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Abstract
Lipids are intricate biomolecules responsible for the building up of biological membranes. Besides this 
structural function, they also display crucial roles in signaling, acting as second messengers that activate 
specific pathways. Mitochondria are fundamental for cells as they participate in several pivotal functions, 
such as ATP synthesis, cell survival, metabolic pathways, and calcium homeostasis. Thus, the lipid 
composition of mitochondrial membranes can affect specific proteins and impact vital functions of 
mitochondria, such as oxidative phosphorylation and dynamics. The liver possesses a critical function in 
lipid homeostasis, involving the generation, oxidation, and trafficking of free fatty acids (FFA), triglycerides 
(TG), cholesterol, and bile acids (BAs). Mitochondria play a key role in lipid storage regulation in 
hepatocytes, which can control liver function. Their diverse tasks are affected by the lipid composition of 
mitochondrial membranes, characterized by low cholesterol content and enrichment of specific lipids such 
as cardiolipin. As mitochondria determine the bioenergetic status of cells and are key regulators of cell 
viability, alterations of mitochondrial lipid composition can contribute to the induction and progression of 
chronic diseases, including alcohol-related liver disease (ARLD) and metabolic dysfunction-associated 
steatotic liver disease (MASLD), two of the most common forms of liver diseases characterized by steatosis, 
necroinflammation, and fibrosis, which can progress to hepatocellular carcinoma (HCC). Thus, the 
disruption of lipid metabolism and membrane composition of mitochondria are characteristic features of 
cancer cells, and altered mitochondrial lipid composition may be a critical player in the progression of 
chronic liver diseases toward HCC. This review will address the mechanisms whereby alterations of 
mitochondrial lipid composition lead to the onset and progression of chronic liver diseases. Thus, a better 
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characterization of the alterations of lipid composition in mitochondria may be a crucial step to design 
strategies and novel therapeutic opportunities for the treatment of MASLD and ARLD.
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Introduction
Mitochondria are intracellular double membrane-bound organelles that supply energy for the intracellular 
metabolism in eukaryotic cells. Mitochondria are crucial for the assembly of iron-sulfur clusters, calcium 
homeostasis, and metabolism of carbohydrates, lipids, and proteins. Mitochondria are also pivotal in 
cellular survival by regulating strategic pathways involved in the intrinsic or death receptor-mediated cell 
death. Their structure and membrane composition are unique (Figure 1). The existence of double encircling 
membranes, the outer (OMM) and the inner (IMM) membrane, is the manifestation of the endosymbiotic 
foundation of mitochondria about two million years ago [1, 2]. The presence of the OMM and IMM defines 
two different spatial regions: the intermembrane space (IMS) and the mitochondrial matrix, where 
mitochondrial DNA (mtDNA) and ribosomes are present and participate in the transcription and translation 
of proteins encoded by mitochondria [3, 4]. The IMS, localized between OMM and IMM, controls important 
functions, such as protein sorting, redox balance with glutathione (GSH) reduction and oxidation, 
cytochrome c (Cyt C) release, and apoptotic cascade activation [4, 5]. Distinctive characteristics and 
particular functions distinguish mitochondrial membranes from other membrane bilayers. Even at the 
specific contact sites between the OMM and IMM, there exists a different protein and lipid composition [6, 
7].

Mitochondrial membranes exhibit predominantly phospholipids, such as phosphatidylcholine (PC), 
phosphatidylethanolamine (PE), and phosphatidylserine (PS), and low levels of sphingolipids and sterols 
[18–21]. A unique mitochondrial characteristic consists in the presence of cardiolipin (CL), a negatively 
charged phospholipid located in the IMM, which plays an essential role in the maintenance of membrane 
integrity and cristae morphology [22]. Its particular conical shape allows for hexagonal structure formation 
that generates strongly curved areas within the IMM. Moreover, CL is involved in the generation and 
preservation of protein-protein and protein-membrane interactions [23, 24], conservation of the 
mitochondrial respiratory chain complexes [25, 26], organization of supercomplexes [27], and assembly of 
F1F0-ATP synthase dimers. Therefore, compromised CL biosynthesis is linked to damaged cristae 
morphology and consequently modifies mitochondria shape and dynamics [28–30], respiration, and 
capability to cope with energy demands through oxidative phosphorylation (OXPHOS) [31, 32]. CL can also 
flip to the OMM, serving as a signaling molecule to activate mitophagy and apoptotic signaling pathways 
[33, 34] under stress conditions.

Another feature of mitochondria is the high content of proteins, the majority of which are implicated in 
OXPHOS and organized in respiratory chain complexes, including the F1F0-ATP synthase and the presence 
of solute carriers in IMM [35–37]. Most mitochondrial proteins are generated as precursors on cytosolic 
ribosomes and then transferred and organized into distinct organelle compartments by protein 
translocases [12–16]. Moreover, mitochondria continuously experience fusion and fission, which implicate 
transitory disruption of the classical membrane bilayer and mixture of phospholipids. This event promotes 
the interchange of mitochondrial content, including mtDNA, which is critical for the generation of ATP in 
the OXPHOS [10, 11]. Besides, the IMM splits into inner borders and cristae to define specific invaginations 
where the respiratory chain machinery is located, which can undergo extensive transformation to release 
Cyt C during apoptotic signaling [9]. The mitochondrial electron transport chain (ETC) is one of the 
principal sources of reactive oxygen species (ROS) [8], principally due to complex I (CI, NADH coenzyme Q 
reductase) and complex III (CI, ubiquinol Cyt C reductase) activities [38, 39]. During electron trafficking to 
molecular oxygen (O2) for ATP production in the ETC, electron leakage at these two complexes is accepted 
by O2, generating superoxide anion (O2

•−) as a side product of OXPHOS, that subsequently dismutates to 
hydrogen peroxide (H2O2) [40, 41].
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Figure 1. Schematic illustration of mitochondrial architecture and function. Mitochondria are conformed by two bilayers 
separated by the intermembrane space: the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane 
(IMM) [1–3]. The IMM surrounds the mitochondrial matrix, where mitochondrial DNA (mtDNA) and ribosomes are located [4], 
and it includes the inner boundary membrane (IBM) and mitochondrial cristae. Each bilayer has a specific lipid composition and 
IMM is specially enriched in proteins [7]. Concretely, mitochondrial cristae contain the respiratory chain complexes and the 
F1F0-ATP synthase, harboring oxidative phosphorylation to obtain energy. The overflow of electrons between each complex 
generates reactive oxygen species (ROS) that are reduced by mitochondrial antioxidants, such as glutathione (GSH) [8]. ROS 
can impair mitochondrial constituents, such as mtDNA, phospholipids, and proteins, leading to cytochrome c (Cyt c) detachment 
from IMM and releasing it into the cytosol via Bax/Bak oligomerization [4, 5, 9]. Furthermore, ROS production can be enhanced 
by an altered calcium (Ca2+) homeostasis. Mitochondrial dynamics depend on fusion/fission processes. Fusion relies on 
mitofusin 1/2 (MFN1/2) of the OMM, and optic atrophy protein 1 (OPA1), placed at IMM. In contrast, fission is regulated by 
dynamin-related protein 1 (Drp-1), which interacts with fission protein 1 (FIS1) [10, 11]. Mitochondria also have a protein 
machinery to translocate proteins into the matrix. This machinery is composed of the translocase of the outer membrane (TOM) 
channel the sorting and assembly machinery (SAM) in the OMM and the translocase of the inner membrane (TIM23) in the IBM 
[12–17]. Ub: ubiquitin; SUMO: small ubiquitin-like modifier; tBID: proapoptotic truncated BID; VDAC: voltage-dependent anion 
channel; SOD2: superoxide dismutase 2; GPX: glutathione peroxidase; GSSG: glutathione disulfide; O2

•−: superoxide; OH–: 
hydroxyl radical
Note. Adapted from “Electron Transport Chain”, “Mitochondrial Membrane (Phospholipid Bilayers)”, and “Protein Import into the 
Mitochondria”, by BioRender.com (2024). Retrieved from https://app.biorender.com/biorender-templates

The endoplasmic reticulum (ER) is responsible for lipid biosynthesis in cells, arising as the main source 
of essential components of membrane bilayers such as phospholipids and cholesterol, which are distributed 
to different intracellular compartments, including mitochondria. Unlike other lipid species, CL is 
synthesized within mitochondria where it plays essential roles in mitochondrial function (see below), Thus, 
the communication between mitochondria and the ER via mitochondria—ER membrane contact sites is 
crucial to mitochondrial lipid biosynthesis and calcium exchange [42].

In this review, we will provide evidence for the contribution that alterations in mitochondrial 
membrane lipid composition have on the development and progression of metabolic liver diseases, 
including metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver 
disease (ARLD).

Mitochondrial lipid composition

Lipid composition influences the biophysical properties of membrane bilayers. In turn, membrane fluidity 
controls diverse membrane-associated processes, including membrane—protein contacts and function, 
signal transduction, and membrane fusion and fission events that ultimately regulate organelle biogenesis 
and growth, dynamics, and vesicular trafficking [43, 44]. In addition, lipids can act as signaling 
intermediates that trigger specific signaling pathways, as best illustrated by the hydrolysis of 
sphingomyelin by sphingomyelinases.

Focusing on the molecular organization of membrane lipids, they can generally be classified as 
phospholipids, sphingolipids, and sterols [45]. Phospholipids, the most abundant lipids in bilayers, are 
formed by a glycerol backbone with one (or two, in CL) phosphate group(s) together with fatty acid (FA) 
side chains [46]. The main phospholipids of mitochondrial membranes are PC and PE, accounting for 
40–45% and 25–30% respectively of the total lipid composition, with phosphatidylinositol (PI) and CL 
representing 10–15%, while PS is the less abundant phospholipid (3–5%) [18–21]. The amount of these 
lipids differs between the IMM and OMM. For example, the IMM is enriched in PE and CL [21, 24].

In contrast, sphingolipids are characterized by a sphingoid backbone formed by the condensation 
between palmitoyl-CoA with serine [47]. Sphingosine is the singular sphingoid precursor, consisting of the 
palmitoyl-CoA-serine backbone. Fatty acyl chains of varying length acylate the sphingosine backbone to 
form sphingolipids of which ceramides are the most intensively studied. Ceramides are a heterogeneous 
family of sphingolipids that exhibit a large degree of FA of different lengths determined by 6 ceramide 
synthases (CerS1–CerS6), which exhibit different affinity towards short or long-chain FA. Ceramides, like 
most sphingolipids, are synthesized in the ER and then undergo exchange and transport to different 
membrane bilayers in the cell, including mitochondria through the ER-mitochondria contact sites [48, 49].

Not only does the presence of diverse fatty acyl chains with different lengths and saturation regulates 
the flexibility and stiffness of the bilayer, but also the existence of cholesterol is key in membrane fluidity 
regulation [50]. For instance, although the amount of cholesterol in mitochondrial membranes is low 
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compared to its abundance in plasma membranes, the OMM is relatively enriched in this sterol compared to 
IMM.

Fatty acyl chains in the backbone of lipids can be oxidized by lipid peroxidation, which results in 
membrane bilayer damage thereby affecting cell integrity and organelle performance [51–54]. Oxidative 
damage to the mitochondrial lipidome induces mitochondrial dysfunction [55]. As mentioned above, CL is 
crucial for OXPHOS [23, 27, 56, 57], mitochondrial dynamics [58], ATP production, and apoptosis [59, 60]. 
Due to this key role in mitochondrial physiology, decreased CL levels caused either by low biosynthesis of 
CL, as in the rare genetic disorder of Barth syndrome, or CL loss by lipid peroxidation due to its 
susceptibility to ROS attach, compromise mitochondrial function with low OXPHOS activity and ATP 
generation [61].

Mitochondrial dynamics are controlled by lipid composition via diacylglyceride (DAG), PE, PS, and 
cholesterol, promoting negative membrane bends essential for mitochondrial fusion [62]. In addition, the 
import of proteins is pivotal for mitochondrial synthesis and activity. Many mitochondrial proteins are 
produced as precursors on cytosolic ribosomes and then are transferred to mitochondria. Phospholipids 
possess important functions in protein trafficking through and into mitochondrial membranes. Concretely, 
CL, PE, and PC distinctly influence protein translocases of both OMM and IMM, such as the translocase of 
the OMM (TOM) complex activity, which depends on OMM phospholipids [17], and the dynamic translocase 
of the inner membrane 23 (TIM23) and S-adenosylmethionine carrier (SAM) complexes. The association of 
phospholipids-proteins in specific domains displays a central task in the biogenesis and function of 
mitochondria [63, 64]. Modifications in the content of lipids within the organelle induce expanded, 
fragmented, and dysfunctional mitochondria, which is associated with diverse diseases [65].

Mitochondria in steatotic liver diseases
The liver is a central hub for lipid metabolism and the disruption of hepatic lipid homeostasis is a key step 
in metabolic liver disease development. As liver mitochondria oxidize FA to obtain energy by ETC, the loss 
of mitochondrial function due to changes in mitochondrial membrane lipid composition can contribute to 
the accumulation of lipids, resulting in steatosis. This first phase of MASLD can progress to advanced stages 
of the disease, characterized by mitochondrial dysfunction, generation of oxidative stress, hepatocellular 
damage, inflammation, and fibrosis. In Table 1, we have summarized recent results on how changes in 
different lipids (from mitochondrial membranes or as a result of mitochondria-lipid interaction), influence 
the development of liver diseases.

Mitochondria in MASLD and progression to advanced stages

MASLD is a multifaceted spectrum of liver alterations linked to genetic, epigenetic, and environmental risk 
factors that affect lipid homeostasis, altering the generation, oxidation, and release of free fatty acids (FFA), 
cholesterol, triglycerides (TG), and bile acids (BAs). First considered as a consequence of “two-hits” in a 
simplistic initial hypothesis, the pathogenesis of this complex liver disease was later recognized in the 
“multiple hits” hypothesis in which the accumulation of lipids in hepatocytes in the onset of MASLD 
sensitizes the liver to the action of several hits [91–93]. Therefore, steatosis can progress to advanced 
forms, such as metabolic-associated steatohepatitis (MASH), where lipid deposition coexists with 
inflammation, liver injury, and fibrosis. Then, it can progress to cirrhosis and culminate in hepatocellular 
carcinoma (HCC) [94, 95]. MASLD is recognized as the most prevalent chronic liver disease worldwide 
(25% occurrence of normal population) and more than 50% of type 2 diabetic and overweight patients 
suffer it [96]. Hence, the current definition of MASLD includes steatotic, overweight, type 2 diabetes, or 
metabolic dysregulated patients [97, 98].

During steatosis, impaired lipid and glucose metabolism arises principally from high-fat diet (HFD) 
consumption, resulting in diverse lipid accumulation (FFAs, DAG, TG, ceramides, and cholesterol). The 
complex process associated with mitochondrial proteome alteration and mitochondrial dysfunction is 
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Table 1. Changes in mitochondrial lipid composition in different disease models of MASLD, ARLD, and HCC

Lipids Mitochondrial changes Disease outcomes Disease model

↑ mitochondrial fatty acid β-oxidation at early stages ARLD [66]

MASLD [67]

Mice

↓ mitochondrial fatty acid β-oxidation at advanced stages ARLD [68–70]
MASH [67, 68, 71]

Mice

↓ nicotinamide adenine dinucleotide (NAD+/NADH) levels in mitochondria ARLD [69]
MASLD [68]

↑ carnitine palmitoyltransferase-1 in mitochondrial membrane MASLD [67] Mice
↑ lipid peroxidation in mitochondria ARLD [72]

MASLD [71]

MASH [71]

Rat
HepG2

↓ ETC coupling (CI, CIV) MASLD [71]

MASH [67, 71]

Mice

↓ mitophagy mediated by NLRP3 activation and AMPK inhibition MASLD [73, 74] Mice
Cells

↑ mitochondrial attachment to lipid droplets because of diacylglycerol-O-acyltransferase-2 increased activity MASLD [67]
↑ lipid peroxidation in mitochondria ARLD [72]

MASLD [71]

MASH [71]

Rat

HepG2

Fatty acids

↓ mesh due to altered mitochondrial membrane composition ARLD [75, 76]

MASLD [68]

Rat

Diacylglycerides ↑ pyroptosis via NLRP3 activation MASH [77] Mice

Human
↑ mitochondrial oxidative flux MASLD [68]
↓ membrane fluidity if the cholesterol/triglycerides ratio is altered ARLD [76] Rat

Glyceride

Triglycerides

↑ tumor anabolism HCC [78]
↑ NLRP3 and apoptosis by CL peroxidation and redistribution from IMM to OMM ARLD [69, 75, 76]

MASLD [68]

Rat

↓ ETC complex activity (CI, CIII, CIV, and ADP/ATP carrier) ARLD [69]
MASLD [67, 71, 79]

Rat

ARLD [80]
MASLD [67, 71]

Phospholipid Cardiolipin

↑ mPTP opening and cytochrome c release by Bcl-2 family proteins interaction (Bax) Rat
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Lipids Mitochondrial changes Disease outcomes Disease model

MASH [80]
↓ mitochondrial ROS production by CYP2E1 inhibition ARLD [72]Phosphatidylcholine
↑apoptosis due to changes in mitochondrial phosphatidylcholine redox state and through JNK activation ARLD [76]

MASLD [68, 79]

MASH [68, 77]

Mice
Rat

Human
Phosphatidylethanolamine ↓ membrane fluidity ARLD [76]

↑mitochondrial ROS generation and apoptosis by TNFα/Fas signaling ARLD [70, 75, 81]

MASLD [68, 73]
MASH [81]

PMH

↓ ETC (CIII) ARLD [70]
MASH [67]

Mice

↓ mitochondrial fatty acid β-oxidation MASLD [68]

MASH [67]

Mice

↓ mitophagy through NLRP3 activation     MASLD [73]
↓ mitochondrial membrane permeabilization HCC [82] Cell line

Ceramide

↑ mitochondrial depolarization MASLD [82]

Sphingolipid

Ganglioside ↑ ETC (CIII) MASH [67]
↑ mitochondrial ROS production ARLD [75, 83]

MASH [83]
Cells
Human

↓ ETC (CI) MASLD [84]
ARLD [69]

HCC [83]
↑survival by a defective assembly of the apoptosome HCC [80, 83] Rat
↓ mitochondrial membrane permeabilization ARLD [75, 76, 83]

MASLD [84]
MASH [67, 83, 85]

HCC [80, 83]

HepG2

Mice
Rats

Monkeys

Human
↓ mitochondrial protein transport (SLC25A11) by TNFα and Fas-induced apoptosis ARLD [69, 75, 80, 83, 86]

MASH [80, 83, 85, 87]

PMH

Mice
Human

Sterol Cholesterol



Table 1. Changes in mitochondrial lipid composition in different disease models of MASLD, ARLD, and HCC (continued)

Explor Dig Dis. 2024;3:382–413 | https://doi.org/10.37349/edd.2024.00057 Page 389

Lipids Mitochondrial changes Disease outcomes Disease model

↑ mitochondrial fusion (megamitochondria) ARLD [69] Mice
↑ mPTP by JNK-dependent proinflammatory pathway ARLD [75]

MASH [68]

PMH

↑ alternative (acidic) bile synthesis pathway MASLD [84]

MASH [88, 89]
HCC [88]

PRH

Mice

↓ motility and fusion rates of peridroplets mitochondria MASLD [67]
↑ megamitochondria through fusion-fission rates alteration ARLD [66] Mice

Lipid droplets

↑ function of cytosolic mitochondria MASLD [90]

HCC [90]
MASLD: metabolic dysfunction-associated steatotic liver disease; ARLD: alcohol-related liver disease; HCC: hepatocellular carcinoma; MASH: metabolic-associated steatohepatitis; ETC: 
electron transport chain; NLRP3: NLR family pyrin domain containing 3; IMM: inner mitochondrial membrane; OMM: outer mitochondrial membrane; mPTP: mitochondrial permeability transition 
pore; ROS: reactive oxygen species; JNK: c-Jun N-terminal kinase; TNFα: tumor necrosis factor-alpha

considered a major player in the transition from MASLD to MASH [99]. Mitochondria play a central role in the regulation of lipid metabolism and hence disruption 
of mitochondrial function contributes to hepatic steatosis [100].

Mitochondrial lipid variation has been described in patients at different stages of the MASLD continuum, with increased CL and ubiquinone in early MASLD 
but increased acylcarnitine in MASH [101]. The impact of these changes on mitochondrial function during MASLD is not well established. Patients with MASH 
display reduced activities of the respiratory chain complexes, which correlated with serum tumor necrotic factor-alpha (TNFα), and insulin resistance (IR) [101]. 
There are findings either indicating impaired respiration or increased mitochondrial mass but lower maximal respiration in obese subjects with MASH, which 
contrasts with reports of increased hepatic mitochondrial function in the same category of patients [102]. In line with the impaired mitochondrial performance, 
increased hepatic oxidative stress and oxidative DNA damage have been reported in parallel with reduced antioxidant defense [74, 103].

MASH patients also accumulate microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and sequestosome-1 (p62), a marker of Mallory-Denk bodies, 
which are associated with disease complications [104]. As mitochondrial quality control is regulated by mitophagy, intervention in this process modulates the 
implication of mitochondria in MASLD progression. In this regard, knocking down the cell survival regulator macrophage stimulating 1 (MST1), promoted PTEN-
induced kinase 1 (PINK1)/Parkin-related mitophagy and reduced HFD-associated liver damage [105]. Besides, optic atrophy type 1 protein (OPA1) inhibition 
prevented mitophagy intermediates overload and mitigated methionine-choline-deficient (MCD) diet-promoted liver damage [106].

Mitochondrial morphology changes during MASLD in experimental models, with the appearance of fragmented morphology in parallel with Ca2+ increment, 
reduced OXPHOS activity, and increased ROS generation. Mitochondrial ROS generation has detrimental effects on the development of MASLD [107]. For instance, 
elevated ROS levels induce the production of cytokines and c-Jun N-terminal kinase (JNK) activation, which plays a feed-forward loop in mitochondrial 
dysfunction. This scenario leads to impaired β-oxidation, promoting FA accumulation and ATP depletion in hepatocytes while worsening insulin signaling. 



Explor Dig Dis. 2024;3:382–413 | https://doi.org/10.37349/edd.2024.00057 Page 390

Damaged mitochondria accumulation within hepatocytes drives necrotic cell death and the leakage of DNA-
enhanced mitochondria-induced danger-associated molecular patterns (DAMPs), such as mtDNA, N-formyl 
peptides, and ATP, which promote the inflammasomes NLR family pyrin domain containing 3 (NLRP3) and 
absent in melanoma 2 (AIM2) through toll-like receptors (TLRs) recognition [108–110]. It is also important 
to mention that the translocation of CL to the OMM acts as a docking site to recruit and bind inflammasome 
components like NLRP3. Furthermore, these signals promote TLR9 activation on Kupffer cells (KCs) and 
hepatic stellate cells (HSCs), and formyl peptide receptor 1 (FPR1) stimulation, which induces interferon 
regulatory factor (IRF) and nuclear factor kappa β (NFκβ) action [111]. In turn, the generation of 
inflammatory cytokines and activation of fibrogenic players establish a chronic inflammatory environment 
that participates in the progression of MASLD towards MASH and fibrosis (Figure 2). DAMPs have been 
detected in the plasma of MASH patients, linking mitochondrial dysfunction and inflammation during MASH 
[112]. Mitochondrial injury also promotes the depletion of nicotinamide adenine dinucleotide 
(NAD+/NADH) levels, which regulate an adaptive reaction to increased FFA hepatic levels [113] together 
with an augmented synthesis of mitochondrial free cholesterol and the JNK-dependent proinflammatory 
routes [114, 115]. The last promotes leakage of mitochondrial components via the mitochondrial 
permeability transition pore (mPTP) induction and hepatocyte death [116].

Concerning the transition from steatosis to MASH, pioneering observations pointed at free cholesterol 
increment. Its putative trafficking to mitochondria has emerged as an important player as shown in a 
cohort of patients with established MASH, which exhibited increased free cholesterol content and high 
expression of the steroidogenic acute regulatory protein (STARD1) compared to patients with simple 
steatosis [87]. These findings have been identified in the progression of MASLD towards advanced stages 
like HCC [122–124]. Thus, the cholesterol deposition at IMM by STARD1 has important negative 
consequences for the mitochondrial status, including the depletion of a crucial antioxidant defense like GSH, 
which reflects the defect in the activity of the 2-oxoglutarate carrier (2-OGC; SLC25A11) due to its 
sensitivity to cholesterol-promoted modifications in membrane fluidity [125, 126], and the impairment in 
the assembly of respiratory supercomplexes and thus OXPHOS [117, 127]. Hence, STARD1 activation 
reflecting increased mitochondrial cholesterol (mChol) levels [128], account for the mitochondrial GSH 
(mGSH) depletion found in MASH patients [129, 130], who also presented mitochondria ultrastructural 
abnormalities [131] and mitochondrial dysfunction [132]. In addition, the accumulation of cholesterol in 
KCs and HSCs accounts for stimulated inflammation and fibrosis, characteristic of the advanced stages of 
MASLD [87, 121, 122, 133]. Overall, the evidences in patients and experimental models indicate that the 
type rather than the amount of fat is a key player in MASLD progression, with the increase in cholesterol 
and in particular in mitochondrial membrane emerging as a putative new target for intervention to prevent 
progression of MASLD.

Mitochondria function in HCC

HCC is the main type of liver cancer and the second principal cause of cancer-related demise in the world 
due to the delay in diagnosis and modest therapeutic strategies, becoming a global health concern [134, 
135]. HCC is the final stage of chronic liver diseases caused by several etiologies, including viral hepatitis, 
ARLD, or MASH [136, 137]. The pathogenesis of HCC is complex and multifactorial and, besides genetic 
factors and DNA damage, a plethora of players, including lipotoxicity, mitochondrial dysfunction, oxidative 
stress, inflammation, ER stress, and the disruption in Ca2+ homeostasis induce the perfect milieu for tumor 
development [136] (Figure 3).

Metabolic variations are abundant in cancer pathogenesis. HCC cells subsist in a potently abundant fat 
milieu [78, 147]. Peroxisome proliferator-activated receptor gamma co-activator 1β (PGC-1β) controls 
hepatic oxidative metabolism, mitochondria biogenesis, and antioxidant defense mechanisms. It also plays a 
pivotal function in cancer progression, supporting metabolic modifications by lipogenic enzyme activation, 
driving tumor growth and anabolism, and activating gene expression in FA and TG production [78]. 
Elevated PGC-1β levels activate the expression of ROS scavengers, such as superoxide dismutase (SOD), 
catalase, glutathione peroxidase (GPX), glutathione reductase (GR), thioredoxin (Trx) and peroxiredoxins 
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Figure 2. Mitochondrial dysfunction in metabolic-associated steatohepatitis-hepatocellular carcinoma (MASH-HCC) 
progression. In the cytoplasm, fatty acids bound to CoA (FA-CoA) are transported through the outer (OMM) and inner 
mitochondrial membranes (IMM), for β-oxidation. The resulting acetyl-CoA is metabolized in the tricarboxylic acid cycle (TCA) or 
used in the mevalonate pathway to synthesize cholesterol, which can also come from diet and be transported to the 
mitochondria via steroidogenic acute regulatory protein (STARD1) transporter [87, 88]. STARD1 is not only overexpressed in 
hepatic cells but also stellate hepatic cells. Changes in the fluidity of the mitochondrial membrane due to cholesterol deposition 
lead to reduced activity of mitochondrial proteins such as the 2-oxoglutarate carrier (2-OGC). Alterations in OXPHOS, reactive 
oxygen species (ROS) production [91], the low levels of mitochondrial glutathione (mGSH), and tumor necrosis factor-alpha 
(TNFα) signaling [101, 117] stimulate c-Jun N-terminals kinase (JNK) action, leading to altered glucose metabolism, apoptosis 
via mitochondrial permeability transition pore (mPTP) formation [87] and the apoptosome formation by cytochrome c release. In 
the transition between MASH and HCC, mitophagy is compromised: as the mitochondrial membrane potential shrinks, PTEN-
induced kinase 1 (PINK1) recruits Parkin, which ubiquitinates the voltage-dependent anion channel (VDAC) [108–110]. The 
overexpression of macrophage stimulating 1 (MST1) enhances repressed Parkin, leading to mitochondrial fission activation and 
mitophagy inhibition [104, 105]. A high-fat diet can lead to intestinal microbiota dysbiosis. By entering the portal circulation, 
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) bind to toll-like 
receptors (TLR) from Kupffer cells and activate nuclear factor kappa B (NFκβ) [108–110, 118]. This initiates the gene 
transcription of inflammasome components, such as NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3). Active 
caspase 1 promotes pro-interleukin-1β (pro-IL-1β) and gasdermin D (GSMD) cleavage into their mature forms. The amino 
terminal fragments of N-terminal of gasdermin D (GSDMD) form pores at the cell membrane by oligomerization for pyropoptosis. 
In turn, IL-1β release promotes attraction and activation of further immune cells to the liver as well as stimulates HSC [77, 119, 
120]. PAMPs and DAMPs can bind also to formyl peptide receptor 1 (FPR1), stimulating fibrogenic gene transcription. Foam 
hepatocytes release vesicles containing mitochondrial DNA (mtDNA) and intact mitochondria. Once DAMPs are internalized, 
TLR9 recognizes mtDNA at the endosomes of Kupffer cells and hepatic stellate cells, inducing proinflammatory cytokines 
secretion [112, 121, 122], such as TNFα [101] and IL-1β, which can further enhance hepatic damage. LD: lipid droplets; TAG: 
triacylglycerides; LC3-II: microtubule-associated protein 1A/1B-light chain 3; IRF1: interferon regulatory factor 1; OPA1: optic 
atrophy type 1 protein; Cyt C: cytochrome c; ROS: reactive oxygen species; ETC: electron transport chain
Note. Adapted from “Suppression of Inflammasome by IRF4 and IRF8 is critical for T cell Priming”, by BioRender.com (2024). 
Retrieved from https://app.biorender.com/biorender-templates

(Prx), reducing ROS overload and subsequent apoptosis. In contrast, PGC-1β knockdown protects mice 
from cancer development [78].

Linked to the progression of MASLD, unphysiological overload of mChol has been found in HCC and has 
been associated with tumor growth and malignancy [141, 142, 148]. As previously described, mChol 
promotes a reduction of the mitochondria membrane fluidity [84, 149], increasing the mitochondrial 
membrane order of HCC cancer cells [143, 150–152]. Paradoxically, this event does not decrease mGSH in 
cancer cells because of the adaptive overexpression of 2-oxoglutarate transporter (2-OGC or SLC25A11) 
through hypoxia-inducible factor-1 (HIF-1) stabilization [125, 126, 152]. Consequently, ATP production is 
supported via OXPHOS and glycolysis [152, 153], which is an intriguing vis-à-vis the reported negative 
effect of mChol in the assembly of mitochondrial respiratory supercomplexes to support OXPHOS [84]. 
Therefore, this scenario favors tumor growth by the synergism between protection against mitochondrial 
OMM permeabilization and defense against oxidative stress [117, 154]. In line with these effects of mChol in 
cancer cell survival, recent findings indicated that mChol overload promotes sorafenib resistance of HCC 
cells [155], validating the critical function of mChol in HCC progression.

As alluded to above, CL is vital for mitochondrial ATP production in the respiratory chain and for 
preserving IMM organization [28, 80]. Oxidative modifications of CL, due to ROS attack to double bonds of 
its FA constituents, not only influence CI, CIII, and complex IV (CIV) function [156–158] but also regulate 
programmed cell death by controlling Cyt C leakage and by attaching to the B-cell lymphoma 2 (Bcl-2) 
family protein Bid to promote Bax and Bak oligomerization and subsequent OMM permeabilization [34, 71, 
79, 159, 160]. Thus, the outcome of mChol acting as a proapoptotic versus an antiapoptotic factor in HCC 
cells depends on the oxidized status of CL, which in turn depends on the mGSH levels. In stages pre-HCC like 
early MASLD, mChol accumulation causes mGSH depletion and CL peroxidation, which overall contribute to 
hepatocellular cell death and mitochondrial dysfunction. However, in established HCC, CL is intact due to 
increased expression of SLC25A11, contributing to apoptosis resistance and tumor growth promotion.

The transport and metabolism of cholesterol in IMM acts as an alternative pathway for the generation 
of BAs generation in the so-called mitochondrial acidic pathway [161–163]. BAs are synthesized in 
hepatocytes predominantly by the classic pathway, which is controlled by 7α-hydroxylase (CYP7A1), and to 
a lesser extent by the mitochondrial alternative pathway, which is determined by the availability of 
cholesterol in the IMM for its metabolism by sterol 27-hydroxylase (CYP27A1). As the transport of 
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Figure 3. Mitochondrial changes in hepatocellular carcinoma (HCC) development. Lipid accumulation in the liver results in an 
alteration of Ca2+ homeostasis [138]. The loss of the cation in the endoplasmic reticulum (ER) and consequent increase in the 
cytoplasm and mitochondrial matrix of the hepatocyte leads to the creation of reactive oxygen species (ROS) that causes 
mutations in nuclear and mitochondrial DNA (mtDNA), thus activating proliferative genes and inhibiting oncosuppressor genes 
[138]. Among them, nuclear factor erythroid 2-related factor 2 (Nrf2) activation defends from oxidative stress, reduces 
cytokeratin 19 (CK-19) expression, and promotes the ER stress response mediated by the fibroblast growth factor 19 (FGF19) 
pathway [139, 140]. Also, the overexpression of proliferator-activated receptor-gamma coactivator-1 beta (PGC-1β) induces 
fatty acid oxidation gene expression and promotes tumor growth and anabolic metabolism. The main lipids in HCC are 
cholesterol and cardiolipin (CL) [78]. Increased cholesterol in the inner mitochondrial membrane (IMM) due to overexpression of 
the STARD1 transporter, alters membrane fluidity, endowing tumor cells with reduced permeability and thus increased 
resistance to chemotherapy [84, 141–143]. Furthermore, the acidic pathway of bile acid (BA) synthesis is overactive. Although 
membrane stiffness affects the activity of the glutathione transporter 2-oxoglutarate (2-OGC), stabilization of hypoxia-inducible 
factor 1 (HIF-1) promotes its overexpression, thus maintaining glutathione (GSH) levels in the mitochondrial matrix [125, 126]. 
The high antioxidant capacity of tumor cells prevents oxidation of CL, keeping the electron transport chain stable and preventing 
the release of cytochrome c [28, 80]. In turn, cholesterol accumulation increases the synthesis of lipotoxic BAs resulting from the 
acid pathway of BA synthesis in mitochondria [88]. In HCC, mitochondrial dynamics are altered by overexpression of dynamin-
related protein 1 (DRP1) and mitochondrial fission 1 protein (Fis1) and decreased expression of mitofusin 1/2 (MFN1/2), leading 
to increased mitochondrial fission [144–146]. DAG: diacylglyceride; PKC: protein kinase C; MAMs: mitochondria-associated 
membranes; ATF4: activating transcription factor 4; HO-1: heme oxygenase 1; GSK-3β: glycogen synthase kinase-3 beta; 
FGFR4: fibroblast growth factor receptor 4; OPA1: optic atrophy type 1 protein; Ub: ubiquitin. Created with BioRender.com

cholesterol to IMM is determined by STARD1, the overexpression of this carrier in MASLD dictates a unique 
role for STARD1 in stimulating BA synthesis in mitochondria. BAs are not only essential for fat digestion but 
they also regulate gene expression and promote inflammation. Thus, the expression of STARD1 favors the 
switch in the synthesis of BAs from the classic to the alternative pathway, and the generation of 
mitochondrial-derived chenodeoxycholic acid and its taurine forms have been described as a crucial step in 
the MASLD-driven HCC development [88].

Mitochondria in ARLD

ARLD encompasses a spectrum of hepatic alterations as the result of the ingestion of elevated doses of 
alcohol that comprises from steatosis, the first stage, to alcoholic hepatitis, cirrhosis, and HCC. Alcohol 
oxidative metabolism induces several events that are involved in ARLD progression, including the 
disruption in the balance between fat synthesis and degradation that underlies the onset of steatosis and 
the alterations in mitochondrial function and morphology.

Hepatic ethanol metabolism initiates with the enzyme alcohol dehydrogenase (ADH) transforming 
alcohol to acetaldehyde, which is then metabolized to acetate by the acetaldehyde dehydrogenase (ALDH). 
In addition, alcohol is also metabolized via the microsomal system cytochrome P450, CYP2E1, to 
acetaldehyde. Although the ADH has a higher affinity for alcohol than CYP2E1, the chronic consumption of 
alcohol induces the expression of CYP2E1 and becomes the preferential metabolic pathway for the 
metabolism of alcohol. In turn, acetaldehyde and the derived malonaldehyde can form protein adduct due 
to their reactivity, which can be enclosed by KCs, endothelial, and HSCs. This activates an inflammatory 
reaction that contributes to ARLD progression [164]. The molecular mechanisms that promote the 
deleterious effects of alcohol metabolism to cause ARLD are intricate and multifactorial and include 
disruption of lipid and methionine metabolism, alterations in mitochondrial dynamics, respiration, 
membrane structure, mtDNA oxidation, and ROS production [69], whose final impact in ARLD onset is 
determined by genetic and environmental factors.

Mitochondrial function in ARLD
Mitochondrial membrane structure and cholesterol homeostasis in ARLD

Lipid organization influences membrane conformation and modifies the function of proteins embedded in 
the bilayer. Two major modifications have been documented in the lipid configuration of hepatic 
mitochondria from rodents fed with ethanol: elevated cholesterol content and depleted CL level. Changes in 
lipid composition directly affect the physical properties of the bilayer, as exemplified by the relative ratio of 
PC to PE and particularly by the cholesterol/phospholipid molar ratio, which is a pivotal factor of 
membrane fluidity. The length and saturation of the fatty acyl chains of the PC/PE molecular species is 
another factor that regulates physical membrane properties, but especially the increase in cholesterol in a 
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particular bilayer restricts the rotation of acyl chains and determines the fluidity of the bilayer, which in 
turn can affect the activity of mitochondrial membrane proteins [75]. In this regard, alcohol consumption 
stimulates cholesterol content in hepatocytes and STARD1 expression, resulting in the trafficking and 
accumulation of cholesterol in mitochondrial membranes. Interestingly, the increase in the expression of 
STARD1 occurs in a zonal-dependent fashion with the predominant expression in the perivenous zone of 
the liver, coinciding with the predominant expression of CYP2E1 and the site of injury as a consequence of 
alcohol consumption [165]. The zonal-dependent increase in mChol by STARD1 causes mGSH depletion 
through impairment of the SLC25A11 function and the onset of oxidative stress, thus contributing to the 
pericentral damage caused by alcohol intake [125, 166]. As mentioned above, although mChol is the 
precursor for the synthesis of BAs in mitochondria and cholestasis is an accompanying complication of 
patients with alcoholic hepatitis, it remains to be established whether or not the increase in mChol by 
alcohol feeding in the pericentral zone contributes to the cholestatic manifestations in ARLD.

Mitochondrial dynamics in ARLD

Mitochondria are dynamic organelles that relocate in the cytoskeleton and control their morphology and 
function by a fine-tuned and highly regulated fusion/fission process, which is pivotal for the preservation of 
mitochondrial tasks and the management of metabolism and cellular signaling [167]. The equilibrium 
between fission and fusion impacts mitochondrial morphology and adapts their function to diverse 
stresses. It is also associated with cellular division, apoptosis, and autophagy. Mitochondrial dynamics are 
regulated by mitochondria-shaping proteins (MSP), of which mitofusin 1 and 2 (MFN1/2) and OPA1 are 
involved in mitochondrial fusion, while the cytosolic dynamin-related protein 1 (Drp-1) has a crucial role in 
mitochondrial fission [168–170].

ARLD patients exhibit alterations in the morphology of hepatic mitochondria, with the pioneering 
description of the presence of megamitochondria (large and elongated mitochondria) as a result of an 
elevated mitochondrial fusion activity, which triggers mitochondrial elongation and is related to the 
induction of OXPHOS activity and mtDNA relocation in the mild stage of the ARLD spectrum [171]. In 
addition, patients with alcoholic hepatitis displayed an elevated expression of Drp-1 in severe stages of the 
disease, an event that correlates with the data described in human precision-cut hepatic slices incubated 
with different ethanol concentrations [169]. Thus, chronic alcohol ingestion induces mitochondrial 
hyperfragmentation through Drp-1 overexpression, promoting more serious hepatic damage [169], 
pointing at Drp-1 inhibition as a potential therapy to regenerate the balance between mitochondrial 
dynamics. In line with this possibility, Drp-1 genetic knockdown protected against alcohol-induced 
hepatotoxicity in VL-17A cells and abolished the growth impairment induced by ethanol exposure. Besides, 
mice with Drp-1 liver-specific deletion fed the acute-on-chronic alcohol model exhibited less liver injury 
and the appearance of megamitochondria, with similar findings observed in MASLD following Drp-1 
inhibition, which caused decreased steatosis and oxidative stress [170, 172]. Thus, based on this existing 
evidence it is clear that the presence of megamitochondria is a positive adaptive reaction to alcohol intake 
and their presence in liver biopsies is a clinical and histological factor linked to a better prognosis in AH 
patients [173–176]. However, the elimination of megamitochondria via mitophagy is not an efficient 
process due to the size of this type of mitochondria, raising the question of whether the presence of 
megamitochondria is a transient process during the early adaptation to alcohol intake or not, which in case 
of persistence may contribute to mitochondrial maladaptation and disruption in the innate immune 
reaction that increases liver injury in the late phase of chronic ARLD [177–179]. The influence that the 
increase in cholesterol accumulation in mitochondria and subsequent change in membrane fluidity has on 
mitochondrial dynamics in ARLD remains to be fully established.

mtDNA in ARLD

In comparison with nuclear DNA, mtDNA is highly susceptible to free radical attack since is not protected 
by histones, and it is located near the IMM, the main cellular ROS source. Mitochondria display several 
mtDNA copies, and while some degree of mtDNA oxidation can occur, this may not necessarily compromise 
mitochondrial function, providing that intact copies are still available [180]. Cells mainly remove damaged 
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mtDNA and replicate intact copies to preserve the global mtDNA pool integrity. Thus, a remarkable 
transient decline of murine hepatic mtDNA was reported within hours after acute ethanol exposure, which 
was further prominent in older animals. This is consistent with the appearance of mtDNA fragments in the 
serum of patients with ARLD [181].

Alcohol intake and its oxidative metabolism induce oxidative stress, reflecting the unbalance between 
ROS generation and its scavenging by compromised antioxidant defense strategies. This disrupts 
mitochondrial organization and function, and subsequently drives to ROS formation in a vicious cycle of 
injury, which is more evident with aging. The “mitochondrial theory of aging” proposes that alterations in 
mtDNA overload compromise cellular energy metabolism, affecting cellular life span [182]. Besides O2

•− and 
H2O2 generated by changes in cholesterol homeostasis in mitochondria by ethanol intake, these species can 
also generate hydroxyl radical (OH–) by the Fenton reaction, which can attack mtDNA, leading to the release 
of purine and pyrimidine bases from mtDNA and strand breakdown [183]. Moreover, OH– directly modifies 
purine and pyrimidine bases, generating 8-oxoguanine (8-oxoG), which is regularly used as an indicator of 
free radical damage to DNA. It has been demonstrated that 8-oxoG and mtDNA strand break accumulation 
were remarkably increased in the livers of long-term ethanol-fed rats [184]. Since mtDNA encodes for 13 
constituents of the respiratory chain machinery, ethanol-driven mtDNA harm via ROS production can injure 
the mitochondrial respiratory complexes [185]. Moreover, alcohol impairs mitochondrial ribosomes 
leading to a reduction in mitochondrial protein synthesis, and ROS can oxidize intramitochondrial proteins 
[186], contributing to alcohol-induced liver injury.

Damaged mitochondria can activate the cascade of apoptosis and induce an innate and sterile 
inflammatory reaction by releasing apoptotic factors and/or mtDNA. In turn, mtDNA triggers cyclic 
guanosine monophosphate-adenosine monophosphate synthase (cGAS), which elevates secondary 
messenger cyclic 2’3’-cGAMP generation that initiates stimulator of interferon genes (STING), leading to 
IRF3 and IRF7 activation [187, 188]. This cGAS-IRF3 route is activated in experimental ARLD models and is 
positively associated with disorder severity in ARLD patients [189].

Mitochondrial respiration in ARLD

Alcohol-induced structural changes in mitochondria reflect alterations in mitochondrial OXPHOS. Although 
primary findings in alcohol-fed rat hepatic mitochondria have revealed depleted respiration via the 
downregulation of CIII and V synthesis [186, 190], recent findings described an opposing effect in mice, in 
which alcohol intake elevated state III respiration in hepatic mitochondria [66]. Remarkably, this increment 
in state III was more dramatic in the intragastric ethanol-fed model, which is associated with increased 
hepatic damage and advanced stage of ARLD, compared to the milder effect observed in oral ethanol 
consumption models. The impact of alcohol ingestion on mitochondrial performance is linked to the 
regeneration of NAD+ from NADH oxidation to stimulate oxidative alcohol metabolism. The transfer of 
electrons from NADH to the respiratory machinery to oxidize it to NAD+ in murine mitochondria stimulates 
the generation of ROS from the increased consumption of O2 in the ETC. Interestingly, the elevated 
respiration in mice vs rats correlates with the species-dependent susceptibility to ethanol-induced liver 
damage. That fact matches the mitochondrial regeneration of NAD+ from NADH, indicating that augmented 
respiration links ethanol consumption with elevated metabolism and ROS production. The importance of 
putative variations of mitochondrial respiration to ARLD patients is not well defined. Indirect evidence 
indicates a reduced mitochondrial function in ARLD patients, who exhibited a decreased peak exhalation of 
13CO2 from 2-keto[1-13C]isocaproic acid whereas aminopyrine breath assay and galactose removal 
capability were not modified [191]. Besides, in patients with high alcohol consumption, ARLD severity was 
linked to mtDNA fragment expression in hepatic tissue [192, 193]. Hence, these data suggest that ethanol 
ingestion is related to mitochondrial respiration disturbances, correlating with the severity of ARLD 
progression.

As alluded to above, a consequence of NAD+ regeneration from NADH oxidation, which is required for 
endured ethanol metabolism, is the increase in the leakage of electrons transported directly to O2 to 
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produce O2
•− [72]. In addition to this event, the consumption of ethanol further increased ROS generation 

via its metabolism through CYP2E1, as besides ER, it is also found in mitochondria and ethanol 
consumption induces its expression [194, 195]. In mitochondria, the principal defense against O2

•− 
production is SOD2, which generates H2O2, a powerful oxidant that forms reactive radicals via the Fenton 
reaction. Mitochondrial H2O2 detoxification can occur via the GSH redox cycle and the Prx-III systems. 
Reduced GSH level is critical for this GSH redox cycle which requires the participation of GPX-4, while the 
mitochondrial oxidized form of Prx-III, generated after the reduction of H2O2, is regenerated by Trx2 [196]. 
Mitochondria do not generate GSH de novo, therefore, they depend on cytosolic GSH to provide mGSH to 
the mitochondrial matrix. mGSH acts as a cofactor for GPX4 to detoxify H2O2 and other FAs-derived 
peroxides [190]. As mentioned above, the transport of cytosolic GSH through SLC25A11 is susceptible to 
changes in cholesterol-dependent modifications in membrane fluidity [190, 196, 197]. Although the relative 
importance between mGSH/GPX and the Prx-III/Trx2 systems in detoxifying H2O2 remains to be 
established, both antioxidant systems are interconnected, and mGSH depletion determines the efficiency of 
the Prx-III/Trx2 pair. Thus, alcohol-induced mChol trafficking may result in the perturbation of membrane 
physical properties, which can alter efficient antioxidant defense mechanisms, leading to alterations in the 
mechanisms of mitochondrial respiration.

Mitochondria and ER stress crosstalk in ARLD

The ER regulates the transport and maturation of membrane and secretory proteins, post-translational 
protein processing, and Ca2+ homeostasis. ER stress leads to lipid overload, inflammation, and cell death 
[198], and has been also described to play a key role in hepatic steatosis via sterol regulatory element-
binding proteins (SREBPs) activation (Figure 4). Disturbances in protein folding or modifications in lipid 
homeostasis lead to the initiation of the unfolded protein response (UPR) that induces the expression of the 
transcription of chaperones (GRP78/BiP) and the ER-associated degradation (ERAD) mechanisms [199–
201] to reestablish homeostasis. Alcohol ingestion promotes ER stress via diverse mechanisms, such as 
ceramide production via the acid sphingomyelinase (ASMase) activation, the production of acetaldehyde as 
a result of protein adducts formation in the ER, and also via oxidative stress [202]. A crucial mechanism of 
ethanol-promoted ER stress is the disruption of methionine metabolism, followed by a rise in homocysteine 
levels. In this regard, it has been demonstrated that feeding mice with betaine reduced ethanol-induced ER 
stress, liver steatosis, and hepatic damage [203]. In addition, ER stress can control mitochondrial function. 
Thus, Ca2+ homeostasis disturbances in the ER affect mitochondria due to the transport of Ca2+, which 
induces mitochondrial mPTP and cellular damage [70]. ER and mitochondria display physical interaction 
via mitochondrial-associated membranes (MAMs) defining the boundary of ER and mitochondria, which 
operate as a channel for the transfer of ions and lipids. In addition, ER stress can regulate cholesterol 
overload in mitochondrial membranes via STARD1 upregulation [86], a pivotal participant in metabolic 
hepatic disorders such as MASH and ARLD as mentioned above [87, 88]. Moreover, another connection 
between methionine metabolism and mitochondrial crosstalk has been revealed in ARLD. Methionine 
adenosyltransferase 1A (MAT1A) is normally located in the cytosol and nucleus, although new data 
described MAT1A also present in mitochondria, where it protects mitochondrial proteome and regulates 
mitochondrial performance [204]. Hepatic tissue from ARLD patients and mice fed alcohol displayed a 
remarkable reduction in MAT1A localization in mitochondria, facilitated by the isomerase peptidyl-prolyl 
cis/trans isomerase (PIN1) and the casein kinase (CK2). Prevention of PIN1-MAT1A interaction increases 
MAT1A levels in mitochondria and protects against alcohol-promoted mitochondrial malfunction and fat 
storage. However, whether the advantageous outcomes of targeting mitochondrial MAT1A results from 
SAM local generation to induce stronger methylation and elevated mitochondrial proteins remains to be 
established vis-à-vis the direct transport of cytosolic SAM to mitochondrial fraction by a transport system 
that is insensitive to changes in mitochondrial membrane fluidity [205].

Mitochondria and inflammasome crosstalk in ARLD

Inflammasome is known to be activated in ARLD [207] and it consists of a set of intracellular multiprotein 
oligomers [NLRP3, caspase-1, interleukin (IL)-1β] found in the cytosol. Inflammasome senses the pathogen-
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Figure 4. Alterations in mitochondrial function during alcohol-related liver disease (ARLD) development. Alcohol is metabolized 
by alcohol dehydrogenase (ADH), leading to acetaldehyde and subsequently to acetate by acetaldehyde dehydrogenase 
(ALDH). CYP2E1 can also metabolize alcohol in the endoplasmic reticulum. This process, together with the adducts formed by 
acetaldehyde and its by-products, causes high endoplasmic reticulum stress [69, 164]. Also contributing to this phenomenon is 
the overexpression of acid sphingomyelinase (ASMase) and the consequent increase in ceramides, oxidative stress, and 
alterations in methionine metabolism [75, 86]. ER stress promotes the activation of the three branches of the unfolded protein 
response (UPR) and the overexpression of the cholesterol transporter steroidogenic acute regulatory protein (STARD1) [199, 
200, 202]. Thus, in alcoholic steatohepatitis, there is an increased accumulation of cholesterol in the inner mitochondrial 
membrane (IMM). This cholesterol can come from both the diet and the mevalonate pathway. Its deposition in the IMM together 
with the decrease in cardiolipin causes increased mitochondrial membrane stiffness, reducing the activity of the 2-oxoglutarate 
carrier (2-OGC) transporter and, consequently, mitochondrial glutathione (mGSH) levels [75, 206]. In turn, cholesterol induces 
increased bile acid synthesis through the alternative route, further affecting mitochondrial antioxidant levels. The reduction of 
mGSH levels together with the high production of reactive species due to the alteration of the mitochondrial electron transport 
chain leads to an alteration of the glutathione peroxidase (GPX)-peroxiredoxin-3 (Prx-III)-thioredoxin (Trx-2) system [190, 196, 
197]. In ARLD, the action of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) and casein kinase 2 (CK2) are 
reduced and, consequently, methionine adenosyltransferase 1A (MAT1α) is able to metabolize methionine to S-
adenosylmethionine (SAM), which is transported to the mitochondria [204–206]. Calcium (Ca2+) homeostasis is altered in this 
environment and, consequently, mitochondrial permeability transition pore (mPTP) is stimulated. This whole scenario triggers 
inflammasome activation, IL-1β and IL-18 releasing to recruit immune cells, and leads to a translocation of cardiolipin from the 
IMM to the outer mitochondrial membrane (OMM) in the mitochondria-associated membranes (MAMs) [120, 207–209]. LDL: 
low-density lipoprotein; LDLR: LDL receptor; PCSK9: proprotein convertase subtilisin/kexin type 9; SOD2: superoxid dismutase 
2; O2

•−: superoxide; OH–: hydroxyl radical; CYP7A1: cholesterol 7α-hydroxylase; CYP27A1: cytochrome P450 family 27 
subfamily A member 1; VDAC: voltage-dependent anion channel; MCU: mitochondrial calcium uniporter; IP3R: inositol 1,4,5-
trisphosphate receptor; NLRP3: NLR family pyrin domain containing 3; SAH: S-adenosylhomocysteine; IL: interleukin; GSDMD: 
N-terminal of gasdermin D; TLR: toll-like receptor; PAMPs: pathogen-associated molecular pattern molecules; DAMPs: damage-
associated molecular patterns; XBP1: X-box binding protein 1; ERAD: endoplasmic-reticulum-associated protein degradation; 
ATF4: activating transcription factor 4; ATF6: activating transcription factor 4; CHOP: C/EBP homologous protein; Cyt c: 
cytochrome c
Note. Adapted from “Electron Transport Chain”, “PCSK9 Inhibitors”, and “Suppression of Inflammasome by IRF4 and IRF8 is 
Critical for T cell Priming”, by BioRender.com (2024). Retrieved from https://app.biorender.com/biorender-templates

associated molecular patterns (PAMPs) and DAMPs, RNA viruses, pore-forming toxins, cholesterol crystals 
and uric acid [120, 208], and triggers the generation and release of pro-inflammatory cytokines, as IL-1β 
and IL-18 [119, 209]. Diverse processes can activate NLRP3 inflammasome at MAMs, such as ROS 
generation by dysfunctional mitochondria [210], impaired mitophagy [118], mtDNA oxidation [120], and 
disturbances of the intestinal barrier that trigger the translocation of DAMPs and PAMPs. CL, located in 
MAMs, flips from the IMM to the OMM triggering NLRP3 initiation [211]. Furthermore, in MAMs, the 
trafficking of lipids and Ca2+ between ER and mitochondria takes place via voltage-dependent anion 
channel (VDAC) [212], which enables the NLRP3 inflammasome assembly [73]. Then, the association 
between ethanol metabolism and NLRP3 initiation is orchestrated via mitochondrial disruption, since 
mitochondria participate in the oxidative metabolism of ethanol, the initiation of ROS production, and 
oxidative stress. Thus, the crosstalk between mitochondria and inflammasome promotes ARLD progression 
and arises as a possible target for therapeutic intervention.

Conclusions and perspectives
Lipids are intricate biomolecules that determine the structural and physical properties of membranes, 
which in turn can regulate multiple signaling pathways. The multifaceted mitochondrial double membrane 
participates in ATP generation, oxidative stress, and cell death regulation. The lipid composition of the 
mitochondrial membrane, particularly the IMM, is distinctive in performing its numerous functions. 
Oxidative stress and apoptosis are well-recognized outcomes from the alterations of CL levels and redox 
status. Hence, genetic disorders disrupting enzymes involved in the synthesis and maturation of CL result in 
the disruption of mitochondrial organization with defective ATP generation and early cell death. 
Furthermore, modified fat metabolism and membrane content are critical characteristics of cancer cells. 
Alterations in mitochondrial membrane lipid configuration and fluidity are hallmarks of solid tumors, and 
CL with highly saturated acyl chains has been described in cell death-resistant cancer cell lines. In this 
regard, the mChol pool regulates metabolism and redox biology and contributes to the development of 
hepatic disorders, such as MASLD, MASH, ARLD, or HCC. Upregulation of STARD1 expression is responsible 
for the cholesterol transport and accumulation in mitochondria and its expression is induced by ER stress, 
thus establishing a link between ER stress and mitochondrial dysfunction in metabolic liver diseases, 
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MASLD and ARLD. In the liver, cholesterol accumulation alters mitochondria membrane fluidity and 
prevents the trafficking of GSH from the cytosol to the mitochondrial matrix promoting oxidative damage 
through excess ROS formation. mChol also raises BAs synthesis in the mitochondrial alternative pathway, 
which influences liver tumorigenesis. Thus, although changes in lipid composition can have a significant 
impact in membrane physical properties, which in turn affect mitochondrial function, the cumulative 
evidence points to a crucial role for cholesterol accumulation in orchestrating these deleterious effects in 
mitochondria via impaired antioxidant defense and subsequent ROS generation, affecting essential unique 
lipid components like CL. In addition to promoting ROS generation, increased cholesterol in mitochondria 
may fuel the synthesis of oxysterols and BAs, which can contribute to the progression of MASLD to HCC 
development. In addition, alterations in hepatic mitochondrial lipid composition may also contribute to 
liver metastatic colonization by invasive cancer cells [213]. Hence, future developments aimed to prevent 
the increase in mChol to maintain appropriate mitochondrial function may be promising for the 
treatments/preventions of these prevalent chronic liver diseases.
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MAMs: mitochondrial-associated membranes

MASH: metabolic-associated steatohepatitis

MASLD: metabolic dysfunction-associated steatotic liver disease

MAT1A: methionine adenosyltransferase 1A

mChol: mitochondrial cholesterol

mGSH: mitochondrial glutathione

mtDNA: mitochondrial DNA

NLRP3: NLR family pyrin domain containing 3
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O2: molecular oxygen

O2
•−: superoxide anion

OMM: outer mitochondrial membrane

OXPHOS: oxidative phosphorylation

PC: phosphatidylcholine

PE: phosphatidylethanolamine

PGC-1β: peroxisome proliferator-activated receptor gamma co-activator 1β

Prx: peroxiredoxins

PS: phosphatidylserine

ROS: reactive oxygen species

SAM: S-adenosylmethionine carrier

STARD1: steroidogenic acute regulatory protein

TG: triglycerides

Trx: thioredoxin
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