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Abstract
Although immune checkpoint inhibitors (ICIs) are widely used in clinical oncology, less than half of treated 
cancer patients derive benefit from this therapy. Both tumor- and host-related variables are implicated in 
response to ICIs. The predictive value of PD-L1 expression is confined only to several cancer types, so this 
molecule is not an agnostic biomarker. Highly elevated tumor mutation burden (TMB) caused either by 
excessive carcinogenic exposure or by a deficiency in DNA repair is a reliable indicator for ICI efficacy, as 
exemplified by tumors with high-level microsatellite instability (MSI-H). Other potentially relevant tumor-
related characteristics include gene expression signatures, pattern of tumor infiltration by immune cells, 
and, perhaps, some immune-response modifying somatic mutations. Host-related factors have not yet been 
comprehensively considered in relevant clinical trials. Microbiome composition, markers of systemic 
inflammation [e.g., neutrophil-to-lymphocyte ratio (NLR)], and human leucocyte antigen (HLA) diversity 
may influence the efficacy of ICIs. Studies on ICI biomarkers are likely to reveal modifiable tumor or host 
characteristics, which can be utilized to direct the antitumor immune defense. Examples of the latter 
approach include tumor priming to immune therapy by cytotoxic drugs and elevation of ICI efficacy by 
microbiome modification.
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Introduction
Immune checkpoint inhibitors (ICIs) were developed in the first decade of this century and rapidly became 
a standard for systemic therapy of many cancer types. The concept of ICIs is based on the assumption that 
malignant cells are generally recognizable by immunity, and, therefore, need to produce local immune 
suppressors in order to escape from host defense mechanisms. Consequently, therapeutic inactivation of 
these suppressors should restore anticancer immunity and eventually eliminate transformed cells [1, 2].
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Presently, all approved ICI therapies are targeted mainly towards PD-L1/PD-1 axis (Table 1). Anti-PD-1 
or anti-PD-L1 antibodies constitute the backbone of the ICI treatment. In some instances, PD-L1/PD-1 
inhibition is supplemented by targeting other immune regulators (CTLA-4 or LAG-3), or by the addition of 
some standard-of-care drugs (cytotoxic compounds, multikinase inhibitors, bevacizumab, etc.). The success 
of immune therapy presumably depends on the interplay between tumor-related factors and host-related 
factors (Figure 1). The former category of predictive markers includes various surrogates of tumor 
antigenicity as well as characteristics of the immune status of the tumor microenvironment. Host-related 
factors are more complex, being dependent on the general condition of the patient, the overall capacity of 
the immune system, and a number of confounding parameters, such as various comorbidities, microbiome 
composition, etc. For the time being, only the analysis of tumor parameters has already been incorporated 
into clinical practice. It is currently utilized for some although not all single-agent immune therapies, while 
the use of ICIs in combination with other drugs is usually not guided by biomarker testing (Table 1).

Figure 1. Tumor- and host-related factors affecting the outcome of immune therapy. HLA: human leucocyte antigens; 
dMMR: deficiency in mismatch DNA repair; MSI: microsatellite instability

Tumor-related characteristics
PD-L1 expression

A predictive role of PD-L1 expression was initially shown in a nivolumab clinical study, in which 9/25 
(36%) PD-L1 positive but none of 17 PD-L1 negative tumors demonstrated objective response. PD-L1 
status was assessed by an immunohistochemical (IHC) analysis of tumor cells, with 5% of stained cells 
taken as a cut-off [3]. Subsequent investigations complicated the field. Although PD-L1 is a major ligand 
interacting with the PD-1 receptor, there are other molecules involved in the modulation of PD-1 activity. 
Some studies suggested that the expression of PD-1 rather than PD-L1 is a marker of efficacy of anti-PD-1 
therapeutic antibodies [4]. Furthermore, PD-L1 expression appears to be predictive only for selected cancer 
types, therefore this biomarker does not have an “agnostic” significance [5].
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Table 1. Biomarker-tailored and biomarker-independent therapies for immune oncology drugs

PD-1 inhibitors PD-L1 inhibitorsTumor type

Pembrolizumab Nivolumab Dostarlimab Atezolizumab Avelumab Durvalumab

Biomarker-tailored therapies for metastatic or unresectable disease
NSCLC without 
ALK/EGFR alterations, 
1st line

Single-agent, ≥ 1% PD-L1 positive 
tumor cells

In combination with 
ipilimumab, ≥ 1% PD-L1 
positive tumor cells

- Single-agent, ≥ 50% PD-L1 
positive tumor cells, or PD-L1 
positive immune cells covering 
≥ 10% of the tumor area

- -

NSCLC without 
ALK/EGFR alterations, 
previously treated

Single-agent, ≥ 1% PD-L1 positive 
tumor cells

- - - - -

HNSCC, 1st line Single-agent, CPS ≥ 1 - - - - -
Triple-negative breast 
carcinoma, 1st line

In combination with 
chemotherapy, CPS ≥ 10

- - - - -

Esophageal 
carcinoma, previously 
treated

Single-agent, CPS ≥ 10 - - - - -

Gastric carcinoma, 
HER2-positive, 1st line

In combination with trastuzumab, 
platinum and fluoropyrimidines, 
CPS ≥ 1

- - - - -

Gastric carcinoma, 
previously treated

Single-agent, CPS ≥ 1 - - - - -

Urothelial carcinoma, 
cisplatin-ineligible

Single-agent, CPS ≥ 10 - - Single-agent, PD-L1 positive 
immune cells covering ≥ 5% of 
the tumor area

- -

Cervical carcinoma, 
1st line

In combination with 
chemotherapy, CPS ≥ 1

- - - - -

Colorectal carcinoma, 
1st line

Single-agent, MSI-H/dMMR - - - - -

Colorectal carcinoma, 
previously treated

Single-agent, MSI-H/dMMR Single-agent or in 
combination with 
ipilimumab, MSI-H/dMMR

- - - -

Endometrial 
carcinoma, 1st line

- - In combination with 
carboplatin and 
paclitaxel, following by 
single-agent, dMMR or 
MSI-H

- - In combination with 
carboplatin and 
paclitaxel, following by 
single-agent, dMMR

Endometrial 
carcinoma, previously 
treated

Single-agent, MSI-H/dMMR - Single-agent, dMMR - - -

All tumor types 
(agnostic), previously 
treated

Single-agent, MSI-H/dMMR - Single-agent, dMMR - - -
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PD-1 inhibitors PD-L1 inhibitorsTumor type

Pembrolizumab Nivolumab Dostarlimab Atezolizumab Avelumab Durvalumab

All tumor types 
(agnostic), previously 
treated

Single-agent, high TMB (≥ 10 
mutations per megabase)

- - - - -

Biomarker-independent therapies for metastatic or unresectable disease
Melanoma Single-agent Single-agent or in 

combination with ipilimumab 
or relatlimab

- In combination with 
vemurafenib and cobimetinib 
for BRAF V600 mutated 
melanoma

- -

NSCLC without 
ALK/EGFR alterations, 
1st line

Non-squamous: in combination 
with pemetrexed and platinum; 
squamous: in combination with 
carboplatin and paclitaxel

In combination with 
ipilimumab and 2 cycles of 
platinum-doublet

- In combination with 
chemotherapy and 
bevacizumab

- In combination with 
tremelimumab-actl and 
platinum

NSCLC, previously 
treated

- Single-agent - Single-agent - -

NSCLC, stage III, after 
chemo- and 
radiotherapy

- - - - - Single-agent

SCLC, 1st line - - - In combination with 
carboplatin and etoposide

- In combination with 
platinum and etoposide

SCLC, previously 
treated

Single-agent - - - - -

Malignant pleural 
mesothelioma, 1st line

- In combination with 
ipilimumab

- - - -

HNSCC, 1st line In combination with platinum and 
FU

- - - - -

HNSCC, previously 
treated

Single-agent Single-agent - - - -

Esophageal 
carcinoma, 1st line

In combination with platinum and 
fluoropyrimidines

In combination with platinum 
and fluoropyrimidines, or in 
combination with ipilimumab

- - - -

Esophageal squamous 
cell carcinoma, 
previously treated

- Single-agent - - - -

Gastric carcinoma, 1st 
line

In combination with platinum and 
fluoropyrimidines

In combination with platinum 
and fluoropyrimidines

- - - -

Biliary tract carcinoma In combination with gemcitabine 
and cisplatin

- - - - In combination with 
gemcitabine and cisplatin

Table 1. Biomarker-tailored and biomarker-independent therapies for immune oncology drugs (continued)
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PD-1 inhibitors PD-L1 inhibitorsTumor type

Pembrolizumab Nivolumab Dostarlimab Atezolizumab Avelumab Durvalumab

Urothelial carcinoma, 
1st line

In combination with enfortumab 
vedotin

- - - - -

Urothelial carcinoma, 
platinum-ineligible

Single-agent - - Single-agent - -

Urothelial carcinoma, 
previously treated

Single-agent Single-agent - - Single-agent -

Classical Hodgkin 
lymphoma, previously 
treated

Single-agent Single-agent - - - -

Primary mediastinal 
large B-cell lymphoma

Single-agent - - - - -

Hepatocellular 
carcinoma, 1st line

- - - In combination with 
bevacizumab

- In combination with 
tremelimumab-actl

Hepatocellular 
carcinoma, previously 
treated

Single-agent In combination with 
ipilimumab

- - - -

Merkel cell carcinoma Single-agent - - - Single-agent -
Renal cell carcinoma, 
1st line

In combination with axitinib or 
lenvatinib

In combination with 
ipilimumab or cabozantinib

- - In 
combination 
with axitinib

-

Renal cell carcinoma, 
previously treated

- Single-agent - - - -

Endometrial 
carcinoma, without 
MSI-H/dMMR, 
previously treated

In combination with lenvatinib - - - - -

Cutaneous squamous 
cell carcinoma

Single-agent - - - - -

Alveolar soft part 
sarcoma

- - - Single-agent - -

Neoadjuvant therapy
NSCLC In combination with platinum 

containing chemotherapy
In combination with platinum 
doublet

- - - -

Triple-negative breast 
cancer

In combination with chemotherapy - - - - -

Adjuvant therapy
Melanoma Single-agent Single-agent - - - -

Table 1. Biomarker-tailored and biomarker-independent therapies for immune oncology drugs (continued)
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PD-1 inhibitors PD-L1 inhibitorsTumor type

Pembrolizumab Nivolumab Dostarlimab Atezolizumab Avelumab Durvalumab

Urothelial carcinoma - Single-agent - - - -
Esophageal carcinoma - Single-agent - - - -
NSCLC Single-agent - - Single-agent, ≥ 1% PD-L1 

positive tumor cells
- -

Renal cell carcinoma Single-agent - - - - -
CPS: combined positive score; dMMR: deficiency in mismatch DNA repair; HNSCC: head and neck squamous cell carcinoma; MSI-H: high-level microsatellite instability; NSCLC: non-small-cell 
lung cancer; SCLC: small-cell lung cancer; TMB: tumor mutation burden; FU: fluorouracil

There are technical nuances related to the determination of PD-L1 status. The source of this ligand is not confined to cancer cells, as tumor microenvironment, 
particularly immune cells (ICs), may produce a significant amount of PD-L1 and thereby render peritumoral immune suppression. Consequently, several clinical 
studies considered PD-L1 status both for tumor cells and for their microenvironment. PD-L1 analysis of tumor cells was similar across various investigations and 
relied on the calculation of the proportion of stained tumor cells. Several atezolizumab trials utilized an additional parameter, so-called IC score defined as an area 
occupied by PD-L1 expressing ICs in relation to the total tumor area. In addition, some pembrolizumab studies relied on the combined positive score (CPS), which 
was obtained by dividing the number of PD-L1 positive tumor cells, lymphocytes, and macrophages by the total number of tumor cells [6]. There was no clearly 
articulated mechanistic rationale why some data sets relied only on the status of tumor cells, while others considered ICs as well. Furthermore, all thresholds 
between “positive” and “negative” cases were obtained using post hoc analysis (Table 1).

Several PD-L1 IHC assays have been proposed for clinical use, each coupled to a particular PD-1 or PD-L1 inhibitor. It is assumed that Dako 22C3, Dako 28-8, 
and Ventana SP263 tests produce essentially similar results, while the Ventana SP142 assay utilized for atezolizumab studies consistently reveals a lower 
percentage of both tumor cells and ICs. While inter-assay and interobserver reproducibility is acceptable for PD-L1 analysis of tumor cells, it is insufficient for ICs 
[6–9]. Many nuances in laboratory procedures are critical for the consistency of PD-L1 testing, therefore, the real-world picture may substantially differ from the 
results obtained in well-controlled investigations [10–12]. It is fair to acknowledge that the interlaboratory and interobserver reproducibility of PD-L1 analysis 
appears to have improved over time, as recent investigations produced more encouraging results than earlier comparative studies [13, 14]. After all, only a 
minority of indications for immune oncology drugs rely on PD-L1 testing, while in many instances anti-PD-L1/PD-1 containing therapies are administered 
irrespective of PD-L1 status (Table 1).

There is room to improve the laboratory techniques for PD-L1 detection. It is difficult to explain why even anti-PD-L1 targeted drugs demonstrate a 
substantial rate of responses in seemingly PD-L1 negative tumors [15, 16]. PD-L1 glycosylation may compromise its interaction with diagnostic antibodies, and 
chemical removal of glycans results in the improvement of sensitivity of PD-L1 IHC analysis [17]. These data are supported by reports, which demonstrate that 
many tumors express significant levels of PD-L1 mRNA in the absence of IHC-detectable protein staining [18]. The predictive value of PD-L1 mRNA expression has 
been confirmed in several transcriptomic studies [19–21]. Interestingly, fluorescence-based detection of PD-L1/PD-1 complexes appears to outperform PD-L1 
testing alone [22].

Table 1. Biomarker-tailored and biomarker-independent therapies for immune oncology drugs (continued)
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Microsatellite instability

Some tumors are characterized by the increased number of somatic mutations due to failure of DNA repair. 
The most known example is high-level microsatellite instability (MSI-H), i.e., accumulation of small 
deletions and insertions in short nucleotide repeats due to deficiency in mismatch DNA repair (dMMR). 
MSI-H is a historical definition, which emerged in 1990s when researchers attempted to discriminate 
between tumors with high and moderate numbers of alterations in microsatellites; nowadays, the terms 
MSI and MSI-H are used interchangeably. Most microsatellite sequences are non-coding, therefore, changes 
in their length do not have an apparent contribution to tumor pathogenesis but serve merely as a diagnostic 
marker for dMMR. However, some microsatellites are located within exons; furthermore, the impact of 
dMMR is not limited only to changes in microsatellite length but extends to other types of genetic 
alterations. Hence, dMMR/MSI-H tumors are characterized by dramatic elevation of the number of coding 
mutations. This renders increased antigenicity of tumor cells, consequently, dMMR/MSI-H carcinomas have 
lower relapse rates after radical surgery and are highly sensitive to immune oncology drugs. dMMR/MSI-H 
initially gained acceptance for the treatment of metastatic colorectal cancer and then received a status of 
“agnostic” marker (Table 1) [23]. In addition, there are several highly successful neoadjuvant and adjuvant 
ICI trials utilizing dMMR/MSI-H tumors [23–26].

dMMR/MSI-H is apparently the most straightforward biomarker for ICI therapy. For example, 
preoperative administration of nivolumab and relatlimab produced major pathologic responses in 92% of 
dMMR colorectal cancer patients [24]. However, dMMR/MSI-ICI matching is relevant only to a small subset 
of tumors. dMMR/MSI-H is characteristic approximately for 5–10% of colorectal, gastric and biliary tract 
carcinomas as well as for 15–20% of endometrial malignancies, while its incidence in most other tumor 
types is below 1%. For example, MSI-H almost never occurs in lung tumors, breast carcinomas, melanomas, 
etc. [27–30]. Although dMMR/MSI-H is commonly promoted as “agnostic” indication for ICI, the feasibility 
of its routine evaluation in other than gastrointestinal or endometrial tumors is questionable. Furthermore, 
some tumor types demonstrate relatively low efficacy of ICI therapy despite the presence of dMMR/MSI-H 
[31].

The techniques for MSI-H determination were developed three decades ago and, from the laboratory 
perspective, the discrimination between MSI-H and non-MSI-H carcinomas is not complicated. 
Nevertheless, misclassification of tumors with regard to MSI-H status is not infrequent in clinical practice 
[32]. The most established approach for MSI-H testing relies on the detection of length changes in 5 quasi-
monomorphic mononucleotide repeats (BAT25, BAT26, NR21, NR24, and NR27). This technique requires 
equipment for capillary electrophoresis and basic skills in molecular biology. An alternative approach, 
which is compatible with a standard morphological laboratory, is based on immunohistochemical detection 
of relevant mismatch DNA repair proteins (MLH1, MSH2, MSH6, and PMS2). The dMMR status is assigned to 
tumors demonstrating either paired depletion of MLH1/PMS2 or MSH2/MSH6, or isolated loss of MSH6 or 
PMS2. Historically, these approaches were developed for the analysis of colorectal cancer as well as for the 
selection of patients with suspicion of Lynch syndrome. Colorectal cancer data sets demonstrate generally 
good concordance between PCR-based MSI-H testing and IHC analysis for dMMR, so these methods appear 
to be interchangeable. However, studies on Lynch syndrome revealed that some non-gastrointestinal 
dMMR tumors, which presumably have a low rate of cell proliferation, do not have widespread 
microsatellite instability and, therefore, are unlikely to be highly antigenic [33–35]. The majority of next-
generation sequencing (NGS) services now include MSI-H status in their reports. However, almost all 
currently utilized NGS panels were purposely designed for the analysis of exonic regions of actionable 
genes and, therefore, patterns of mutations they reveal are enriched for potentially functional events; 
thorough testing for non-coding microsatellite markers may provide a more unbiased snapshot of the 
status of nucleotide repeats [34, 36]. Technical nuances of dMMR/MSI-H determination deserve to be 
closely monitored in ICI studies on non-colorectal cancer types.

Tumor mutation burden

Tumor mutation burden (TMB) was initially defined as the total number of non-synonymous somatic 
mutations present in the genome of transformed cells [37]. Subsequent studies revealed that small 
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insertions and deletions are generally more antigenic than amino acid substitutions. Accumulation of indels 
is particularly characteristic of renal cell and bladder carcinomas, which are well known for their 
responsiveness to immune therapy [38, 39]. Since whole exome sequencing (WES) is not always feasible in 
daily clinical practice, many NGS diagnostic services offer more accessible tests in which the approximate 
TMB value is calculated based on the analysis of a few hundred genes. For example, the agnostic approval of 
pembrolizumab relied on the TMB value ≥ 10 mutations per megabase estimated by the FoundationOne 
CDx test [40]. The mechanistic basis underpinning the predictive value of TMB assumes a general 
correlation between the increased number of somatic mutations and the high amount of antigens, hence 
high TMB tumors are more likely to be immunogenic than low-TMB neoplasms. There are two causes for 
increased TMB. First, high TMB is characteristic of carcinogen-induced tumors, for example, smoking-
related lung carcinomas or melanomas caused by excessive exposure to ultraviolet. Secondly, alterations in 
DNA replication machinery or repair may result in the accumulation of somatic mutations [34]. In this 
respect, it is important that the proof-of-concept ARETHUSA clinical trial demonstrated that cytotoxic 
treatment with temozolomide may modify DNA repair and TMB in otherwise ICI-resistant carcinomas, and 
eventually prime these tumors to immune therapy [41].

Undoubtedly, tumors with significantly elevated TMB are likely to respond to ICI therapy. Surrogates 
for increased TMB may diminish the need for laboratory TMB testing. For example, history of regular 
smoking correlates both with high TMB and with lung cancer sensitivity to ICI, therefore, it may reliably 
guide treatment decisions [37, 42]. Similarly, the location of melanoma on skin areas affected by sunburns 
suggests both an excessive number of mutations and a high probability of benefit from immune therapy 
[43]. MSI-H is an excellent indicator of ultra-high TMB, however, MSI-H testing is significantly more rapid 
and accessible compared with TMB determination [34, 44]. Some tumors, particularly colorectal and 
endometrial carcinomas, carry hot-spot alterations in POLE gene encoding for DNA polymerase; POLE-
mutated malignancies usually have high TMB and are responsive to ICI [45, 46]. Similar relationships are 
observed for malignancies with inactivation of MUTYH gene, which encodes for base excision repair enzyme 
[47, 48].

It is essential to recognize that the ICI responders from most TMB-tailored trials were significantly 
enriched by the categories of cancer patients described above. The clinical value of TMB can be 
questionable if tumors with an overt history of carcinogen exposure and malignancies with MSI-H or POLE 
mutations are excluded. For example, the efficacy of pembrolizumab-containing therapy correlated with 
high TMB in a gastric cancer study; however, 44% of high TMB patients were MSI-positive, and the 
exclusion of these subjects from the analysis resulted in the attenuation of the observed correlations [49]. 
Some tumor types do not demonstrate an association between increased TMB and ICI responsiveness, as 
exemplified by the data obtained on breast carcinomas or brain neoplasms [50–52]. Perhaps, some 
controversy can be resolved by increasing the threshold for high TMB [53]. Importantly, systematic studies 
on TMB distribution revealed a significant number of tumors, which have “ultrahigh” TMB in the absence of 
identified causative factors [44]. These outliers, which are observed across virtually all cancer types, 
deserve comprehensive investigation regarding their frequencies in different categories of patients, clinical 
features, underlying genetic mechanisms and sensitivity to ICIs.

Not all non-synonymous mutations generate neoantigens. For example, some mutations result in 
nonsense-mediated RNA decay or decreased stability of the corresponding protein. Transcriptome 
sequencing may be more relevant than DNA analysis for the evaluation of potential tumor immunogenicity 
[54, 55]. Furthermore, the antigenicity of mutated peptides depends not only on the character of amino acid 
sequence changes, but also on the ability of individual human leucocyte antigens (HLA) molecules to 
recognize these mutations and present them to the immune system. Matching of WES data to personal HLA 
genotypes can be achieved using several software tools [55–57].

Mutations in selected genes

Some studies demonstrated associations between mutations in particular genes and ICI efficacy. The best-
known example is KRAS G12C substitution in lung carcinomas [58]. KRAS G12C mutation, but not other 
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common types of KRAS alterations, demonstrates a tight association with the history of smoking [59]. 
Consequently, KRAS G12C merely serves as an indicator of the tobacco-related nature of lung malignancy 
and high TMB; so, in some instances, it can be considered together with or instead of self-reported smoking 
history [42, 60]. Importantly, KRAS G12C amino acid change occurs at lower frequencies in other cancer 
types, but it does not have “agnostic” correlations with tumor immunogenicity or ICI responsiveness [61, 
62]. Earlier clinical trials revealed associations of somatic mutations in SERPINB3 or SERPINB4 genes with 
both high TMB and improved efficacy of CTLA-4 inhibition in melanoma [63]. However, these results have 
not been subjected to rigorous replication studies. Some data suggest the role of mutations in KEAP1, LKB1 
(STK11), ARID1A, PTEN, and several other genes, but the translational relevance of these findings is unclear 
[58, 64–66]. There is a critical mass of data suggesting that Epstein-Barr virus (EBV) associated cancers are 
responsive to ICI, therefore, EBV testing deserves to be considered in some tumor types [67, 68].

Lymphocyte infiltration

Tumors demonstrate significant diversity with regard to interaction with ICs. Some cancers are 
characterized by increased lymphocyte infiltration (“immune-hot”), so their treatment may require only 
functional activation of these cells. Other malignancies appear to have expelled ICs, so they are located on 
tumor margins (“immune-excluded”); these lymphocytes may fight neoplastic growth when permitted to 
enter the tumor milieu. “Immune-cold” neoplasms, which do not have ICs either in the tumor core or in the 
periphery, are probably not good candidates for ICI therapy.

Several studies suggest that increased tumor infiltration by ICs is a favorable predictor for ICI therapy 
[69–71]. However, this is an oversimplification because tumor stroma may contain both “good” 
lymphocytes which are ready to fight against tumor cells and “bad” ICs which either do not have antitumor 
potential or even render negative regulation of immune response. Additionally, not a mere content of 
lymphocytes but a proper equilibrium between various IC types infiltrating the tumor appears to be 
essential for ICI efficacy. Current studies employ tools for discriminating between “good” and “bad” tumor-
infiltrating cells and use sophisticated scoring approaches to account for spatial organization of cancer 
lumps [72–76]. Immunoscore is the best-known assay of this type: it evaluates the content of CD-3-positive 
and CD-8-positive T-cells in the tumor core and invasive margin by analyzing digital images with specially 
designed software [75, 76]. The complexity of the analysis of tumor microenvironment complicates its 
translation into clinical practice.

Gene expression profiles

There is a multitude of genes with known roles in the regulation of immune response. Both hypothesis-
driven and transcriptomic studies revealed various gene expression profiles (“signatures”) associated with 
ICI efficacy [77–81]. A major limitation of these studies is the lack of practical avenues for their replication: 
indeed, almost all published scores or indices are intended mainly for in-house use, be it research activities 
or commercial diagnostic services. ICI-related expression profiles reflect mainly the functional status of the 
immune tumor microenvironment, particularly T-cell activation and interferon-gamma signaling [73, 78, 
82]. Consequently, the results of these studies are potentially influenced by the spatial organization of the 
tumor, as different parts of the latter are likely to produce different snapshots of gene transcripts. For 
example, a renal cell carcinoma study revealed distinct transcriptomic profiles in tumor areas with positive 
and negative PD-L1 status of T-cells [83]. Despite all these caveats, gene expression profiles are viewed as a 
viable substitute for the scoring of ICs, as they can be subjected to some degree of automatization and less 
prone to interobserver variability [2, 84].

Host-related factors
Microbiome

The ICI-predictive role of the microbial composition of the gut was initially demonstrated in mouse 
experiments. Sivan et al. [85] observed differences in antitumor immunity in genetically identical mice with 
distinct intestinal microbiomes. They revealed that Bifidobacterium species played a significant role in 
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immune response regulation; importantly, the efficacy of anti-PD-L1 therapy was dramatically improved by 
its supplementation with Bifidobacterium preparations. Vétizou et al. [86] suggested the role of Bacteroides 
in determining the tumor response to anti-CTLA4 blockade. Subsequently, several studies in cancer 
patients revealed that antibiotic therapy compromises the efficacy of ICIs and the pattern of intestinal 
microbes may differ between ICI responders and non-responders [87, 88]. Some data sets emphasized the 
role of particular microbal species, for example, Bifidobacterium longum, Enterococcus faecium, 
Bifidobacterium  pseudocatenulatum, Collinsella  aerofaciens, Akkermansia  muciniphila, Bacteroides, 
Ruminococcaceae, Agathobacter, Prevotella, Lachnospiraceae, Roseburia, butyrate-producing bacteria, etc. 
[87–95]. In addition, there are data suggesting that not only particular species but also the diversity of 
microorganisms as well as some equilibrium in their abundance are essential for the success of ICI therapy 
[89, 91, 92, 96]. Strikingly, clinical trials demonstrated that fecal microbiome transplantation from ICI 
responders to non-responders may restore tumor sensitivity to ICI [97, 98].

The mechanisms underlying the influence of commensal microbes on ICI immunity are currently under 
investigation. Cross-reactivity between bacterial and tumor antigens may support “education” of ICs. The 
healthy composition of microbiome is essential for the baseline proficiency of host defense mechanisms. 
Bacteria populating the human body produce a number of metabolites, some of which are essential for 
antitumor immunity [99, 100].

Despite the overall promise of microbiome research, there are no relevant laboratory assays allowing 
the prediction of response or resistance in a given individual. Insufficient interstudy agreement may be 
attributed to several confounding parameters, such as geographic and dietary variations, technical nuances 
in sample collection and NGS analysis, differences in analyzed tumor types and treatments, etc. [95]. 
Despite these limitations, several interventional trials attempted the use of microbiome-modifying 
approaches to improve the efficacy of ICI therapy. Dizman et al. [101] utilized Clostridium butyricum 
preparation in a randomized phase 1 study involving patients with metastatic renal cell carcinoma; this 
supplementation was accompanied by evident improvement of the progression-free survival (12.7 vs. 
2.5 months, p = 0.001). In a similarly designed study, subjects receiving Bifidobacterium live bacterial 
product in addition to cabozantinib and nivolumab therapy experienced a higher rate of responses as 
compared to controls [14/19 (74%) vs. 2/10 (20%), p = 0.01] [102]. However, some microbiome-related 
studies call for caution. For example, Glitza et al. [103] supplemented immune therapy with a bacterial 
formulation in a phase 1b melanoma randomized trial and observed numerically higher response rates 
(4/6, 67%) in patients receiving placebo versus subjects taking probiotics (2/8, 25%). Spencer et al. [104] 
(2021) revealed that self-reported use of probiotics certainly did not improve but even tended to 
compromise the outcomes of ICI therapy in melanoma patients.

Neutrophil-to-lymphocyte ratio

Neutrophil-to-lymphocyte ratio (NLR) was suggested to be of clinical significance in 2001 by Dr. Roman 
Zahorec [105]. This index is an easily accessible parameter, and many ICI studies revealed that patients 
with high NLR are poor responders to immune therapy [106–112]. It is assumed that NLR reflects the 
balance between pro-tumoral inflammation and anti-tumoral immune defense [113].

Inflammation and antitumor immunity are closely related processes, which have significant overlap in 
the involved molecules and cell subsets. Acute inflammation plays an essential role in the immediate 
response to infections and promotes the subsequent emergence of adaptive immunity. However, in many 
instances host defense mechanisms fail to eliminate foreign antigens, so the inflammation becomes chronic. 
Continuing inflammation appears to induce some degree of immune tolerance thus preventing autoimmune 
reactions. Mature tumors are by definition associated with chronic antigen exposure. Furthermore, cancer 
patients often have significant comorbidities and age-related inflammatory derangements. These factors 
may result in down-regulation of antitumor immunity [114].

Several data sets suggest that consideration of NLR together with other ICI predictive factors may 
provide a meaningful tool for identifying patients with a particularly high or particularly low probability of 
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benefit from immune therapy [108–111]. It should be noted that although available studies provide a 
relatively consistent picture, the threshold between favorable and unfavorable NLR was a subject of 
substantial variations. More importantly, it is unclear whether cancer patients with high baseline NLR may 
benefit from some supportive therapy aimed at normalizing homeostasis.

HLA

HLA genes encode for peptides, which recognize foreign proteins and present their antigenic fragments to 
T-cells. HLA includes class I and II genes, with the former playing a primary role in the detection of cancer 
cells. The function of HLA class I peptides is to bind endogenous antigens produced by mutated proteins 
and to transport them to the cell surface for display to the immune system [11, 115].

HLA class I genomic region consists of three loci (A, B, and C). Each of the above genes is highly 
polymorphic. Human studies usually demonstrate 2–3 dozen relatively frequent A and C alleles in every 
population analyzed, and this number is approximately twice as high for the B locus. Importantly, HLA 
alleles differ from each other by the spectrum of recognizable foreign amino acid motifs. Consequently, a 
given mutated protein may be potentially detectable by one HLA genotype, but remain invisible to 
immunity in an individual with another HLA composition [116]. This variability explains well-known 
associations between HLA allelism and predisposition to various immune-related diseases, including 
infections, autoimmune disorders, cancer, etc. [115, 117–119]. The majority of people have distinct alleles 
for A, B, and C genes each, and these subjects are likely to have an advantage with regard to the spectrum of 
recognizable antigens. Approximately, one out of ten individuals are homozygous for A or C loci, and 
approximately one out of twenty subjects have identical maternal and paternal alleles for B locus. These 
estimates are even higher when closely related gene variants are united in HLA supertypes [118].

There are data sets demonstrating that the reduced HLA class I diversity, i.e., homozygosity in HLA-A, 
HLA-B, or HLA-C genes, is a negative predictive factor for response to immune therapy, as the best 
responses are observed in individuals carrying distinct alleles in all of the above genes [120–123]. 
However, the data are not consistent across studies [124, 125]. Comprehensive HLA genotyping remains 
complicated even with the invention of NGS, as it requires specific laboratory assays and software tools as 
well as profound expertise in HLA genetics. In addition, somatic status of HLA molecules should be 
investigated, as some tumors adapt to immune therapy by the loss of HLA expression, so the mutated 
proteins become hidden from the host defense [114, 115].

Conclusions
Highly elevated number of somatic mutations, and consequently, cancer-specific antigens, is apparently the 
most convincing indicator of potential tumor sensitivity to immune therapy. However, this feature is 
relatively rare. The PD-L1 biomarker has significant limitations, therefore, the attempts to supplement this 
parameter by the analysis of gene expression profiles and IC infiltration may improve patients’ selection for 
immune oncology drugs. While tumor-related parameters have already been extensively studied, 
comprehensive analysis of host-related factors is not always included in relevant clinical trials. Perhaps, 
consideration of one or a few parameters is not sufficient for reliable prediction of the efficacy of immune 
therapy. There is a need for tools, which will be able to account for the multitude of tumor and host 
characteristics, such as mutation profile, transcriptome data, microbiome composition, HLA genotype, 
various phenotypic characteristics of the immune system, pattern of comorbidities, concurrent treatments, 
etc., and to provide integrative analysis of this complexity. Artificial intelligence (AI) tools may significantly 
facilitate the interpretation of multiple data sets and develop new approaches for the personalization of 
immune therapy. Categorization of patients for potential responders and non-responders to ICI is not the 
only outcome of these efforts. Research on biomarkers for cancer immune therapy offers the hope of 
discovering modifiable tumor and patient characteristics, which can be utilized for educating the immunity 
against transformed cells.
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