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Abstract
Liver inflammation, injury, and hepatic cell death are caused by external agents (viruses, bacteria, drugs, 
alcohol, etc.) along with the genetic susceptibility of an individual. Persistent activation of the fibrogenic 
response in cells leads to liver fibrosis which in turn progresses to cirrhosis and cancer. The dysregulation 
of the immune system generates reactive oxygen species which in turn induce necrosis of hepatocytes. This 
process activates hepatic stellate cells and myofibroblasts to produce a huge quantity of collagens, alpha-
smooth muscle actin, and extracellular matrix deposition in liver parenchyma. Due to the multifactorial 
nature of this disease, conventional therapies increasingly attempted combinatorial therapy or polytherapy 
to target multiple mechanistic sites in order to prevent entry into further complicated irreversible stages. 
Despite advancements in conventional therapy, several cases aggravate fibrosis (grade 3 to 4) and cirrhosis. 
The inconsistency in treatment outcomes and limited organ donors for liver transplantation have led to an 
ever-increasing and challenging demand for alternative therapies. In this review, we analyze the 
mechanism and causative factors of liver diseases, conventional mode, and alternative therapeutic options. 
The central to liver diseases are immune dysregulation, hence bioactive agents with immunomodulatory 
properties should be searched and exploited to meet therapeutic needs. Mesenchymal stem cells (MSCs) 
with their specialized anti-inflammatory and immunomodulatory properties could be utilized as an 
effective alternative therapeutic candidate in treating inflammatory liver diseases. MSC-derived exosome 
further provides an additional immunomodulatory option that could work in tandem with MSC in a 
synergistic form. In this series, we have reviewed preconditioned and genetically edited MSCs to augment 
homing, proliferation, and differentiation. Importantly, all the clinical challenges should be noted and 
addressed before stem cell cytotherapy should be considered safe and effective for patients with liver 
diseases. Published literature indicated that MSC therapy has the potential to substitute conventional 
options in the treatment of high-grade fibrosis and cirrhosis.
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Introduction
Multiple factors cause liver inflammation, injury, and cell death [1–3]. These factors comprise hepatocyte-
specific viruses, alcohol, metabolic syndromes, defective bile acid products, and genetic abnormalities [2]. 
The early stage of liver fibrosis or scarring is an elementary wound-healing response to chronic liver 
disease (CLD) irrespective of etiologies [1–3]. In this process of tissue healing, quiescent hepatic stellate 
cells (qHSCs) which are involved in tissue repair under normal circumstances are activated to be 
transformed into myofibroblasts [1, 3]. The body’s pro-fibrotic and anti-fibrotic mechanisms are in balance 
in short-term early stage liver injury/scare and damage can be reversed to prevent entry into advanced 
forms of liver diseases such as cirrhosis [1, 3]. However, long-term chronic liver injury leads to necrosis and 
apoptosis of hepatocytes. These injured or scared hepatocytes release damage-associated molecular 
patterns (DAMPs) to activate inflammatory cascades and immune cell infiltration (Figure 1). This process 
activates the fibrotic phenotype of HSCs to transdifferentiate into myofibroblasts [1–4]. Notably, HSCs are 
the primary effector cells that lead to the deposition of collagen in the extracellular matrix (ECM) [5, 6]. In 
addition to HSCs, other cell types such as portal fibroblasts, bone marrow derived myofibroblasts, and 
epithelial to mesenchymal transition (EMT) also transdifferentiate to form myofibroblasts [4, 5]. 
Transdifferentiated myofibroblasts in the injured liver produce a large amount of ECM associated with 
collagen (type I and III) and fibronectin, accumulation of these proteins results in the formation of liver 
fibrosis [6, 7] (Figure 1). The clear understanding and advancement in the pathophysiology of liver fibrosis 
indicated it is a multifactorial disease, therefore multiple targets should be “HIT” simultaneously through 
conventional therapies. Conventional therapy inconsistently reverses only the early stage of liver fibrosis, 
while late stage (grades 3 and 4) and cirrhosis are difficult to control and treat through conventional 
therapies [3, 4]. Therefore, alternative treatment options must be explored in order to reduce the disease 
burden on the society. Based on published literature, this review discusses the immense potential of stem 
cell therapy for the treatment of liver fibrosis and cirrhosis and how to replace inconsistent conventional 
treatment options with a mesenchymal stem cell (MSC) regimen.

Causative factors of liver fibrosis
Dysregulation of the immune system in liver fibrosis-cirrhosis

HSCs activation and myofibroblast conversion to the development of liver fibrosis are initiated by the 
inflammatory immune cells such as hepatic macrophages, T and B lymphocytes, natural killer (NK) cells, 
neutrophils, and platelets [7–9]. The key immune cells associated effectors involved in this process are 
cytokines, chemokines, and DAMPs [7–9]. There is bidirectional communication between HSCs and immune 
cells [10, 11]. HSCs regulate immune cell chemotaxis response via secretion of soluble mediators, while 
immune cells produce cytokines to activate HSCs [10–12]. Leptin, angiotensin II, interleukin-1β (IL-1β), 
transforming growth factor-β (TGF-β), platelet derived growth factor (PDGF), and tumor necrosis factor-α 
(TNF-α) are important immune cells associated effectors (soluble factors) involved in fibrogenesis [12, 13]. 
Several studies suggested the activation of the TGF-β pathway as a central event in the induction of hepatic 
fibrosis [14, 15] (Figure 1). TGF-β inhibits HSC apoptosis and promotes ECM remodeling into a 
profibrogenic phenotype [16, 17]. In addition to TGF-β, studies indicated the involvement of other 
pathways in the activation of HSC, one such pathway is Hippo, its components such as yes-associated 
protein-1 (YAP1) and protein kinases such as macrophage stimulating 1, 2 (MST1, MST2) have been 
reported to be involved in the initial HSC activation [12, 18, 19]. There are several reports of upregulation 
of Wnt/β-catenin [20–22], nuclear factor-kappa B (NF-κB) [23], mitogen activated protein kinases (MAPK) 
[24], phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) [25], hedgehog (Hh)/Gli [26] signaling 
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Figure 1. Diverse factors/etiologies (pathogens, drugs, alcohol, etc.) initiate the activation of inflammatory immune 
cells and liver diseases. Persistent inflammation leads to dysregulation of the immune system that exacerbates liver fibrosis 
and cirrhosis. Inset picture shows the activation of hepatic stellate cells (HSCs) and myofibroblast to secrete collagen fibers and 
accumulation in the liver that give rise to fibrosis and cirrhosis. ILC-3: innate lymphoid cell type 3; IFN-γ: interferon-γ; Th1: T 
helper 1; DC: dendritic cell; NKT: natural killer T cell; IL-6: interleukin-6; TGF-β: transforming growth factor-β; TNF-α: tumor 
necrosis factor-α; Treg: T regulatory cell; MMPs: matrix metalloproteinases; TIMPs: tissue inhibitors of MMPs; α-SMA: α-smooth 
muscle actin
Note. Parts of the figure were used from or adapted from pictures provided by Servier Medical Art, licensed under CC BY 4.0

pathways and their involvement in activation of HSCs and progression of hepatic fibrosis. Pro-inflammatory 
cytokine TGF-α inhibits apoptosis and increases proliferation of HSC, furthermore, it also triggers 
chemokines and intercellular adhesion molecule-1 (ICAM-1) in HSCs [27, 28]. Activated stellate cells 
secrete several chemokines such as C-C motif ligand 2 (CCL2), CCL5, CXC chemokine ligand 8 (CXCL8), and 
CXCL9, which are instrumental in recruiting immune cells such as neutrophils, monocytes, etc. at the site of 
activation [28–31]. Chronic hepatic injury leads to systemic inflammation that induces intestinal epithelial 
barrier disruption and subsequent permeation of luminal antigens and solutes [32–35]. Several studies 
suggested that intestinal inflammation due to epithelial barrier destruction contributes to liver fibrosis via 
toll like receptor 2 (TLR-2) signaling on monocytes [32–35]. The study also indicated the role of enteric 
TNFR-1 as a mediator in cholestatic liver fibrosis [35]. Pathogen associated molecular patterns (PAMPs) 
related to microorganisms translocated from the intestine, and DAMPs released from injured organs 
preferentially activate TLR-4 associated with proinflammatory macrophages 1 (M1), leading to the release 
of IL-1β, TNF-α, IL-6, IL-12 and interferon-γ (IFN-γ) [34]. The imbalance of liver immune cells such as T 
regulatory cell (Treg) and T helper (Th) cells such as Th1 and Th17 play a critical role in the occurrence of 
liver fibrosis and cirrhosis. The combined effect of Th1 and Th17 and their cytokines have been reported in 
promoting HSC activation via TGF-β signaling, thus indirectly and directly promoting liver fibrogenesis [35–
37].

Oxidative stress and liver fibrosis-cirrhosis

Leukocyte infiltration during the inflammatory phase leads to increased production of reactive oxygen 
species (ROS). An increase in ROS is a key process that drives liver damage and initiates fibrosis. This 
process intensifies the disruption of cellular lipids, proteins, and DNA that triggers hepatocyte necrosis and 
apoptosis (Figure 1) [38]. The major source of ROS in the liver is NADPH oxidases (NOXs) located in the 
membrane of phagocytic cells such as neutrophils and macrophages [38]. ROS facilitates fibrogenic 
response linked to angiotensin II, PDGF, and TGF-β [39–42]. ROS mediated oxidative stress also influences 
the expression transcription factor NF-κB. NF-κB is an important modulator of liver fibrosis, due to its effect 
on wound healing, inflammation, and cell death [23, 43]. In addition to ROS, other reactive mediators such 
as 4-hydroxynonenal (HNE) released by activated inflammatory cells or hepatocytes also upregulate the 
expression of critical genes such as procollagen type I, monocyte chemoattractant protein-1 (MCP-1), and 
tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) involved in liver fibrogenesis [44, 45].
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ECM turnover

As we have discussed above a large number of inflammatory factors stimulate the activation and 
proliferation of HSCs. Long-term accumulation of collagen into the extracellular space increases the ECM 
and results in liver fibrosis, confirming the chronicity of the disease. The balance between ECM formation 
and hydrolysis is regulated by the physiological amount of matrix metalloproteinases (MMPs) and TIMPs 
produced in the liver [46–49]. These enzymes play a pivotal role in both fibrogenesis and fibrolysis [46–49]. 
ECM turnover is a prominent feature of liver fibrosis, indicating an imbalance between ECM synthesis and 
degradation [48–49]. The protracted exposure and accumulation of the fibrotic factors lead to liver 
cirrhosis [48, 49]. There have been contradictory findings of leptin on HSCs activation and fibrogenesis. 
Leclercq et al. [50] showed that leptin promotes HSC induced fibrogenesis and enhances TIMP-1 
expression. On the contrary, leptin also partially suppresses peroxisome proliferator-activated receptor-γ 
(PPAR-γ), an antifibrogenic nuclear receptor that reverses HSC activation and maintains HSC quiescence 
[51, 52].

Genetic factors and circulating microRNA

Along with inflammatory factors, genetic factors also play an important role in the initiation of fibrosis. 
Multiple susceptible genes such as FAH, ASL, ABCB4, ALDOB, GBE1, SLC25A13, and SERPINA1, express 
abnormally high in individuals predisposed to liver fibrosis [53]. Mutations in these genes trigger liver 
fibrosis and cirrhosis [53]. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene express 
abundantly in hepatocytes, adipocytes, and HSCs, however, mutations in this gene could be a major 
predisposing factor in non-alcoholic fatty liver disease (NAFLD) [54]. Additionally, the PNPLA3 I148M allelic 
variant is positively linked with disease diseases such as NAFLD, non-alcoholic steatohepatitis (NASH), and 
hepatocellular carcinoma [55]. The role of circulating microRNA in liver fibrosis has been studied, findings 
suggested that the circulating miR-29 largely induces cell (hepatocyte) apoptosis and regulates ECM 
accumulation by modulating the PI3K/AKT signaling pathway [56]. Immune activation of TLR-4 inhibits 
miR-29 to enhance collagen production and fibrosis [56, 57]. Other microRNA such as miR-34, miR-199, 
and miRNA-200 also promote the progression of hepatic fibrosis by inducing activation of HSCs and ECM 
deposition [58, 59].

Diagnosis of liver fibrosis
Till date, biopsy is a gold standard method for the diagnosis of liver fibrosis [60]. The biopsy tissues are 
stained using methods such as hematoxylin-eosin or Sirius red, to positively detect collagen deposition in 
ECM space or cells to confirm liver fibrosis. However, due to the pain and risk of potential complications of 
liver biopsy, non-invasive techniques/fibroscan (e.g., elastography scanning), and biomarkers (e.g., 
aminotransferase to platelet ratio (APRI) are recommended for the diagnosis of liver fibrosis [61, 62].

Conventional treatment options
Early stages (grade 1 and 2) of liver fibrosis are reversible, but when it crosses a threshold (grade 3 and 4), 
the majority of these cases attend an irreversible state and hence difficult to treat through conventional 
therapy [63, 64]. Notably, the conventional method of treatment results in inconsistent clinical outcomes 
due to the multifactorial nature of liver fibrosis. Therefore, multiple targets should be “HIT” simultaneously 
through conventional therapies [65–67] (Figure 2). Direct “HIT” is an effective approach to reverse liver 
fibrosis in cases when the underlying disease process is known. A few examples are the eradication of HBV 
or HCV with potent antivirals, anti-cell death treatment, regulators of lipid metabolism, etc. This process 
reverses fibrosis, repair liver injury, and improves its function and metabolic equilibrium [66–68]. The 
situation in which the underlying disease process is not known, indirect “HIT” would be highly effective 
antifibrotic treatment option [65] (Figure 2).
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Figure 2. The steps involved in the process of liver fibrosis are called fibrogenesis. The inflammatory phase triggers this 
process leading to the accumulation of collagen fibers and α-smooth muscle actin (α-SMA) into fibrotic phases. The 
conventional treatment options involved the degradation of scars or fibers, this process is known as fibrolysis. The conventional 
drugs can target multiple sites such as inhibition of activated HSCs, apoptosis of myofibroblasts, and inhibition of HSC effector 
functions, breakdown of collagen, α-SMA to degrade liver scar, and regenerate hepatocytes. TGF-β: transforming growth factor-
β; IL-4: interleukin-4; PDGF: platelet derived growth factor; FGF: fibroblast growth factor; HSC: hepatic stellate cell; PPAR-γ: 
peroxisome proliferator-activated receptor-γ; TLR-4: toll like receptor; TRAIL: tumor necrosis factor-related apoptosis-inducing 
ligand; MMPs: matrix metalloproteinases; TIMPs: tissue inhibitors of MMPs
Note. Parts of the figure were used from pictures provided by Servier Medical Art, licensed under CC BY 4.0

Antifibrotic combinatorial therapies

Antifibrotic therapies would target multiple target sites in the fibrogenic cascade when the underlying 
disease process is not known: a) activated immune cells and inflammatory cytokines & chemokines; b) 
inhibition of collagen synthesis and matrix deposition/degradation; c) modulation of stellate cell activation; 
d) death or apoptosis of activated HSCs and myofibroblasts; e) modulation of cell signaling pathways. 
Increasingly, the combinatorial therapy or polytherapy that targets or “HIT” different mechanistic levels are 
most effective method to treat liver fibrosis or cirrhosis (Figure 2).

Inhibition of activated immune cells

Inhibition of activated immune cells or their secreted inflammatory chemokines and cytokines are 
important treatment options in liver fibrosis. Antioxidants (astaxanthin) suppress the infiltration of 
monocyte derived macrophages, activated HSC, liver oxidative stress response, and hepatocyte death by 
minimizing the expression of proinflammatory cytokines such as TNF-α, TGF-β1, and IL-1β [69, 70]. In 
addition, targeting chemokines and chemokine receptors should be investigated and included as a potential 
therapeutic prospect [64]. Tregs have a central role in regulating the immune response, and its 
dysregulation is involved in the pathogenesis of NAFLD and NASH linked fibrosis [71, 72]. Therefore, 
immunoregulating Tregs could be one of the important treatment options. The polarization of M2 is a key 
immunotherapeutic process that induces immunosuppressive Th2 cytokines (IL-4, IL-13, and IL-10) 
secretion [73, 74]. In addition, chemokine receptors are commonly expressed by immune cells in fibrotic 
conditions. C-C chemokine receptor 2 and 5 (CCR2 and CCR5) are expressed significantly by monocytes and 
subtypes of liver macrophages in fibrotic conditions, therefore these receptors can be targeted to 
ameliorate liver fibrosis [75, 76].

Inhibition of collagen synthesis and matrix deposition/degradation

The imbalance in MMPs and TIMPs results in increased synthesis and decreased degradation of ECM in the 
liver. This unregulated accumulation of ECM leads to hepatic fibrosis. Studies demonstrated the role of four 
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TIMP proteins in ECM accumulation, among them, TIMP-1 and TIMP-2 are primarily expressed in hepatic 
tissues [77]. Since hepatic tissue expresses higher levels of TIMP-1 and TIMP-2 in fibrosis, it could be used 
as a potential biomarker in identifying liver diseases [77, 78]. Therefore, fibroblasts and myofibroblasts are 
the main cells that express TIMPs during the process of liver fibrosis. Mechanistic studies indicated that 
TIMP-1 promotes liver fibrosis by inhibiting the activities of MMP-1, MMP-8, and MMP-13 in the liver and 
reducing the degradation of accumulated collagens [77, 78]. Restoring the balance between MMPs and 
TIMPs i.e. changing the ratio of MMPs/TIMPs expression can alleviate liver fibrosis. Ideally during the 
regression of fibrosis; TIMP levels decrease dramatically and MMP activity increases to restore 
MMPs/TIMPs balance, which reverses the process of liver fibrosis. Therefore, MMPs/TIMPs could be 
potential target sites to repress the progression of liver fibrosis (Figure 2).

Inhibition of activated HSCs via polytherapy

Apoptosis driven hepatocyte cell death is a primary stimulus for HSC activation in the evolution of liver 
fibrogenesis [79, 80]. Hence, inhibition of hepatocyte apoptosis would be a target to repress liver fibrosis 
[81, 82]. Studies indicated that the inhibition of activated HSCs could only be achieved by combinatorial 
therapy that would work at different mechanistic levels [83]. Several investigations point to the 
overproduction of angiotensin II in the injured liver, and its role in stimulation of stellate cell activation and 
fibrogenesis [84] (Figure 2). Therefore, the angiotensin II system represents an attractive anti-fibrotic 
target. Angiotensin receptor blockers (losartan) have been tested to analyze their effects in advanced liver 
disease settings [85, 86]. Experimental data revealed the specific role of IFN-γ in the inhibition of HSC 
fibroblasts ECM synthesis [87]. Preclinical studies also confirmed the role of IFN-γ in the inhibition of 
multiple aspects of stellate cell activation [88]. The reduced expression of PPAR-γ is associated with HSC 
activation during liver injury. The activation of this receptor in HSCs by exogenous PPAR-γ ligands is 
reported to improve liver fibrosis substantially [89, 90] (Figure 2). In the case of liver fibrosis, the 
concentration of conjugated 12α-hydroxylated bile acids, such as taurodeoxy-cholate and 
glycodeoxycholate are significantly higher in patients with NASH [91]. One such bile acid receptor, 
farnesoid-X-receptor (FXR) is widely studied due to its role in lipid and glucose metabolism as well as in 
inflammation and fibrosis [91]. Lipotoxicity or fatty liver triggers caspase-mediated apoptosis of hepatic 
cells that induce liver inflammation and injury in NAFLD. Caspase inhibitors such as emricasan could 
decrease lipotoxicity and liver fibrosis [92].

Modulation of signaling pathways

Modulation of signaling pathways should be considered as an important step for the regression of hepatic 
fibrosis [93]. Smad proteins are essential intracellular effectors of the TGF-β signaling pathway that have 
diverse roles in liver fibrosis. Rapamycin, a TGF-β antagonist and inhibitor of HSC effector functions could 
facilitate regression of fibrosis. Pirfenidone is a small orally bioavailable molecule that inhibited collagen 
synthesis and exhibited antifibrotic action in animal studies [94, 95]. Colchicine, a compound derived from 
plants inhibits an important step involved in collagen secretion and deposition i.e. polymerization of 
microtubules [96]. Similarly, apoptotic ligand TRAIL-mediated HSCs apoptosis is also associated with 
repression of liver fibrosis [97, 98]. Gliotoxin, an apoptotic drug, inhibits inducible NF-κB signaling activity 
by preventing IκB degradation [99]. Sulfasalazine is an anti-inflammatory drug that inhibits NF-κB signaling 
genes and nuclear translocation to repress liver fibrosis. In addition, it also exhibits antioxidant properties 
and regulates the expression of TGF-β and COX-2 activity [100].

Modulation of gut microbiota-TLR ligands

Modulation of gut microbiota is another method in the treatment of liver cirrhosis. Decontamination of 
gram-negative bacteria through oral administration of antibiotics decreases TLR ligands involved in the 
progression of liver fibrosis [101, 102]. Likewise, oral administration of antibiotics reduces alcohol-induced 
steatohepatitis in rats [103]. However, long-term antibiotic usage may cause unfavorable alteration of the 
gut microbiome, so this approach should be applied with utmost care to treat liver fibrosis. An alternative 
approach to the reduction of TLR ligands has also been applied in the form of probiotics to implant 
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beneficial microbiomes in the intestine [104, 105]. It has been reported that the treatment with probiotic 
Lactobacillus rhamnosus GG significantly reduces the production of hepatic bile acids to decrease liver 
inflammation and fibrosis in mice [106]. Therefore, selective usage of antibiotics and probiotics could 
restore effective gut microbiota that improves liver fibrosis.

Reduction of oxidative stress

Minimizing oxidative stress signals could reduce liver injury associated hepatocyte cell death. Apoptosis 
signal-regulating kinase (ASK1) belongs to the MAPK pathways that relate to hepatic apoptosis, 
inflammation, and fibrosis, therefore it qualifies as an important target site to control liver fibrosis [107, 
108]. The selective ASK1 inhibitor selonsertib improves fibrosis in a murine NASH model [107]. Several 
studies hypothesized the role of antioxidants (vitamin E precursor, d-alpha-tocopherol, and vitamin D) as 
putative antifibrotics [109–111]. Thioacetamide-induced hepatic fibrosis rat model alleviates liver injury 
and the expression of ECM proteins such as TGF-β and α-smooth muscle actin (α-SMA) when treated with 
vitamin D3 [111]. It is important to indicate that these compounds are not primary antifibrotic rather their 
effects are secondary in nature [111].

Modulation of NK and mast cell

Following liver inflammation and injury, NK cells are involved in directly eliminating activated HSCs, 
diminishing myofibroblast differentiation and ECM deposition [112, 113]. So, NK cell mediated elimination 
of HSCs exhibits an antifibrotic effect. During the process of liver fibrogenesis, mast cells are activated to 
degranulate and release mediators, such as histamine, tryptase, chymase, TGF-β1, TNF-α, cytokines, etc. 
[114]. These mediators (especially tryptase) are known to increase fibrogenic factors, such as collagen and 
laminin to exacerbate liver fibrosis [114, 115]. Mast cell stabilizer could be a better option for the treatment 
of liver fibrosis.

Genetic intervention

Gene editing tools are used for the treatment of diseases linked to genetic disorders. Noncoding RNAs, such 
as miRNAs, long noncoding RNAs, small interference RNAs (siRNA), and circular RNAs (circRNA) are 
important genetic intervening agents. Noticeably, siRNA mediated silencing of CCR2 regulates liver 
immunity to inhibit the infiltration of profibrotic macrophages and neutrophils in murine fibrotic livers 
[116]. While circRNA-ASPH suppresses liver fibrosis by binding miR-139-5p by regulating neurogenic locus 
notch homolog protein 1 (Notch 1) expression [117].

Stem cell-based alternative treatment options
Liver fibrosis is reversible only in the early stages (grade 1 and 2). However, there are inconsistencies in the 
conventional treatment methods due to the multifactorial nature of the disease that requires multiple drugs 
concurrently. Once fibrosis attends a threshold (grade 3, 4) stage, the fibrogenic type I collagen forms 
crosslinks that are typically associated with cell damage and inflammation [64, 118]. Over a period of time, 
the accumulation of a large number of crosslinked collagen and elastin fibers crosslinked within the tissue 
beds, making them inaccessible to proteolytic digestion. The majority of these cases are usually in an 
irreversible state and difficult to treat through conventional therapy. In these patients liver transplantation 
is the only treatment option [118]. However, due to the shortage of donors and strict regulations, there is 
ever growing and unmet need for alternative therapeutic options. MSCs with their broad range 
immunomodulatory, anti-inflammatory, and anti-apoptotic properties have emerged as a promising 
therapeutic candidate in treating inflammatory liver diseases such as liver fibrosis and cirrhosis [119–121].

MSC characterization and optimization for therapeutic usage

MSCs are multipotential progenitor cells with an intrinsic ability to differentiate into mesodermal or 
ectodermal cell lineages [121]. Historically, MSCs have been isolated from bone marrow [122, 123], but 
recently it has been isolated from many other sources, most prominently from adipose tissue, umbilical 
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cord/blood, dental pulp, etc. [124–127]. Interestingly, the first set of studies reported similar biological 
characteristics among different sources of MSCs [128, 129]. Whereas, the second set of studies reported 
source-dependent biological differences among MSCs in terms of surface antigen and protein expression, 
cytokine secretion, differentiation capacity, and immunomodulatory activity [130–132]. The variability and 
heterogeneity of the cultured MSCs are due to passage number, media usage, donor variation, isolation 
techniques, and tissue origin of the cells [133, 134]. To address these issues, the International Society for 
Cellular Therapy (ISCT) recommends a minimum of three conditions to define human MSCs [135]. These 
include (1) adherence to the plastic surface when maintained under standard culture conditions; (2) 
positive expression of cluster differentiation 105 (CD105), CD73, CD90 surface markers, and lack of 
expression of CD45, CD34, CD14, or CD11b, CD79α, or CD19 and human leukocyte antigen-DR (HLA-DR) 
surface molecules, and (3) Potential to differentiate into osteoblasts, adipocytes, and chondroblasts cell 
types [135]. The most fascinating and clinically useful feature of MSCs is hypoimmunogenicity. Studies 
demonstrated that the MSCs express major histocompatibility complex class I (MHC-I) molecules, but no 
expression of MHC-class II and costimulatory molecules, such as CD40, CD40L, CD80, and CD86 [136–138]. 
The low-level expression of MHC-I exhibits protective effects towards MSCs by inhibiting NK cell-mediated 
killing, while the absence of MHC-II expression enhances MSC’s ability to escape immune recognition by 
CD4 cells. In addition, critical costimulatory molecules needed for MHC’s activation is firmly regulated by 
inhibitory molecules [139, 140]. The safety and efficacy of MSCs should be investigated extensively for the 
potential therapeutic use in liver diseases as discussed below.

Immunomodulatory nature of MSCs and its application in liver diseases

MSCs secrete predominant anti-inflammatory cytokines which mediate its immunomodulatory effect [141–
144]. Since most liver diseases including liver fibrosis and cirrhosis are inflammatory in nature, so 
immunoregulatory properties of the MSCs could be exploited to treat these disorders [145, 146]. Apart 
from the immunosuppressive nature of the MSCs, it also regulates additional multiple disease-causing 
factors such as signaling pathways, apoptosis, MMPs/TIMPs ratio, etc. The disease alleviating cascading 
effects of MSCs make it a perfect therapeutic candidate for multifactorial liver diseases. MSCs modulate 
innate and adaptive immune systems by suppressing B and T-cell activation and proliferation while 
promoting the secretion of Tregs [145, 146]. MSCs not only suppress dendritic cell maturation but also 
inhibit the proliferation and cytotoxicity of NK cells [145, 146]. MSCs downregulate T cells by releasing 
numerous soluble factors (secretomes) such as nitric oxide (NO), prostaglandin E2 (PGE2), indoleamine 2, 3-
dioxygenase (IDO), neurotrophin 3 (NT-3) factor, TNF-α, IL-6, IL-10, and HLA-G [139, 140, 147, 148] 
(Figure 3). MSC-derived PGE2 inhibits TGF-β activated kinase 1 and NOD-like receptor thermal protein 
domain associated protein 3 (NLRP3) inflammasome activation in hepatic macrophages, thereby reducing 
inflammatory cytokine production [149]. These factors control the proliferation of different immune cells 
that upregulate Tregs anti-inflammatory function [139]. MSCs inhibits the proliferation of T cells by directly 
interacting with T-lymphocytes to facilitate immunosuppressive activity [139, 140, 150]. Adhesion 
molecules [ICAM-1, VCAM-1, and C-X-C motif chemokine receptor 3 (CXCR3)] present on the surface of 
MSCs help in adherence to T cells [151]. In addition, MSCs also suppress T cell proliferation by facilitating 
inhibitory programmed death 1 (PD-1) molecules to bind to PDL-1 and 2 ligands [145]. The combined effect 
of cytokines (IFN-γ, IL-1α, and IL-4, etc.) secreted by MSCs generates powerful immunosuppressive micro-
environment [148]. MSCs also inhibit activation of B cell proliferation, differentiation, and chemotaxis 
[152]. The exposure of lipopolysaccharides (LPS) to mature B cells results in the expression of B 
lymphocyte-induced maturation protein-1 (Blimp-1) that induces differentiation of B cells into plasma cells 
[152]. MSCs suppresses plasma cell generation in co-cultured B cells, mediated via the release of humoral 
factor(s) that reduces Blimp-1 mRNA expression [152]. Additionally, MSCs inhibit the activation of B cells 
by reducing immunoglobulin levels [153, 154]. MSCs also efficiently induce polarization of inflammatory 
M1 into anti-inflammatory M2. This alteration releases anti-inflammatory soluble factors [IL-4, IL-10, IL-13, 
and IL-1 receptor antagonist (IL-1Ra)] that improve liver injury [155]. Moreover, MSCs also modulate the 
IL-17 signaling pathway, this decreases profibrogenic IL-17 production in hepatic NKT cells to alleviate 
liver fibrotic load [156]. Importantly, downregulation of IL-17 increases immunosuppressive and 
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hepatoprotective (IL-10 and IDO) soluble factors [157]. Uniquely, HLA-G5 secreted by MSC expands Tregs 
[158, 159]. HLA-G5 also suppresses T lymphocyte proliferation after binding to its specific receptor 
immunoglobulin-like transcript 2 (ILT-2) [160, 161]. In general, MSCs suppress T lymphocyte activation 
and cytotoxicity, decrease inflammation cures injury, and overall facilitate liver regeneration.

Figure 3. Alternative mesenchymal stem cell (MSC) therapy and its effect on liver fibrosis-cirrhosis. Injection or 
transplantation of GMP grade MSCs in subjects leads to the release of secretome with anti-inflammatory and 
immunosuppressive properties. The immunomodulatory role of MSCs includes decrease in B and NK cell proliferation and 
activation as well as inhibition of dendritic cell maturation. MSCs also enhance the generation of Tregs along with activation and 
polarization of macrophage 2, together they incline the immune balance towards anti-inflammation and immunosuppression. 
MSCs secretome in the liver inhibit activation and proliferation of HSCs, it also induces apoptosis of HSCs. Overall MSCs 
decrease collagen production and ECM synthesis by balancing physiological MMPs and TIMPs. VEGF: vascular endothelial 
growth factor; TGF-β: transforming growth factor-β; IL-1: interleukin-1; IDO: indoleamine 2, 3-dioxygenase; PGE2: prostaglandin 
E2; HGF: hepatocyte growth factor; HSC: hepatic stellate cell; NK: natural killer; ECM: extracellular matrix; MMPs: matrix 
metalloproteinases; TIMPs: tissue inhibitors of MMPs

MSCs transplantation and immune mechanism

MSC transplantation accelerates the regeneration procedure due to its differentiation potential, while its 
derivative secretome supports regenerative mechanisms. In the graft vs host disease model, apoptosis of 
infused or transplanted MSCs by host macrophages leads to the release of key soluble factor IDO that 
initiates immunosuppressive activity [161]. Another study showed, how monocytes initiate rapid clearance 
of infused MSCs via phagocytosis [162]. The phagocytosis of MSCs by monocytes triggers PD-1 and IL-10 
expression, it also induces Foxp3+ regulatory T-cell formation to initiate anti-inflammatory pathways 
(Figure 3). MSC-derived extracellular vesicles (EVs) (i.e. exosomes) also provide a conducive 
microenvironment for MSCs transplanted cells to HOME and differentiate [163, 164].

Effect of MSCs on signaling pathways involved in fibrogenesis

There are several signaling pathways that play an important role in the development of liver fibrosis, 
especially HSCs activation, these include PDGF [165], TGF-β [166], oxidative stress [167], inflammasome-
caspase-1 [168], and Wnt/β-Catenin [169] signaling pathways. Numerous studies demonstrated that MSCs 
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produce and secrete diverse bioactive molecules such as cytokines, chemokines, and growth factors that 
stimulate neighboring cells [145–165]. These secretome and growth factors act on molecular signaling 
pathways of progenitor cells to stimulate proliferation and differentiation [170]. MSC derived IL-10 lead 
anti-inflammatory and immunosuppressive effect is regulated through signal transducer and activator of 
transcription 3 (STAT3)/SOCS3 signaling pathway [171]. PGE2 inhibits inflammasome (NLRP3) activation 
to reduce inflammatory cytokines production [148]. Transplantation of MSCs and conditioned media 
significantly inhibit HSCs activation and decrease the expression of fibrotic factors such as α-SMA, 
collagens, metalloproteinases, TGF-β, and Smad proteins [170]. MSCs induced inhibition of YAP suppress 
TGF-β-induced fibrotic cascades [172, 173]. Selective depletion of YAP in myofibroblastic or activated HSCs 
could promote senescence or apoptosis and hence reduce liver injury and repress fibrosis [174, 175]. 
Distinctively, MSCs-derived TNF-α-stimulated gene-6 (TSG-6) promotes liver regeneration by inhibiting 
HSC activation [176]. MSC-derived IL-4 promotes polarization and differentiation of M1 to M2 phenotype 
[177, 178]. In addition, PGE2 significantly increases M2 in the liver via STAT6 and mammalian target of 
rapamycin (mTOR) pathways to reduce inflammation and liver injury [177, 178]. Heme-oxygenase-1 (HO-
1) -MSC derived factor improves liver disease conditions by reducing the infiltration and function of 
neutrophils and also by activating autophagy (a highly conserved eukaryotic cellular recycling process) 
through the PI3K/AKT signaling pathway [179–181]. JAK/STAT, Ras/Raf, Wnt/β-catenin along with other 
signaling pathways discussed above are involved in the expression of the liver fibrotic markers such as α-
SMA, collagen I, TLR4, MMPs, and TIMPs [182–187]. MSCs transplantation and conditioned media 
significantly inhibit HSCs activation and maintain and facilitate the physiological state of fibrotic molecules 
[185–187]. MSCs also promote apoptosis by increasing the activity of caspase 3/7 and hence inhibit the 
proliferation of activated HSCs [188].

Antifibrotic role of MSC

There are several reports of MSCs alleviating hepatic fibrosis but still the mechanism is not fully understood 
[188–191]. However, researchers hypothesized that MSCs reduced the proliferation of activated HSCs and 
the deposition of collagen by indirect or direct cell to cell contact [191–194]. In the indirect mechanism, 
MSCs secretomes such as epidermal growth factor (EGF), TGF-β-isoform 3 (TGF-β3), TNF-α, IL-10, IL-13, IL-
18, NT-3, and TSG-6 were linked to therapeutic benefits by inhibiting HSCs proliferation and collagen type I 
synthesis [186]. In addition, hepatocyte growth factor (HGF) and nerve growth factor (NGF) showed anti-
fibrotic properties, induced apoptosis of activated HSCs, and promoted proliferation of hepatocytes [192–
195]. MSC induced apoptotic cycle, increased expression of pro-apoptotic genes Bax and cleaved caspase-3 
protein Bax, along with inhibition of NOX pathway [192]. In the direct mechanism, co-culture inhibited the 
proliferation of HSCs and expression of α-SMA [193]. It is a well-known fact that MMPs and TIMPs 
contribute to both the progression and regression of liver fibrosis. MSCs increase the expression of MMPs 
(MMP-2, -9, -13, and -14) and decrease the expression of TIMPs, especially 1, and 2 [194, 195]. Notably, 
Wang et al. [195] indicated that MMP-9 is an essential target for treating fibrotic diseases [195]. In addition, 
MSCs stimulate antioxidant response elements (AREs) in carbon tetrachloride (CCl4) and thioacetamide 
models of fibrosis [196, 197]. Distinctively, MSCs also showed antifibrotic properties by inhibiting EMT in 
the fibrosis model [198, 199]. Human UC-MSCs derived exosomes showed antifibrotic effect through 
inhibition of hepatocytes EMT in animal models [200]. MSCs derived exosomes inhibit EMT via inactivation 
of the TGF-β1/Smad signaling pathway [200]. Similarly, inhibition of thrombospondin-1 secretion (MSC-
derived soluble factor) also decreases active TGF-β and subsequent attenuation of liver damage [201].

MSCs transplantation, homing, and transdifferentiation

There are several MSCs transplantation routes into the liver that correspond to intravenous, intrahepatic, 
intra-peritoneal, intrasplenic, and portal vein injection. The peripheral vein and hepatic artery are the most 
commonly used transplantation routes [119]. After transplantation, homing is the critical procedure for 
successful therapeutical outcome. Homing of MSC is classified into 2 different types: i) localized 
transplantation at the injury site, non-systemic type; and ii) release of homing-promoting molecules from 
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the injured tissue, systemic type [202]. Hepatic differentiation of MSCs is influenced by specialized growth 
factors such as vascular endothelial growth factor (VEGF), HGF-1, leukemia inhibitory factor (LIF), and 
keratinocyte growth factor (KGF) [203, 204]. Differentiation of MSCs into hepatocyte-like cells (HLCs) are 
considered substitute sources for liver regeneration [203]. ECM surrounded with injured liver tissues have 
been used as the location for MSC engraftment and differentiation [119, 205]. Several studies in vivo have 
suggested that human MSCs can differentiate into HLCs when transplanted to the injured sites [205–212]. 
Studies indicated that MSC-based hepatocyte like derived cells could replace damaged tissues in liver 
diseases [205–212]. Studies indicated that only a small percentage (~1%) of hepatocytes differentiate from 
MSC after transplantation [213]. Inefficiency of homing and smaller differentiation percentage lead 
researchers to MSC-sourced secretomes called exosomes that exhibit high reparability and low 
immunogenicity [163, 164, 214].

MSC-derived exosomes and its therapeutic potential
Human MSC conditioned media (MSC-CM) fractioned to obtain a cell-free supernatant, called EVs or 
exosomes [215, 216]. Notably, exosomes are easier to obtain through conventional isolation methods like 
ultracentrifugation or via commercially available kits and can be stored at –20°C to –80°C [215, 216].

However, like MSC, there is no consensus on the exosome preparation methodology, therefore 
International Society for EVs (ISEV) set minimal criteria to characterize purified exosomes with specific 
surface marker proteins such as CD9, CD63, CD81, Alix, and TSG-101 expression [217, 218]. Exosomes 
encapsulate mRNA, miRNA, and assorted proteins that can modulate the biological function of target cells 
[219, 220] (Figure 4). Recent research has shown that MSCs produce a large amount of EVs. EVs exert their 
therapeutic effects through mechanisms involving the regulation of cell signaling, intercellular 
communication, and cellular metabolism [221–223]. A wide array of therapeutic effects such as 
suppression of renal tubular injury [216], acute myocardial infarction (AMI) [224], sepsis [225], and 
Alzheimer’s disease [226] has been attributed to MSC exosomes (MSC-exo). In light of this, MSC-derived 
exosomes are a promising alternative strategy for the treatment of liver diseases.

Figure 4. Mesenchymal stem cell releases a cellular product called exosome in cell culture media. These exosomes 
demonstrate antifibrotic potential once it interact with the recipient liver cell. Exosomes exhibit hepatoprotective effect-antifibrotic 
effect by inhibiting oxidative stress pathway, TGF-β/Smad pathway, IKKβ/NF-κB/Casp-9, -3 pathway, and NLRP3 
inflammasome pathway. The encapsulated bioactive products in exosomes inhibit HSC activation. The overall effect leads to the 
inhibition of fibrogenesis. ERK1/2: extracellular signal-regulated kinases 1/2; HSC: hepatic stellate cell; TGF-β: transforming 
growth factor-β; ROS: reactive oxygen species; IKKβ: IκB kinase β; NF-κB: nuclear factor-kappa B; NLRP3: NOD-like receptor 
thermal protein domain associated protein 3
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Role of MSC-derived exosomes in liver diseases

Studies showed that exosomes mediate intercellular communication between MSCs and injured organ sites 
and show therapeutic potential in liver diseases such as acute liver damage, hepatic fibrosis, and cirrhosis 
[227–231]. Additionally, exosomes have the ability to penetrate deep tissues avoid immune attacks, and 
facilitate the delivery of their therapeutic cargo into target cells [232, 233]. Hence, MSC-exo treatment could 
be a promising alternative to MSCs-based treatment in liver diseases. Therapeutic role of MSC-exo in liver 
diseases includes hepatoprotection through modulation of inflammatory signaling pathways such as 
extracellular signal-regulated kinases 1/2 (ERK1/2) and insulin-like growth factor-1 receptor (IGF-
1R)/PI3K/AKT [234, 235]. Several studies indicated that exosomes rich in miR-122 inhibit HSCs activation 
[235]. Exosomes mediated inhibition of activated HSCs leads to downregulation of genes like IGF-1R, cyclin 
G, etc. involved in proliferation and collagen maturation [234, 235]. Exosomes encapsulated enzyme 
glutathione peroxidase (gpx1) inhibit ROS and IKKβ/NF-κB/casp-9/-3 signaling pathways in liver cells to 
alleviate liver fibrosis [234, 235]. In the CCl4 induced liver failure study, gpx1 exosomes elicit antioxidant 
and anti-apoptotic effects [234]. These exosomes regulate antifibrotic action through the inactivation of the 
TGF-β1/Smad signaling pathway to prevent expression of collagen I and III, and EMT. Exosomes pre-
treated with TNF-α also inhibit activation of the NLRP3 inflammasome pathway that reduces ALT, AST, and 
pro-inflammatory cytokine levels and promotes tissue repair [236]. In addition, qHSCs release exosomes 
containing Twist1 protein, which in turn increase miR-214 concentration to inhibit neighboring HSC 
activation via a decrease in the expression of cellular communication network factor 2 (CCN2) [235]. In 
contrast, exosomes containing miR-19a derived from HCV infected hepatocytes promote activation of HSCs 
via SOCS3/STAT3/TGF-β pathway [227]. Therefore, it is noteworthy that exosomes from stem cells inhibit 
HSC activation and liver fibrosis progression, however, exosomes obtained from disease conditions may 
promote fibrogenesis [237–254] (Table 1). Still, there are limitations in the treatment with exosomes due to 
batch differences, purity, drug delivery, and off target effects. Therefore additional studies are required to 
characterize exosome cargo content, safety profile, effective therapeutic dosages, and delivery methods in 
order to target liver diseases effectively [255, 256].

Table 1. Exosomes derived from various cells have different functions

Source of exosomes Action on liver fibrosis Reference (s) 

Human umbilical cord MSC Inhibition [238, 239]
Adipose tissue-derived MSC Inhibition [241]
Bone marrow derived MSC Inhibition [243, 246, 254]
Amnion-derived MSC Inhibition [244]
Embryonic stem cell-derived MSC Inhibition [245]
Human liver stem cell Inhibition [247]
Human induced pluripotent stem cell Inhibition [248]
HCV infected hepatocyte Promotion [242]
Cholangiocytes Promotion [249, 250]
Neighboring quiescent HSC Inhibition [240, 251]
NK Cell Inhibition [252]
M1 macrophage Promotion [253]
Adapted with permission from [230]. © 2023 The Authors

Preconditioning of MSCs
MSCs culture in hypoxic condition

Preconditioning of MSCs is a very important adaptative procedure for the cells to undergo proper homing, 
proliferation, and differentiation [257]. Hypoxia is one of the most important methods of exposing stem 
cells to low oxygen concentration for proper growth, maintenance, pluripotentiality, differentiation, and 
function [257–260]. The primary mediator of hypoxic adaptation is hypoxia inducible factor (HIF) [260]. 
Hypoxia also stimulates specific gene expressions; such as Glut-1, EPO, and VEGF that correspond to 
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glycolysis, erythropoiesis, and angiogenesis. VEGF produced by stem cells in hypoxic conditions directly 
affects the surrounding environment [257, 258]. Precondition MSCs cultured in hypoxic conditions (oxygen 
range: 4–10%) will adapt well during transplantation (Figure 5).

Figure 5. Preconditioning of MSCs enhances homing and differentiation potential. The combinatorial therapy increases 
MSCs therapeutic capacity many folds. HGF: hepatocyte growth factor; MSC: mesenchymal stem cells; MCP-1: monocyte 
chemoattractant protein-1; CXCL9: CXC chemokine ligand 9; IL-10: interleukin-10; NF-κB: nuclear factor-kappa B; TLR-3: toll 
like receptor 3; PGE2: prostaglandin E2; TNF-α: tumor necrosis factor-α; VEGF: Vascular epithelial growth factor; EPO: 
erythropoietin; Glut 1: glucose transporter 1; HIF: hypoxia inducible factor; FGF: fibroblast growth factor; ATRA: all trans retinoic 
acid; MNM: Modified neuronal media; CCR2: C-C chemokine receptor 2; CXCR4: C-X-C motif chemokine receptor 4; HNF4α: 
hepatocyte nuclear factor 4α
Note. Parts of the figure were used from pictures provided by Servier Medical Art, licensed under CC BY 4.0

Gene editing of MSCs

There is a promising effect of stem cells in the treatment of liver diseases, however homing and 
differentiation are key issues in clinical applications [261]. Importantly, HOMING and migration of MSCs are 
affected by a variety of factors such as cell number, microenvironment, and route of administration [261]. 
Studies indicated that only a small percent (~1%) of transplanted MSCs differentiate into HLCs [211–213]. 
Studies reported that targeted editing of MSCs genes could enhance differentiation into HLCs, secretion of 
chemokine factors, growth factors release, immunomodulatory effects, and anti-fibrotic, anti-apoptotic, and 
anti-oxidant activities [261, 262]. The verified genes that could enhance the therapeutic potentials of MSCs 
are c-Met, CCR2, CXCR4, hepatocyte nuclear factor 4 α (HNF4α), IL-35, HGF, IL-1Ra, forkhead box A2 
(Foxa2), and VEGF165, etc. (Figure 5) [261–267]. Several studies have shown essential roles for the 
CXCL12-CXCR4 axis in the survival, homing, and improved colonization of stem cells [259–265]. Gene 
edited MSCs overexpressing chemokines (CCR2, and CXCR4) are more likely to reach the injured liver and 
facilitate recovery [263–265]. Importantly, HGF secreted by MSCs is a ligand of c-Met, a tyrosine kinase 
receptor. HGF is the ligand of c-Met, a tyrosine kinase receptor family member. The HGF/c-Met axis is 
crucial in the proliferation, regeneration, development, protection, scattering process, and differentiation of 
bone marrow MSCs (BMSCs) into hepatocytes [267, 268]. However, the insufficient capacity of stem cells to 
reside in the damaged liver has been a concern for their therapeutic properties. The overexpression of c-
Met protein in BMSCs using genetically engineered lenti-c-Met-GFP vectors (c-Met-BMSCs) demonstrated 
increased migration activity of c-Met-BMSCs against the control BMSC group associated with HGF [267]. 
Overexpression of HNF4α enhances the therapeutic potential of MSCs by increasing the expression of IL-10 
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and polarization towards M2 [269]. The overexpression of IL-1Ra in MSCs, promotes liver regeneration and 
inhibits hepatocyte apoptosis [270]. Chae et al. [271] reported that overexpression of Foxa2 in MSCs 
enhances hepatocyte-like differentiation that alleviates acute liver failure (ALF) [271]. The above studies 
showed how genetic manipulation increases the regenerative capacities of MSCs in liver diseases. Injection 
of engineered MSCs can attenuate activation of HSCs, collagen deposition, inflammation, apoptosis, and 
fibrotic processes.

Pretreatment of MSCs

It has been reported that before transplantation, pretreatment of MSCs with different stimuli improves 
therapeutic efficacy in liver diseases (Figure 5). Edaravone, IL-1β TNF-α, etc. are the pretreatment agents or 
factors used in the experimental studies. Edaravone enrich antioxidant levels in MSCs that significantly 
improve liver tissue repair and regeneration by increasing MSCs’ homing, proliferation, apoptosis, and 
secretion of HGF [272]. Nie et al. [272] reported that IL-1β (20 ng/mL) pretreatment could enhance homing 
ability of MSCs by increasing the expression of CXCR4 [272]. In addition, Zhang et al. [237] found that TNF-
α (1 ng/mL) pretreatment of MSCs could secrete therapeutic exosomes to suppress NLRP3 activation in 
macrophages [273] (Figure 5).

Combinatorial therapy of MSCs and stimulant

The study reported that combination therapy of MSCs and IL-1Ra (2 mg/kg) synergistically regulate 
inflammation and apoptosis in ALF conditions [274]. Likewise, transplantation of human umbilical cord 
blood MSCs with granulocyte colony stimulating factor (G-CSF) improves liver injury by regulating 
inflammation, oxidative stress, and hepatocyte apoptosis [275]. Combination therapy of adipose derived 
stem cells (ADSCs) with eugenol (a natural compound), inhibits NF-κB activation, promotes cell cycle 
arrest, and reduces inflammatory cytokines [276]. Effective homing of ADSCs also resulted in decreased 
expression of genes involved in inflammation including inducible NO (iNOS), MCP-1, CD163, TNF-α, 
macrophage inflammatory protein-1α (MIP-1α) and MIP-1β, TGF-β, and M2 polarization [276]. 
Additionally, combination therapy improves micro-environment around MSCs due to enhance secretion of 
paracrine factors, to influence overall clinical outcomes.

MSC-based clinical studies and its efficacy and safety
Late stage liver fibrosis and cirrhosis are progressive liver diseases, and there are no conventional 
treatment options [277]. Numerous studies indicated the potential of MSCs in clinical application [278, 
279]. The preclinical animal studies have demonstrated the efficacy, safety, and feasibility of MSC in the 
treatment of liver cirrhosis [280–283]. In one such study, a 7-day consecutive tail vein injection of UC-MSCs 
significantly improved liver function in CCl4-treated mice [284]. Apart from preclinical studies, a large 
number of clinical trials have demonstrated the beneficial effect of MSCs administration in CLD patients 
[285–306]. Clinical trials have shown that infusion of MSCs can improve liver function profiles without 
obvious adverse effects [285–306]. In addition, transplanted MSCs further improve other complications 
such as hepatic encephalopathy, ascites, spontaneous bacterial peritonitis, and liver failure [307]. 
Furthermore, chronic hepatitis C or B-induced cirrhotic patients treated with MSCs showed improved 
MELD scores, ascites, and peripheral edema [288, 289, 296, 299, 301, 305]. In addition, after 2 and 4 weeks 
post-MSC transplantation, patients showed reductions in IL-6, IL-17, and TNF-α levels and a rise in IL-10 
levels [285–289]. Moreover, in MSC transplanted groups, CD4 and Tregs concentration were higher, 
whereas CD8 T and B cells were markedly decreased [307]. Importantly, MSC therapy reduces the 
proportionate collagen area [299]. Wang et al. [296] reported a reduction in alkaline phosphatase and 
gamma-glutamyl transferase in ursodeoxycholic acid-resistant primary biliary cholangitis (PBC) settings 
[296]. The preclinical and clinical studies demonstrated that MSCs are safe and effective for treating liver 
diseases. Unfortunately, no standard cellular dosage regimen is currently available for clinical MSC 
treatment [306, 307]. However, larger and double-blinded controlled trials are required across different 
liver cirrhosis etiologies with a wider geographical distribution to reliably evaluate the effectiveness and 
dose regimen of MSCs.
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Autologous or allogeneic MSC: which one is better?
Both autologous and allogeneic MSCs have been studied in preclinical and clinical studies [255]. Though, 
autologous MSCs are relatively easy to culture, there is a time critical aspect of expanding enough cells for 
transfusion. Moreover, it is also difficult to obtain sufficient adipose tissues for autologous MSCs culture and 
expansion from thinner patients [255]. Elderly or aged patients possess less regenerative properties i.e. 
minimum proliferation and differentiation of MSCs. Apart from logistical challenges, there is less quality 
assurance and a high cost of preparation for a single recipient. In contrast, allogeneic MSCs are usually 
obtained from young healthy donors, readily available, easy to culture, expand, and cryopreserved. 
Importantly, it can be quickly thawed prior to administration [255].

Hazard and safety profiles of MSC therapy
Though MSC regenerative therapy for liver diseases has been found to be safe and effective, still strict 
vigilance and caution are required to exclude any side effects i.e. the probability of carcinogenesis and viral 
transmission. Since MSCs secrete various growth factors, there is a possibility of tumor cell growth and 
angiogenesis with the increase in the number of cell culture passages [308]. Animal studies also suggested 
telomeric deletions with the increase in the number of passages [309]. Notably, there are no reported cases 
of malignant transformation of human MSCs observed in clinical trials [310, 311]. Extra care and precaution 
should be taken in the exclusion criteria during MSCs use for therapeutic purposes. The presence of viruses 
and endotoxins as well as chromosomal integrity must also be analyzed before MSCs transplantation to 
ensure the safety of the procedure [310, 311].

Conclusions
The inconsistencies in the conventional treatment outcomes and limited availability of organs for liver 
transplantation have led to a growing and unmet demand for alternative therapies. In this prospect, MSC-
based therapy has been most studied and investigated. A primary mechanism of action has been proposed 
as paracrine effects via their immunomodulation. Studies have shown that MSC-derived cytokines such as 
IL-10, IL-4, HGF, IDO, PGE2, TSG-6, and HO-1 have anti-inflammatory and immunosuppressive effects. 
Immunomodulatory pathways include ECM degradation in liver parenchyma, repairing fibrotic tissues to 
improving liver function. However, HOMING and differentiation of transplanted cells remain a challenge. 
Priming MSCs has emerged as a novel strategy to enhance their therapeutic efficacy by preconditioning. 
Preconditioning such as hypoxia, combination therapy, and genetic engineering prepare these cells for 
optimal homing and differentiation in challenging in vivo environments.

Additionally, MSC-derived exosomes exhibit therapeutic benefits, that have the potential to circumvent 
any risk posed by MSCs and will be safer to use in clinical practices to treat liver diseases. Future 
prospective: furthermore, MSCs priming or preconditioning warrant further research to harness their full 
potential. Smart editing of MSCs using CRISPR-Cas9 to target primary causative factor. Smart editing of 
exosomes via incorporation of nanomedicine, miRNA, drugs, and anticancer agents as a deliverable that 
could target specific sites. Furthermore, standardized protocols for the production of MSCs and exosomes 
should be optimized to overcome the remaining challenges and pave the way for stem cell therapy to be 
applied in wider clinical practices at affordable cost.
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