
cases was the association between lenvatinib and pembrolizumab used with neoadjuvant intent.

Barbaro et al. [55] reported a single case of ATC BRAFV600E mutant, treated with lenvatinib (14 
mg/day) and pembrolizumab (200 mg every 3 weeks) as neoadjuvant therapy, followed by a complete 
surgical resection of the tumor. The patient was disease-free at 1 year of follow-up [55].

Zhao et al. [56] reported a series of 57 patients with BRAFV600E-mutant ATC divided into three groups: 
1) neoadjuvant plus surgery, defined as definitive surgery performed after BRAF/MEK-directed therapy; 2) 
no surgery, defined as patients who performed BRAF-directed therapy but were not treated with surgery, 
and 3) upfront surgery, defined as patients in whom surgery was performed before BRAF/MEK-directed 
therapy. Several BRAF inhibitors were used in this study: vemurafenib, dabrafenib, encorafenib. Several 
MEK inhibitors were also used: cobimetinib, trametinib, and binimetinib. The survival rate was 
35.2 months in the neoadjuvant plus surgery vs. 33.2 months in the no surgery group, without significant 
differences. In the second group, surgery was not performed due to progression/inadequate response, poor 
performance status, and patient’s request. In the neoadjuvant plus surgery group the median OS was not 
reached; PFS was 34.2 months. OS at 12 months and 24 months was 93.6% and 80.3%, respectively, while 
PFS at 12 months and 24 months was 84.4% and 62.2%. One patient had a complete response. In the no 
surgery group, the median OS was 11.4 months, and the PFS was 5.8 months. OS at 12 months and 
24 months was 38.5% and 15.4%, while PFS at 12 months and 24 months was 15.4% and 0%. Lastly, the 
median OS in the upfront surgery group was 48.1 months, and PFS was 14.7 months. OS at 12 months and 
24 months was 74.1%, and PFS at 12 months and 24 months was 50% and 41.7% [56].

An emerging area of interest is using dabrafenib and trametinib as neoadjuvant therapy in ATC. 
Preliminary studies and case reports suggest that this combination can lead to significant tumor regression 
in patients with BRAF-mutant ATC. Some trials specifically evaluate this combination as a neoadjuvant 
strategy. In 2018, Cabanillas et al. [57] reported the first case of unresectable BRAFV600E-mutant ATC in 
which a neoadjuvant approach with dabrafenib, trametinib, and pembrolizumab was used with a following 
complete tumor surgical resection and a survival of 16 months.



Explor Target Antitumor Ther. 2025;6:1002291 | https://doi.org/10.37349/etat.2025.1002291 Page 6

Wang et al. [52] reported the use of dabrafenib and trametinib as neoadjuvant therapy in six patients 
with BRAFV600E-mutant ATC. In this report, all patients received dabrafenib plus trametinib, followed by 
surgical treatment with complete resection and adjuvant chemoradiation. Moreover, three patients also 
received pembrolizumab. In these patients, the OS was 100% at six months and 83% at one year; the 
locoregional disease control rate was 100%. Two patients died of metastatic disease after 8 months and 
14 months, respectively, and the other four patients had no evidence of disease during follow-up.

Only scanty data regarding the association between MKIs/HS-TKIs and immunotherapy as neoadjuvant 
treatment in ATC patients are available. Song et al. [58] reported a case series of 18 ATC patients with (n = 
9) or without (n = 9) BRAF mutation (stage IVB and IVC) treated with MKIs/HS-TKIs 
(dabrafenib/trametinib, lenvatinib, or anlotinib) in combination with immunotherapy (pembrolizumab, 
sintilimab or camrelizumab). OS, PFS, response rate (RR), and R1/R0 resection feasibility were evaluated. 
In the BRAF-mutated group, 8 patients were treated with dabrafenib/trametinib plus immunotherapy, and 
1 patient was treated with anlotinib plus immunotherapy. In the BRAF-non-mutated group, 6 patients were 
treated with lenvatinib plus immunotherapy and 2 patients were treated with anlotinib plus 
immunotherapy. The median OS was 14 months in the whole group with one-year survival rate of 55.6%. 
The median OS was not reached in BRAF-mutated ATC and was longer than non-mutated ATC (P =0.049). 
Moreover, the median OS was longer in patients treated with dabrafenib/trametinib than those treated 
with lenvatinib or anlotinib. The morphological response was evaluated in 15 patients: 5 patients showed a 
complete response, 6 patients showed a partial response, 1 patient showed a stable disease, and 3 patients 
showed a progressive disease. The other 3 patients died before the first morphological assessment. The 
best objective response rate (ORR) was 61.1% and the following surgical treatment was performed in 7 
patients (38.9%). Among these 7 patients, 4 experienced R0 and 3 experienced R1 resection. This paper 
emphasized that the combination of MKIs/HS-TKIs plus immunotherapy in neoadjuvant setting is safe and 
effective, particularly in BRAF-mutated ATC patients [58].

NTRK mutant ATC

The NTRK fusions are rarely found in solid tumors, including thyroid cancers; however, they may represent 
a molecular target for therapy. In three clinical trials, larotrectinib was evaluated in tropomyosin receptor 
kinase (TRK) fusion-positive thyroid tumors [11–13]. A combined analysis of two of these trials 
(NCT02122913 and NCT02576431) included 28 patients with locally advanced or metastatic thyroid 
cancers [19 patients with papillary thyroid cancer (PTC), 7 patients with ATC, and 2 patients with follicular 
thyroid cancer (FTC)]. An objective response was observed in three patients with ATC (two showed a 
partial response, and one had a stable disease) [33].

Only five patients with thyroid carcinoma were included in an integrated analysis of three ongoing 
early-phase trials [59] in metastatic or locally advanced solid tumors harboring oncogenic NTRK1, NTRK2, 
and NTRK3 gene fusions treated with entrectinib. However, the report did not include the tumor’s 
histological characteristics. Of note, larotrectinib and entrectinib showed a good safety profile, and adverse 
events were easily manageable, mainly in grades 1–2, according to CTCAE (Common Terminology Criteria 
for Adverse Events) [60].

Damásio et al. [34] reported a case of an unresectable ATC initially treated with lenvatinib with a fast 
shrinkage of the tumor and a following disease progression after 12 weeks. Because of the ETV6-NTRK3 
mutation, entrectinib was started with a morphological response. After 1 year of treatment with 
entrectinib, the patient was treated with total thyroidectomy and central compartment lymph node 
dissection. Subsequent radiotherapy and chemotherapy were performed, followed again by entrectinib 
therapy with no evidence of disease 3 months after combined treatment.

ATC without actionable mutation

Finding actionable mutations in ATC patients is significant, even for neoadjuvant treatment, because 
targeted therapy can significantly improve their prognosis. However, ATC cases without actionable 
mutations still require treatment. In wild-type ATC, MKIs therapy has been explored. Lenvatinib has been 
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used as a neoadjuvant therapy, achieving only a 2.2-month survival increase compared to palliative 
chemotherapy [61, 62].

Another case report of unresectable wild-type ATC with PD-L1 expression > 90% was treated with 
lenvatinib and pembrolizumab for 1 month, allowed tumor resection, and achieved disease stability for at 
least 11 months [27].

Some clinical studies used camrelizumab (SHR-1210), a humanized, high-affinity, selective IgG4-κ anti-
PD-1 monoclonal antibody, demonstrating promising efficacy and acceptable safety in other solid tumors 
[63].

Yang et al. [64] reported a clinical case of a wild-type ATC patient treated with neoadjuvant famitinib 
and camrelizumab, achieving complete resection, locoregional control, and survival of 24 months after 
diagnosis.

Further investigation into new therapeutic targets, which could be a promising neoadjuvant treatment 
for ATC, is necessary to improve the impact on these patients’ survival and quality of life.

Differentiated thyroid cancer

Unlike ATC, which is a rare tumor, DTC is the most frequently diagnosed thyroid cancer. According to 
histologic features, it can be divided into two main subtypes: PTC and FTC. PTC is the most common, 
accounting for about 80% of thyroid cancers. It typically grows slowly and is often diagnosed at an early 
stage with a good prognosis, so much so that active surveillance strategies are currently the standard of 
care in selected low-risk cases [65–67].

FTC accounts for 10–15% of thyroid cancers and is more aggressive than PTC because it can spread 
through blood vessels to distant sites like the lungs and bones. It is often found in older adults. Treatment of 
DTC usually starts with surgery according to the clinical presentation of the tumor: hemi or total 
thyroidectomy with or without prophylactic or therapeutic lymph node dissection [68]. Radioactive iodine 
therapy after surgery is now allowed for adjuvant or therapeutic purposes [69] and is usually performed in 
cases at intermediate-high or high risk of recurrence [68]. These cancers are usually treatable with surgery, 
achieving complete removal (R0) in most cases. MKIs or HS-TKIs are used only for patients with advanced 
or metastatic disease when standard treatments are no longer effective. In these cases, several drugs are 
tested [2], but only sorafenib and lenvatinib are approved as first-line treatments. Little evidence is 
available regarding the MKIs and HS-TKIs used as neoadjuvant treatments for DTC to improve surgical 
outcomes in those unresectable cases. Lenvatinib, as a neoadjuvant treatment, may be considered in 
selected patients with aggressive or advanced DTC or PDTC before surgery. In these cases, this drug can 
help to reduce tumor burden and improve subsequent surgical treatment [70, 71]. Infiltration of vital neck 
structures like the trachea or esophagus can increase the risk of fistulas or organ perforation but is not a 
strict contraindication for treatment. While EBRT isn’t strongly linked to these complications, it may still 
contribute to the risk of perforation. The anti-angiogenic effect of lenvatinib can lead to fistulas by necrosis 
of the tumoral lesions [72].

A Latin American study reported using lenvatinib or sorafenib as a neoadjuvant treatment in DTC and 
PDTC. Patients received sorafenib (n = 6) or lenvatinib (n = 12) with a median reduction in the diameter of 
the primary tumor of 25% after a median of 6 months of treatment. Surgical treatment was performed in 10 
patients (55%) of whom 6 cases achieved R0/R1 resection status [73].

In 2017, Tsuboi et al. [74] reported the use of lenvatinib as a neoadjuvant therapy in a 73-year-old case 
of advanced DTC with multiple lymph node metastases invading the right internal jugular vein, the 
esophagus, and trachea. Due to the complex surgical nature of the lymphadenopathy, lenvatinib at 14 mg 
daily was administered for 22 weeks, resulting in an 84.3% reduction in one lymph node and a 56% 
reduction in the other, enabling resection while preserving the esophagus. After 11 months, radioiodine 
treatment was performed, and no distant metastases were observed. Another case report described a DTC 
patient with a tumor invasion of the trachea, making it initially unresectable. Lenvatinib was administered 
as neoadjuvant treatment at 24 mg daily for 14 months, resulting in tumor shrinkage, which allowed for 
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complete surgical resection of the tumor and following radioiodine treatment [75]. In 2020, Iwasaki et al. 
[76] reported a case of DTC localized to the mediastinum with pulmonary metastases. The mediastinal 
mass obstructed the brachiocephalic trunk and the superior vena cava. This patient was treated with 
lenvatinib as a neoadjuvant treatment at 14 mg daily for 16 weeks with relevant tumor shrinkage and 
subsequent total thyroidectomy and resection of the mediastinal mass. Three months after surgery, the 
metastatic lesions disappeared, and the mediastinal mass was completely resected. Sorafenib was used as a 
neoadjuvant treatment, too. Danilovic et al. [77] reported a case of 20-year-old DTC patients with an 
unresectable large cervical mass with severe tracheal stenosis and suspicious lung and lymph node 
metastases. In this patient, neoadjuvant treatment with sorafenib at 400 mg daily was started. After 
13 months of treatment, there was a relevant tumor shrinkage, which allowed for near-total thyroidectomy 
and lymphadenectomy without achieving R0, followed by radiotherapy and radioiodine treatment that 
showed uptake in the cervical area and lung metastases. A total body CT scan performed 16 months after 
radioiodine therapy showed a persistent but stable disease in the thyroid bed, neck lymph nodes, and lung 
metastases. The patient performed a second treatment with radioiodine and a post-treatment whole-body 
scan confirming persistent radioiodine avid lesions. At the last available evaluation, 52 months after the 
initial diagnosis, the patient had stable metastatic disease but without relevant symptoms.

In 2019, Nava et al. [78] reported a case of unresectable DTC (7.8 cm in the largest dimension) invading 
the trachea and esophagus. Sorafenib was administered for 6 months, resulting in a 70% reduction in 
tumor size and detachment from adjacent structures. Total thyroidectomy and radioiodine treatment were 
performed, and after one year of follow-up, the patient is asymptomatic with a status of disease defined as 
an incomplete biochemical response. Although neoadjuvant therapy is not standard for most DTC cases, 
several clinical trials are exploring its safety and efficacy (Table 2).

Table 2. MKIs, HS-TKIs, and immunotherapy used as a single agent or in combination for the neoadjuvant treatment of 
patients with thyroid cancer inside the clinical trials that are still ongoing and/or actively recruiting participants

Drug Tumor Study 
type

Recruitment 
status

ClinicalTrial.gov 
ID

Larotrectinib Solid tumor with documented NTRK gene 
fusion rearrangement

Phase 2 Active, not 
recruiting

NCT02576431

Larotrectinib Solid tumor with documented NTRK gene 
fusion rearrangement

Phase 2 Active, not 
recruiting

NCT02637687

Lenvatinib DTC, PDTC Phase 2 Recruiting NCT04321954
Selpercatinib DTC, PDTC, ATC, MTC Phase 2 Active, not 

recruiting
NCT04759911

Anlotinib DTC, PDTC, MTC Phase 2 Unknown status NCT04309136
Camrelizumab + Apatinib DTC, PDTC, MTC Phase 2 Unknown status NCT04612894
Pembrolizumab DTC, PDTC Phase 2 Not yet recruiting NCT05852223
Nivolumab + Ipilimumab DTC, ATC, MTC Phase 2 Active, not 

recruiting
NCT03246958

Cabozantinib + Nivolumab + 
Ipilimumab

DTC, PDTC Phase 2 Active, not 
recruiting

NCT03914300

MKIs: multikinase inhibitors; HS-TKIs: highly selective tyrosine kinase inhibitors; NTRK: neurotrophic tyrosine receptor kinase; 
DTC: differentiated thyroid cancer; PDTC: poorly differentiated thyroid cancer; ATC: anaplastic thyroid cancer; MTC: medullary 
thyroid cancer

Regarding lenvatinib, an ongoing clinical trial is recruiting DTC patients with invasive extrathyroidal 
cancer (ClinicalTrial.gov—NCT04321954). This multicenter, phase 2, open-label study examines the effect 
of neoadjuvant lenvatinib given to patients with extrathyroidal DTC before thyroidectomy. Lenvatinib is 
administered orally daily at a predetermined dose for 2, 4, or 6 cycles (1 cycle = 28 days), dependent on 
response. Total thyroidectomy or near-total thyroidectomy is the objective to reach after lenvatinib 
treatment. The main aim of this study is to evaluate the overall R0/R1 resection rate, as defined by the 
proportion of patients who undergo successful thyroidectomy with clear (R0) or microscopically positive 
surgical margins (R1). The secondary objectives are evaluating change in surgical complexity and morbidity 
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score, the RR before surgery based on Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST), 
the adverse events, and the conversion rate of the tumor from unresectable to resectable.

Another ongoing clinical trial is recruiting RET-mutant DTC patients with locally advanced primary 
tumors to use selpercatinib as a neoadjuvant treatment before surgery (ClinicalTrial.gov—NCT04759911). 
This phase 2 trial mainly aims to evaluate the ORR after 7 months of treatment and the rate of patients who 
can be successfully treated with thyroidectomy with clear (R0) or microscopically positive (R1) surgical 
margin. The secondary endpoints are to evaluate PFS, locoregional PFS, surgical morbidity/complexity 
score, OS, the incidence of adverse events, and quality of life. Patients receive selpercatinib orally twice 
daily on days 1–28 (1 cycle). Without disease progression or unacceptable toxicity, treatment is performed 
for 7 cycles. Then, patients perform surgery. After completing the study treatment, patients will be followed 
up to evaluate potential disease progression status every 3–4 months for the first 2 years 
(ClinicalTrial.gov—NCT04759911).

A phase 2 trial has been performed with anlotinib (VEGFR2 and VEGFR3 inhibitor) as neoadjuvant 
treatment in locally advanced DTC patients. The primary endpoint was to evaluate the ORR, while the 
secondary outcomes were the R0/R1 resection rate, disease control rate, OS, and incidence of adverse 
events. A total of 13 patients were enrolled and received anlotinib treatment (3.5 cycles) with an ORR of 
76.9%, a median time to response of 61.5 days, and most patients achieved R0/R1 resection [79].

Another phase 2 study evaluated the combination therapy of surufatinib (FGFR1 inhibitor) and 
toripalimab (anti-PD-1 antibody) in locally advanced DTC. The surufatinib dose was 300 mg/daily once 
daily for a 28-day cycle. After treatment, the patients received surgical treatment if the tumor is considered 
resectable by clinical examination. Patients with a high risk of postoperative recurrence received 
radioiodine treatment. After radioiodine treatment, maintenance treatment with surufatinib was 
determined according to the recurrence risk stratification. The main aim of this study was to evaluate the 
ORR. The secondary endpoints were to evaluate R0/R1 resection rate, disease control rate, PFS and 
incidence of adverse events. Ten patients were enrolled in the study and received at least 4 treatment 
cycles. The ORR was 60%, and 9 patients showed R0/R1 resections after neoadjuvant treatment [80].

Another study is ongoing to determine the efficacy and safety of the anti-PD-1 antibody camrelizumab 
combined with apatinib (VEGFR2 inhibitor) for neoadjuvant therapy in locally advanced thyroid cancer. 
Patients received apatinib 250 mg/daily and camrelizumab 200 mg/daily, intravenous once every 2 weeks 
as neoadjuvant treatment for at least two cycles (1 cycle = 28 days). The primary objective of this phase 2 
trial is to evaluate ORR after 24 weeks of treatment, and the secondary endpoints are to evaluate the rate of 
R0/R1 resection and to assess disease control rate after 6 weeks, OS up to 3 years and the incidence of 
adverse events (Clinicaltrial.gov—NCT04612894).

Medullary thyroid cancer

MTC originates from parafollicular, or C cells derived from the neural crest. The peculiarity of MTC is that 
can be inherited in about 25% of the cases [81, 82] in an autosomal dominant way. Although it could carry 
several types of mutations [83–85], like DTC, in almost all familial cases of multiple endocrine neoplasia 
type 2A (MEN 2A) and 2B (MEN 2B) and about half of sporadic cases [85–87] mutations in RET gene are 
detected. This prevalence in sporadic cases can increase to 80% if advanced metastatic cases are 
considered [88]. The high prevalence of RET gene mutation in MTC makes this gene an ideal diagnostic and 
therapeutic target for MTC treatment [81, 89, 90]. Total thyroidectomy, central compartment lymph node 
dissection (prophylactic or therapeutic), and oriented lateral-cervical lymph node compartment dissection 
are the gold standard of the initial treatment of MTC [91]. The impossibility of surgical resection is an 
uncommon event in managing MTC; however, it can happen in some locally advanced cases. Because of the 
high prevalence of RET gene mutation in advanced MTC, the low prevalence of grades 3 and 4 adverse 
events [39, 41] according to CTCAE [60], and the good preservation of the quality of life, highly selective 
RET inhibitor drugs have been more frequently tested in a neoadjuvant setting.
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In 2021, the first case of neoadjuvant salvage therapy for a locally advanced, inoperable MTC patient 
with selpercatinib was reported [92]. The use of selpercatinib in a neoadjuvant setting in 4 MTC cases was 
subsequently reported by the same group [93]. In all cases, neoadjuvant treatment was followed by 
surgery, and patients were followed up for a median of 2 years after selpercatinib initiation. Locoregional 
disease control with a reduction in surgical morbidity was obtained. Based on these results, a clinical trial 
was built to evaluate the efficacy of neoadjuvant selpercatinib treatment in RET mutant MTC cases 
(ClincalTrial.gov—NCT04759911). Very recently, a Latin American real-life experience reported a 25% 
tumor reduction and an R2 resection after surgery in a single patient treated with selpercatinib as first-line 
therapy. However, complete resection was hindered by tumor extension [73]. Differently from DTC, in 
whom the tracheal and/or esophageal invasion is more frequent and the risk of fistula is high, in a patient 
with MTC, the tumor lysis syndrome has been reported as an adverse event of neoadjuvant treatment with 
selpercatinib [94].

In the absence of RET mutation, therapy with MKIs has been used in a neoadjuvant setting. In the Latin 
American experience, Pitoia et al. [73] treated 27 patients with thyroid cancer in a neoadjuvant setting. Of 
these, 6 cases had MTC: 5 treated with vandetanib and 1 with selpercatinib. In this study, none had 
germline RET mutations, although two were positive for somatic Met918Thr RET mutation. The authors 
reported a median tumor diameter reduction of 24.5% after 9.5 months of treatment in the 5 patients 
treated with vandetanib, with a median follow-up of 50 months. The best overall response included one 
partial response and three cases of stable disease. However, despite this shrinkage, only one patient 
achieved a complete (R0/R1) resection. Grasic Kuhar et al. [95] reported their experience with MKIs used 
as neoadjuvant therapies in patients with advanced unresectable MTC. They treated 8 patients, 7 with 
sunitinib and 1 with vandetanib. The median duration of MKI treatment was 7.8 months, and the median OS 
of these patients was 20 months. In 4 (50%) patients, the neoadjuvant therapies led to a partial response, 
while 2 (25%) patients had stable disease, and the other 2 (25%) showed progressive disease in distant 
metastases but not in the neck. Overall, in 5/8 (62.5%) cases, the tumor became treatable by surgery after 
MKI treatment, but surgery was performed only in 2 cases. Sunitinib was also used for treating an 
unresectable MTC [96] with an initial misleading diagnosis of ATC, who failed to respond to two lines of 
chemotherapy plus radiotherapy. After 19 months from the beginning of sunitinib, the tumor became 
resectable, sunitinib was stopped 6 weeks before, and surgical treatment was performed. Histological 
examination revealed the tumor to be MTC rather than ATC, with no RET mutations but a homozygous 
Leu769Leu (2307T > G) polymorphism detected. Because of its greater potency of inhibition on VEGFR, 
lenvatinib was used as a single agent in treating an advanced unresectable MTC suspected of tracheal and 
esophageal infiltration [97]. The tumor measured 8.3 cm, and several ipsilateral left lateral cervical 
metastatic lymph nodes, the larger of 6.9 cm, were detected. Calcitonin levels were 32,926 pg/mL. Then, 
lenvatinib was initiated at a dosage of 10 mg twice daily. After about 22 weeks of therapy, a left lobectomy 
with ipsilateral laryngeal nerve and lateral cervical lymph node removal was performed. Notably, during 
surgical inspection, the esophagus, trachea, and great vessels were free of gross tumor invasion. The patient 
showed a significant drop in the calcitonin values and was followed up over time without any other 
systemic treatment.

Neoadjuvant treatments in thyroid cancers: what we need to know
Neoadjuvant treatment is a standard of care for several types of cancers, including breast, rectal, and 
pancreatic [98–100]. Thyroid cancer is often treated with surgery because most cases allow for complete 
removal of the thyroid and neck lymph nodes. However, surgery is not feasible in some cases, especially 
with ATC, due to extensive tumor infiltration. According to the data of the literature and our experience as a 
tertiary referral center for the management of thyroid cancer, the patients are considered inoperable if they 
have extensive tracheal, laryngeal, esophageal infiltration, prevertebral fascia or vertebral infiltration, 
carotid artery infiltration or circumferential encasement and mediastinal vessels infiltration, particularly 
when multiple areas are affected. In such cases, surgery carries high risks, and there is a low chance of 
complete tumor removal (R0 resection). Extensive neck structure infiltration is the main factor limiting the 
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R0 resection, followed by risks from comorbidities or advanced age, even with skilled surgeons. When 
surgery isn’t initially possible, neoadjuvant treatment may be considered to control the disease and enable 
future surgery. However, unlike other cancers (i.e., breast), neck infiltration risks like tracheal or 
esophageal fistulas and blood vessel rupture must be carefully assessed. A thorough evaluation, including 
clinical exams, imaging, endoscopy, and blood tests, is essential, along with multidisciplinary consultation 
before starting neoadjuvant therapy. The use of MKIs or HS-TKIs as neoadjuvant therapy is limited by drug 
availability and reimbursement in different countries. Additionally, selecting the right drug depends on 
identifying the tumor’s driver mutation. For this reason, in our experience, we usually perform a TRU-CUT 
biopsy on all thyroid tumors deemed inoperable to quickly obtain data about their histology and molecular 
signature [101]. The molecular data can be obtained by the next generation system (NGS), if available, or by 
a single laboratory standardized method able to evaluate the actionable mutation/fusions using DNA/RNA. 
Ideally, if the tumor has an actionable mutation, the drug of choice should be HS-TKI against that mutation. 
The lower antiangiogenic activity, with a potential lower chance of having fistula or blood vessel rupture 
and CTCAE grades 3 and 4 adverse events compared to MKIs, and the relatively similar efficacy make HS-
TKIs the drugs of choice. Regarding the starting dose, if no contraindications are present, the HS-TKI should 
be started at the maximum suggested dose. Conversely, if the molecular data of the tumor is unavailable or 
the tumor has no actionable mutation detected, the MKIs become the drug of choice. Different from HS-
TKIs, the initial dose of the MKIs should be tailored according to the local invasion of cancer, mainly if the 
trachea/esophagus or blood vessels are involved. Therefore, the maximum suggested dose is feasible if the 
local invasion is minimal; conversely, if the local invasion is massive, to avoid the occurrence of 
fistula/blood vessel rupture, a lower starting dose is suggested. The main limitation of using MKIs or HS-
TKIs in neoadjuvant therapy is the risk of adverse events (Table 3). However, managing these side effects is 
similar to treating advanced thyroid cancer patients (Table 4) but requires extra care for specific adverse 
events related to the thyroid gland in situ [94]. Also, acquired resistance to these drugs, mainly studied in 
patients treated with HS-TKI against RET gene [102, 103], can limit their efficacy in treating these patients. 
However, the acquired resistance usually appears in the long-term follow-up of these patients. Conversely, 
when considering the neoadjuvant setting, the clinical response usually occurs within the first 6–12 months 
of therapy, making the acquired resistance a minor problem.

Table 3. Main adverse events classified according to the Common Terminology Criteria Adverse Events associated 
with MKIs and HS-TKIs treatment

Hypertensi
on

Diarrhea Skin rash Anorexia Nausea Weight loss Fatigue QTc 
prolongation

Drug

Any 
grade

G3/4 Any 
gade

G3/4 Any 
grade

G3/4 Any 
grade

G3/4 Any 
grade

G3/4 Any 
grade

G3/4 Any 
grade

G3/4 Any 
grade

G3/4

Lenvatinib [5] +++ ++ +++ + + + +++ + ++ + ++ + +++ + + +
Sorafenib [6] ++ + +++ + +++ + ++ + + NE ++ + ++ + NE NE
Cabozantinib 
[36]

++ + +++ + + + ++ + ++ + ++ + ++ + NE NE

Selpercatinib 
[41]

++ + +++ + + + + + + + + + + + NE NE

Vandetanib [35] ++ + +++ + ++ + + + ++ NE + NE + + + +
Pralsetinib [82] + + + + NE NE NE NE NE NE NE NE + + NE NE
Entrectinib [58] NE NE ++ + + NE NE NE + NE NE NE ++ + NE NE
Larotrectinib [13] NE NE ++ + NE NE NE NE ++ + NE NE ++ + NE NE
Dabrafenib + 
Trametinib [22]

+ + + NE + NE + NE +++ + NE NE +++ + NE NE

MKIs: multikinase inhibitors; HS-TKIs: highly selective tyrosine kinase inhibitors; QTc: QT interval corrected for heart rate; NE: 
no evidence; +: < 25%; ++: 25–50%; +++: 50–75%; ++++: > 75%
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Table 4. Management of the main AEs experienced by the patients during MKIs and HS-TKIs treatment

AE Management of AEs

Hypertension 1. ACEI, ARBs, diuretics, beta-blockers, alpha-blockers, nitrate derivates, calcium channel blockers 
(low interaction potential)

2. Nifedipine (use cautiously)
Diarrhea Grade 1: oral hydration and electrolyte replacement; initiate anti-diarrheal medication (loperamide; 

opioids: diphenoxylate/atropine, tincture of opium); BRAT diet
Grade 2: intravenous (IV) fluids if the patient is unable to tolerate oral fluids; initiate/continue anti-
diarrheal as mentioned above; BRAT diet; anticholinergic agents (hyoscyamine, atropine)

Persistent grades 2, 3, 4: patient hospitalization (intensive care for grade 4); provide IV fluids and use 
anti-diarrheal agents and anticholinergics as mentioned above; consider octreotide

Skin rash Skin protection; urea lotion
Weight loss, 
anorexia, nausea

Grade 1–2: generally, do not warrant interruption of drug unless intolerable AE despite optimal 
management

Grade 3 or intolerable adverse reactions: require interruption of the drug until resolution or 
improvement of AE and restart the drug at a reduced dose

Grade 4: discontinue treatment in case of life-threatening reactions
Intervention:

1. Nutritional supplements

2. Appetite stimulation drugs: megestrol acetate, medroxyprogesterone acetate, dexamethasone, 
cannabinoids

3. Antinausea drugs: metoclopramide
4. Nutrionist counseling

Fatigue 1. Screening and earlier symptoms management

2. Rate the patient level of fatigue on a scale of 0 to 10 (i.e., visual analogue scale, FACT-F)
3. Encouraged patient to maintain an active lifestyle

4. Agopunture
5. Taking MKI in the evening (rather than during the day) can minimize daytime fatigue

6. Exclude the comorbidities (anemia, hypothyroidism, hypogonadism, etc.) or electrolyte abnormalities

In case of severe fatigue:
1. Psychosocial intervention and exercise

2. Management of sleep disturbances
3. Pharmacological intervention (central nervous system stimulants, antidepressant)

QTc prolongation Grade 1 (450–480 ms): no drug interruption but careful follow-up

Grade 2 (481–500 ms) and grade ≥ 3 (> 501 ms or > 60 ms compared to baseline): discontinue 
treatment

MKIs: multikinase inhibitors; HS-TKIs: highly selective tyrosine kinase inhibitors; ACEI: angiotensin-converting enzyme 
inhibitors; ARBs: angiotensin receptor blockers; BRAT diet: banana, rice, applesauce, toast; AE: adverse event; FACT-F: 
Functional Assessment of Cancer Therapy-Fatigue; QTc: QT interval corrected for heart rate

Limitations of current studies and unmet needs
Neoadjuvant treatment in thyroid cancer patients has been recently reconsidered due to the development 
of several drugs, MKIs, and HS-TKIs in the last few years. The main limitation of using MKIs or HS-TKIs in 
neoadjuvant therapy is the lack of data, as most thyroid cancers are treatable with surgery. Neoadjuvant 
treatment is primarily used for aggressive thyroid cancer cases, mainly ATC, often managed in specialized 
centers with expert care and access to these drugs. This limits the general applicability of the results. 
Consistent data about combination therapies, particularly the association between MKIs or HS-TKIs and 
immunotherapy, are still lacking. Moreover, different equipes with different surgeons and expertise have 
judged the patients’ inoperability without a complete agreement about the criteria of inoperability. The lack 
of a complete molecular signature of the tumor, including the driver and other mutations and epigenetics, 
does not allow us to go into the details of the clinical responses. Lastly, most of the cases lacked long-term 
follow-up data. To overcome these limitations, several clinical trials exploring the role of neoadjuvant 
treatment in several types of thyroid cancers have been built and are ongoing.
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Conclusions
The efficacy of MKIs and HS-TKIs has been proved in several clinical trials and real-life experiences in 
managing advanced thyroid cancers. In unresectable cases, their action in a neoadjuvant setting has been 
reported in single or small case series cases. Although tumor shrinkage was obtained in most cases, 
showing the efficacy of these drugs in controlling tumor progression, conflicting results have been reported 
when the goal was the complete surgical removal of the tumor (R0). However, using these drugs in a 
neoadjuvant setting could be helpful in the clinical outcome of patients with unresectable thyroid cancers, 
paying attention when the tumor invades the neck structures (i.e., larynx, esophagus, trachea). The use of 
HS-TKI, if actionable mutations are detected, having lower anti-angiogenic activity and fewer adverse 
events, should be the principal option. Ongoing clinical trials and additional case studies will play a key role 
in refining treatment strategies and increasing the potential for curative surgery in patients with advanced 
unresectable thyroid carcinoma.
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