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Abstract
Microsatellite unstable (MSI) colorectal cancer (CRC) tumors have a high mutational load (particularly 
frame-shift mutations) that creates numerous neoantigens that are presented to major histocompatibility 
complex molecules and recognized by T cells. Consequently, MSI tumors have a higher presence of tumor-
infiltrating lymphocytes than mismatch repair-proficient tumors. Colorectal cancer patients with MSI 
constitute a rare group of immune checkpoint inhibitor (ICI)-responsive patients. Nonetheless, complete 
radiological responders comprise between 3% and 16% of MSI advanced CRC patients, which compares 
poorly with the 45% to 87% rate of pathological complete response in early MSI CRC patients treated with 
ICIs. In this review, we address the efficacy of current ICIs and the biological differences between early and 
advanced MSI CRC to potentially increase the efficacy of ICIs in both settings.
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Introduction
Early-stage microsatellite unstable (MSI) colorectal cancer (CRC) has traditionally been managed in the 
same way as mismatch repair-proficient/microsatellite stable (MSS) tumors, with surgery and 
chemotherapy for colon cancer and chemoradiotherapy followed by surgery for rectal tumors [1, 2]. 
However, evidence from a seminal paper published by Llosa et al. [3] demonstrated higher CD8+ cytotoxic 
infiltration in MSI tumors compared with MSS tumors and a significantly higher upregulation of multiple 
immune checkpoints, including PD-1 (programmed death-1), PD-L1 (programmed death-ligand 1), CTLA4 
(cytotoxic T-lymphocyte associated protein 4), LAG3 (lymphocyte-activation gene 3), and IDO (indoleamine 
2,3-dioxygenase). These findings identified this subset of CRC patients as optimal candidates for immune 
checkpoint inhibitor (ICI) therapy.

Although differences in neoantigen presentation can somewhat explain the efficacy of ICI therapy in 
MSI with respect to MSS tumors, at least 40% of MSS tumors present bona fide neoantigens that can be 
recognized by CD8+ cytotoxic cells [4]. Therefore, the differences in neoantigen presentation and T cell 
infiltration cannot exclusively explain the differences in ICI activity between MSI and MSS tumors. The type 
of T cell infiltration also differs between MSI and MSS tumors, with MSS tumors showing increased 
expression of regulatory T cells (Tregs) and exhausted CD8+ cells. Finally, metabolic differences have been 
found between MSI and MSS tumors, with a broad increase in glycolytic enzymes in MSI subtypes [5].

The present review seeks to inform clinicians and researchers about the latest advancements in the 
immunotherapy of MSI CRC tumors and to offer insights into future directions for optimizing patient care 
and outcomes. The studies included were published in peer-reviewed journals, focusing on clinical trials 
testing the safety and efficacy of immunotherapy in the neoadjuvant/adjuvant setting in early-stage and 
advanced MSI CRC. Non-English language studies, observational studies, case reports, and reviews without 
original data on MSI CRC were excluded. Key data extracted included study design, patient characteristics, 
intervention details (e.g., type of immunotherapy regimen), and outcomes (e.g., response rate, disease-free 
survival, progression-free survival). Data were narratively synthesized to summarize findings across 
studies, focusing on efficacy outcomes and implications for clinical practice. Key data were appropriately 
tabulated to facilitate comparison across studies and clearly present results. Potential bias toward 
published studies with positive results may limit the generalizability of the findings, while heterogeneity in 
study designs and methodologies may impact the robustness of the conclusions drawn. For biomarker 
evaluation, we revised the REMARK criteria [6, 7] and categorized the quality of evidence as A (high 
recommendation), B (low recommendation), and C (very low recommendation) (see Table 1). The 
following three criteria were used to evaluate the quality of the biomarkers for recommendation: a) 
whether a prospective sample size was defined for the biomarker, with prespecified differences in 
progression-free survival and/or overall survival (e.g., hazard ratio), after adjustment for other variables in 
advanced disease, or prespecified differences in the pathological complete response (pCR) in the 
neoadjuvant setting, b) the presence of a control arm or a comparison group exposed to another therapy to 
evaluate whether the effect is prognostic or predictive, and c) the inclusion of a validation set involving the 
use of at least one additional dataset using the same biomarker and cut-off.

Table 1. Proposed adapted REMARK criteria for evaluating biomarker efficacy

Classification Recommendation Prospectively design* Control arm** Validation set***

A High YES YES YES
B Low NO YES YES
C Very low NO NO NO
* Includes a prospective sample size for the biomarker, with pre-defined differences in PFS and/or OS (HR) after adjusting with 
other variables in advanced disease or pre-defined differences on pathological complete response in neoadjuvant setting. ** 
Control arm. Exposure to other therapies to evaluate if the effect is prognostic or predictive. *** Validation set. Use of at least 
one additional set with the same biomarker and cut-off. PFS: progression-free survival; OS: overall survival; HR: hazard ratio
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Early-stage disease

The aim of neoadjuvant immunotherapy (nIT) with ICIs is to enhance T cell activity against tumor 
neoantigens in a preserved primary tumor microenvironment. In the adjuvant setting, ICI therapy may 
enhance T cell efficacy against neoantigens in a micrometastatic environment in which the primary tumor 
is no longer present. It is currently unclear whether the microenvironment and metabolism differ between 
early-stage disease and micrometastatic disease. In a colon cancer liver model, micrometastases exhibited 
increased T cell infiltration compared with macrometastases [8]. Nonetheless, other metastatic models 
(e.g., brain metastases from HER2+ breast cancer) showed that latent metastases have distinct metabolic 
fitness from synchronous and metachronous bulk metastases [9, 10]. Nevertheless, better efficacy with the 
neoadjuvant strategy has recently been shown in phase III trials in non-small cell lung cancer, melanoma, 
and triple-negative breast cancer [11–14].

Adjuvant therapy

One randomized clinical trial of note has completed recruitment in the adjuvant setting (NCT02912559) 
[15]. This study was initiated in 2017 and is comparing FOLFOX + atezolizumab to FOLFOX alone (n = 700). 
Recruitment closed in January 2023, and the final results are expected to be reported in April 2025. 
Although the results are eagerly awaited, because this will be the first randomized data from a neoadjuvant 
setting, several caveats should be noted. First, the duration (12 months therapy in the atezolizumab arm) 
compares negatively with the 6-week neoadjuvant period in the NICHE-II trial [16]. Second, the expected 
toxicity profile will also compare negatively with that of NICHE-II. Finally, even if the experimental arm is 
superior to the control arm, it would be difficult to match the efficacy of the NICHE-II study, with 100% 
disease-free survival at 3 years with neoadjuvant therapy with nivolumab-ipilimumab.

Neoadjuvant therapy

We have included in the revision all the published or non-published (but presented at ESMO or ASCO 
Meetings) with ICI neoadjuvant therapy (see Figure 1). The NICHE-I trial pioneered the evaluation of nIT 
with nivolumab and ipilimumab in patients with locally advanced colon cancer [17]. The study 
demonstrated a pCR rate of up to 60% and a favorable safety profile. These findings have prompted further 
investigations into the safety and efficacy of nIT. Phase II studies consistently demonstrate that nIT in early 
MSI patients yields significantly higher rates of a pCR (45%–80%) and major pathological response (< 10% 
residual tumor) (90%–100%), corresponding to Mandard tumor regression grade 1 (complete response) or 
2 (near-complete response), compared to 6-week neoadjuvant chemotherapy with FOLFOX, in which only 
4% of such patients achieved a pCR and 5% achieved a Mandard tumor regression grade 1 or 2 [18] (see 
Table 2). However, several questions remain, necessitating further research to obtain robust scientific 
evidence that could potentially influence standard clinical practice.

First, although radiological staging is well-defined with pelvic magnetic resonance imaging in rectal 
cancer, the sensitivity and specificity of computed tomography are less clear in colon cancer [19]. This is 
important because MSI pT1-3N1 tumors, which represent roughly 50% of patients, have an excellent 
prognosis, with recurrence rates of less than 10%. In contrast, pT4N2 has a poor prognosis and 40% of 
these patients develop metastasis [20].

Second, it is further unclear whether adjuvant therapy will add clinical value after nIT. Findings from 
the NICHE-II trial with only 3-week therapy with nivolumab (two cycles) and ipilimumab (one cycle) [16, 
21] indicated a 67% pCR and 95% major pathological response and an outstanding 100% disease-free 
survival rate at 3 years, suggesting that adjuvant therapy will likely not increase the efficacy of nIT.

The remaining question is if monotherapy with anti-PD-1 alone can achieve the same efficacy as 
combination therapy with anti-CTLA4 [17, 21, 22]. Recently, the NICHE-III trial, involving patients treated 
with nIT comprising two cycles of nivolumab and one cycle of relatlimab (anti-LAG3), showed similar 
efficacy (67% pCR) and toxicity as anti-CTLA4 therapy [23]. Most phase II studies suggest that 
monotherapy with anti-PD-1 is sufficient to achieve a similar pCR (46%–66%) as combination regimens. 
Only a small phase II randomized study has compared the efficacy of anti-PD-1 alone with that of anti-PD-1 



Explor Dig Dis. 2025;4:100564 | https://doi.org/10.37349/edd.2025.100564 Page 4

Figure 1. Flow diagram of clinical trials included in the review, categorized by disease stage (early or advanced) and 
type of study. Non-English studies, observational studies, case reports, and reviews without original data were excluded. MSI 
CRC: microsatellite unstable colorectal cancer; pCR: pathological complete response; CR: complete response

Table 2. Clinical trials of ICIs in early-stage MSI colon and rectal cancer

Studies NCT Drug (NA/A) N C/R pCR (%) Duration (w) WW 
(%)

DFR (%)
3-year

Ref.

Chalabi, 2020 NCT03026140 Nivolumab/ipilimumab 
(NA)

20 C 60 6 - - [17]

Chalabi, 2024 NCT03026140 Nivolumab/ipilimumab 
(NA)

119 C 67 6 - 100 [16]

de Gooyer, 2024 NCT03026140 Nivolumab/relatlimab 
(NA)

59 C 67 6 - - [23]

Hu, 2022 NCT03926338 Toripalimab +/– 
celecoxib (NA)

34 C 88 vs 65 12 - - [25]

Xu, 2024 NCT05890742 IBI301 + sintilimab

vs sintilimab (NA)

101 C 80 vs 47 6 - - [22]

Shiu, 2024 NCT05197322 Pembrolizumab (NA) 32 C 59 6 - - [27]
Ludford, 2023 NCT04082572 Pembrolizumab (NA) 27 C 66 24 - - [28]
AZUR2, 2024 NCT05855200 Dostarlimab vs SOC 

(NA/A)
711 C - 12 - -

Yu, 2024 NCT04715633 Camrelizumab + 
afatinib (NA)

52 C/R 61 12–24 54 - [24]

de la Fouchardiere, 
2024

NCT04795661 Pembrolizumab (NA/A) 87 C/R 47 vs 68 3–6 - - [26]

Cercek, 2022 NCT04165772 Dostarlimab (NA) 41* R - 24 100 - [29]
Chen, 2023 NCT04304209 Sintilimab +/– CHT 

(NA/A)
17 R - 12 53 - [31]

AZUR1, 2024 NCT05723562 Dostarlimab (NA) 100 R - 24 - -
ICIs: immune checkpoint inhibitors; MSI: microsatellite unstable; nivolumab: anti-PD-1; ipilimumab: anti-CTLA4; relatlimab: anti-
LAG3; toripalimab: anti-PD-1; celecoxib: COX2 inhibitor; pembrolizumab: anti-PD-1; camrelizumab: anti-PD-1; afatinib: VEGF 
inhibitor; IBI301: anti-CTLA4; sintilimab: anti-PD-1; dostarlimab: anti-PD-1. NCT: National Clinical Trial; NA: neoadjuvant; A: 
adjuvant; CHT: chemotherapy; pCR: pathological complete response; WW: watch and wait; DFS: disease-free survival; C/R: 
colon/rectum; SOC: standard of care; Ref.: reference. * Updated information



Explor Dig Dis. 2025;4:100564 | https://doi.org/10.37349/edd.2025.100564 Page 5

combined with anti-CTLA4. That study showed a significant reduction in the pCR with anti-PD-1 alone 
(47.7% vs 80%) [22]. The benefit of adding other strategies to anti-PD-1 therapy, such as anti-angiogenic 
therapy with afatinib [24] and anti-COX2 with celecoxib [25], is currently unknown.

The duration of nIT may also influence outcomes. In the NICHE trials, combination therapies were 
administered during a 6-week nIT period, whereas other trials involving monotherapy with anti-PD-1 
extend the nIT to 12 or even 24 weeks. For instance, a pCR was achieved in 46% and 68% of patients with 
pembrolizumab alone in 3- or 6-week nIT therapy, respectively, in the IMHOTEP study [26], in 59% of 
patients with 6-week therapy [27], and in 66% of patients with 24-week therapy [28]. Therefore, it is 
currently unclear if the number of cycles or the nIT duration improves the pathological response and 3-year 
disease-free survival. Because of the absence of phase III data compared with conventional therapy 
(surgery followed by chemotherapy), the results of the ongoing AZUR2 study (NCT05855200), a phase 3 
clinical trial comparing nIT with dostarlimab vs standard treatment that is currently enrolling patients, are 
awaited with interest.

In early rectal cancer, anti-PD-1 alone with dostarlimab improves the strategy of non-operative 
management (NOM) to almost 100% [29, 30]. Other studies with other anti-PD-1 agents, such as 
camrelizumab [24] and sintilimab [31], also showed impressive results in NOM. Recently, the AZUR1 study 
(NCT05723562) has recruited 100 patients with early-stage MSI rectal cancer treated with dostarlimab. 
The primary objective is a 65%–90% complete clinical response at 12 months. The results are highly 
expected, particularly because the appropriate radiological evaluation for selecting patients for NOM and 
nIT is currently unclear.

Advanced disease

The clinical characteristics of MSI metastatic patients (only 5% of metastatic patients are MSI) differ in 
some aspects from those of MSS individuals. Compared with MSS tumors, the primary tumors are typically 
located on the right side (65%–70% vs 30%–35%), are more prone to the development of BRAF mutations 
(25%–30% vs 5%–10%), have more peritoneal metastasis (35%–40% vs 10%–15%) and less liver 
metastasis (35%–40% vs > 70%), and exhibit less abnormally high lactate dehydrogenase levels (5%–10% 
vs 30%–35%).

In Table 3, we included all the studies that have been published with ICI in advanced MSI tumors. We 
included phase II trials of first-line therapy with nivolumab-ipilimumab [32] and of pre-treated patients 
with nivolumab [33], nivolumab-ipilimumab [34, 35], nivolumab-relatlimab [36], avelumab [37, 38], 
durvalumab [39] and pembrolizumab [40]. Overall, these studies showed a high response rate (33%–65%) 
and 3-year progression-free rate (38%–60%). Although the results compare favorably with chemotherapy, 
roughly 25%–40% of patients are ICI refractory and less than 50% remain progression free at 3 years.

Two large phase III trials have compared ICI to standard chemotherapy. The KEYNOTE-177 trial 
demonstrated superior progression-free survival of pembrolizumab over chemotherapy as frontline 
treatment for patients with advanced MSI disease [41, 42]. The CheckMate 8HW has been recently 
published [43]. The dual primary endpoints were progression-free survival, assessed by blinded 
independent central review, for nivolumab + ipilimumab vs nivolumab across all lines and for nivolumab + 
ipilimumab vs chemotherapy in the first-line setting in patients with centrally confirmed MSI-H metastatic 
CRC (mCRC). This study shows the superiority of nivolumab-ipilimumab vs chemotherapy. The comparison 
between nivolumab-ipilimumab and nivolumab is planned only in patients that received ≥ 2 prior lines of 
therapy and the study will therefore not clarify if nivolumab-ipilimumab is superior to nivolumab as first-
line therapy. Because chemotherapy is currently not an adequate control arm for advanced MSI disease, it is 
unclear whether nivolumab-ipilimumab should be considered a new standard of care.

Potential biomarkers in MSI patients treated with ICI therapy
Early-stage disease

Only a few studies have analyzed biomarkers to address ICI therapy efficacy in early MSI disease. In the 
NICHE-I study, although the tumor mutational burden (TMB) varied widely between MSI (median, 1,438 
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Table 3. Clinical trials of ICIs in advanced MSI colorectal cancer

Studies NCT Phase N Drug BOR 
(%)

CR 
(%)

DFR (%)
2-year

DFR (%)
3-year

Ref.

Lenz, 2022 NCT04008030 II/1L 45 Ipilimumab/nivolumab 65 13 73 (57–84.5) - [32]
André, 2022 NCT02060188 II/≥ 2L 119 Ipilimumab/nivolumab 55 3 63 (53–71) 60 (50–68) [35]
Overman, 
2018

NCT02060188 II/≥ 2L 74 Nivolumab 51 3 50 (38–61) - [34]

Overman, 
2024

NCT02060188 II/> 2L 50 Relatlimab/nivolumab 48 16 51 (37–64) 38 (24–52) [36]

Le, 2020 NCT02460198 II/2L 61 Pembrolizumab 33 3 31 - [40]
Le, 2020 NCT02460198 II/> 2L 63 Pembrolizumab 33 8 37 - [40]
Diaz, 2022 NCT02563002 III/1L 307 Pembrolizumab vs CHT 45 vs 

33
13 
vs 4

48.3 
(39.9–56.2)

42.3 
(34–50.4) vs 
11.1 
(6.1–17.9)

[42]

Andre, 2024 NCT04008030 III/1L 505 Ipilimumab/nivolumab vs 
nivolumab vs CHT

- - 72 vs 14 - [43]

Kim, 2020 NCT03150706 II/> 2L 30 Avelumab 24 14 - - [37]
Taïeb, 2023 NCT03186326 II/2L 122 Avelumab vs CHT 30 vs 

26
7 vs 
5

25 vs 10 - [38]

Oh, 2022 NCT03435107 II/> 2L 30 Durvalumab 42 - - - [39]
ICIs: immune checkpoint inhibitors; MSI: microsatellite unstable; ipilimumab: anti-CTLA4; nivolumab: anti-PD-1; relatimab: anti-
LAG3; pembrolizumab: anti-PD-1; CHT: chemotherapy; avelumab: anti-PD-L1; durvalumab: anti-PD-L1; BOR: best overall 
response; CR: complete response; DFR: disease-free rate; NCT: National Clinical Trial; Ref.: reference

mutations; range, 648–4,458) and MSS (median, 111 mutations; range, 48–261) tumors, no differences in 
TMB were found between MSS responders (median, 108; interquartile range, 62–153) and non-responders 
(median, 117; interquartile range, 93–143). In addition, no major differences were found between MSI and 
MSS in CD3+, FOXP3+, PD-L1, and interferon scores, tertiary lymphoid structure presence, and CXCL13 
expression. The sole biomarker related to the MSS ICI response was the presence of T cell co-expression of 
CD8 and PD-1 [17]. In the PICC study, early-stage MSI patients were treated with toripalimab ± celecoxib. 
The authors found no differences in activity based on TMB, but more responders were seen in the group of 
patients with HLA-DQA1 and HLA-DQB1 expression and in tumors that showed CD8+ T cells with low PD-1 
expression [44]. Finally, the same group used single-cell RNA-seq analysis to show that patients who 
achieved a pCR in post-treatment samples exhibited decreased proinflammatory features, with fewer CD8+ 
TRM-mitotic cells (with exhausted phenotype markers, e.g., PDCD1, LAG3, TIGIT, HAVCR2, TOX, and 
ENTPD1), CD4+ Tregs, proinflammatory IL1B+ monocytes, and CCL2 fibroblasts [45]. Although these 
findings suggest a polarization to an exhausted ICI refractory phenotype after therapy, these studies do not 
clarify in pre-treated biopsies the intrinsic causes driving this polarization.

Advanced-stage disease

There is extensive literature regarding the use of potential biomarkers to assess ICI efficacy in advanced 
MSI patients (see Table 4). Nonetheless, using our proposed quality biomarker analysis (modified 
REMARK), none of the studies fulfill all of the strict criteria for their recommended use in clinical practice 
(Table 1). This means that none of these biomarkers can replace immunohistochemistry (loss of expression 
of any of four proteins [MLH1, PMS2, MSH2, MSH6]) or determination of mismatch repair deficiency 
(dMMR) defined by microsatellite analysis (at least two of five microsatellites with different length 
variations). These methods are cheap, highly reproducible, and, most importantly, have been used 
prospectively to select patients in clinical trials of MSI patients undergoing ICI. The fact that none of the 
published MSI predictive biomarkers, are used in clinical practice, reflect the poor credibility of REMARK 
criteria.

The only study that fulfills at least two modified REMARK criteria was recently published by 
Quintanilha et al. [46]. They used next-generation sequencing to assess MSI and compared the results with 
standard methods (immunohistochemistry of dMMR) and showed that next-generation sequencing better 
discriminates the benefit of ICI therapy.



Explor Dig Dis. 2025;4:100564 | https://doi.org/10.37349/edd.2025.100564 Page 7

Table 4. Studies evaluating biomarkers in patients treated with ICIs in MSI cancer, with adapted REMARK criteria

Studies N Biomarker Prospective 
set

Control 
arm

Validation 
set

Recommendation Ref.

Mandal, 2019 33 MSI sensor NO NO NO C [47]
Georgiadis, 2019 23 MSI sensor NO NO NO C [48]
Kawazu, 2022 114 HLA-ABC NO YES NO B [54]
Middha, 2019 13 B2M NO NO NO C [55]
Germano, 2021 38 B2M NO NO NO C [56]
Zhang, 2022 35 B2M NO NO NO C [57]
Schrock, 2019 22 TMB NO NO NO C [49]
Loupakis, 2020 80 TMB/TILS NO NO NO C [50]
Chida, 2021 45 TMB NO NO NO C [51]
Manca, 2023 110 TMB NO NO NO C [52]
Westcott, 2023 26 Clonal neoantigen 

burden
NO NO NO C [53]

Quintanilha, 2023 320 MSI (NGS) NO YES YES B [46]
Pietrantonio, 2021 305 Nomogram NO NO YES C [60]
Sui, 2022 66 Inflammatory 

signature
NO NO YES C [58]

Corti, 2021 163 Inflammatory 
signature

NO NO NO C [59]

Saberzadeh-
Ardestani, 2023

33 Inflammatory 
signature

NO NO NO C [61]

Gallois, 2023 138 Stromal signature NO NO YES C [62]
Chida, 2022 36 CMS NO NO NO C [63]
Sui, 2021 43 DKK1 NO NO NO C [64]
Bortolomeazzi, 2021 29 WNT/TMB/B2M NO NO YES C [65]
Ratovomanana, 
2023

129 Multiplex MSI 
signature/TGF-β 
signature

NO NO YES C [71]

ICIs: immune checkpoint inhibitors; MSI: microsatellite unstable; HLA: human leukocyte antigen; B2M: beta 2 microglobulin; 
TMB: tumor mutational burden; TILS: tumor infiltrating lymphocytes; NGS: next generation sequencing; CMS: consensus 
molecular subtype; DKK1: Dickkopf 1; TGF-β: transforming growth factor beta

MSI sensor software analyzes aligned sequencing data to assess available microsatellite regions with 
sufficient coverage in a tumor/normal tissue pair and thereby identify variations in deletion lengths 
indicative of MSI. Current evidence does not justify its use in clinical practice [47, 48]. In addition, TMB [49–
52], which uses different cut-offs or clonal neoantigen burdens, does not fulfill any of our adapted REMARK 
criteria [53]. Loss of the expression of beta 2 microglobulin (β2M), which is usually associated with β2M 
mutations (occurring in 24%–28% of MSI tumors), has been shown pre-clinically [54] to preclude ICI 
efficacy due to poor major histocompatibility complex (MHC)-I presentation, although the clinical data do 
not support the pre-clinical findings [55–57]. Importantly, none of these studies fulfill our modified 
REMARK criteria and therefore cannot be used in clinical practice.

Inflammation has been pre-clinically related to ICI resistance. The inflammation pattern can be 
measured in different ways. For instance, in blood samples, we can evaluate inflammation by using the ratio 
between neutrophils/myeloids over lymphocyte infiltration. The main concern of this biomarker is the 
difficulty in the clear definition of the optimal cut-off. Using our strict REMARK methodology, none of the 
published studies fulfill the A or B recommendation [58–61] suggest that a close proximity of CD8+ T cells 
expressing PD-1 with CD3, CD8, and CD68 macrophages expressing PD-L1 correlates with ICI efficacy. 
Finally, transcriptomics has also been used to evaluate the ratio of proliferation to stromal components 
[62]. Progression-free survival was shorter in tumors treated with ICIs and in stromal-high/proliferation-
low tumors. Again, different cut-offs and different ways to evaluate inflammation limit its value as a 
biomarker. Other authors have focused on pathways that have been described in other tumors as potential 
biomarkers of ICI resistance. For example, the study by Chida et al. [63] reported that WNT activation, 
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commonly observed in CMS2/3 subtypes, is associated with ICI resistance. Similarly, studies by Sui et al. 
[64] and Bortolomeazzi et al. [65] further support the link between WNT activation and ICI resistance. 
Consensus molecular subtype 2, characterized by MYC and WNT expression and reduced immune 
infiltration [66, 67], has been shown to be increased in CRC metastases, compared with primary tumors 
[68]. This CMS subtype has been also related to ICI-resistance [69]. Additionally, a transforming growth 
factor-β (TGF-β) signature, also enriched in colorectal metastases [70] has been correlated with reduced ICI 
efficacy [71].

Metabolic differences between early and metastatic disease
Tumor cells undergo metabolic reprogramming to maintain malignant features and fitness in metastatic 
microenvironments. A seminal paper published by the Bartman group [72] showed recently that primary 
tumors rely on high levels of glycolysis compared with normal tissue but, contrary to what was expected, 
have a lower tricarboxylic acid (TCA) flux and ATP production. Compared with primary tumors and normal 
tissues, an increased TCA flux and elevated lactate consumption was noted in lung metastatic tissues from 
triple-negative breast cancer. Interestingly, the high glycolysis and low TCA is explained by a replacement 
of normal specific tissue functions (e.g., protein synthesis in pancreatic cancer) for increased proliferation. 
Similar conclusions were reached by the Bezwada group [73], which showed that acetate and glutamine 
increase TCA labeling in kidney cancer metastases compared with primary tumors. The Faubert group [74] 
elegantly propose that metastatic cells in circulating blood increase OXPHOS and reactive oxygen species 
(ROS) capacities [75, 76], coupled with antioxidant mechanisms to sustain cell viability under stressful, 
highly oxidative, conditions. Thus, it seems that metastatic seeding requires functional mitochondria [77].

Several antioxidant pathways have been reported to minimize the death of circulating metastatic cells. 
Most of the studies suggest that ferroptosis resistance associated with lipogenesis is one of the crucial 
antioxidant pathways [78, 79]. Other antioxidant pathways that enable cells to mitigate ROS in the 
metastatic process are increased NADPH in mitochondria through glutamine reductive carboxylation [80] 
and the folate pathway [81].

Metastases show distinct metabolic characteristics from primary tumors that potentially can confer 
more ICI resistance. For instance, atypical glycolysis [82, 83], hexosamine biosynthesis pathways [84–86] 
and epithelial-to-mesenchymal transition, all well-described mechanisms of ICI resistance, have been 
related to disease dissemination [87–91].

Tumors with increased OXPHOS, have also been reported to be associated with ICI resistance [92–94]. 
Interestingly increased OXPHOS alone or associated with high levels of glycolysis is a well-known 
mechanism of dissemination in a variety of tumors. Lung metastases from triple-negative breast cancer [72, 
95, 96] and kidney cancer [73] are supported by increased TCA/OXPHOS function. Interestingly, liver 
metastases show higher glycolysis and low TCA/OXPHOS despite increased PDK1 expression [95]. In 
contrast, breast cancer cells with broad metastatic potential (4T1 cells: bone, lung, and liver) engage both 
OXPHOS and glycolysis. This can suggest that alternative energy supplies can activate both glycolysis and 
OXPHOS. Given that other studies of primary lung and pancreatic cancers show that lactate is used to fuel 
the TCA/OXPHOS pathway, we speculate that these highly metabolically flexible tumors use lactate instead 
of glucose to fuel the mitochondria [97, 98]. This pattern is also supported by antioxidant mechanisms such 
as the pentose phosphate pathway (PPP), as has been well described by other authors [99–101]. Despite 
PPP inhibition, alternative antioxidant pathways such as isocitrate dehydrogenase and malic enzyme 
upregulate functions through glutaminolysis [102–104]. Finally, glutamine in these tumors supports urea 
cycle dysregulation, high chromosomal instability [105] and polyamine synthesis [106]. It is currently 
unclear if glutaminase [107, 108] or polyamine inhibition [109, 110] can increase the clinical efficacy of 
ICIs.
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CRC: metabolic differences between early and advanced disease
The efficacy of cancer immunotherapy in MSI CRC differs between patients with early disease (roughly 
60%–70% pCR) and advanced disease (mCRC) (3%–16% complete radiological response). Currently, there 
is no clear biological explanation for this difference. One of the key differences between early-stage and 
advanced MSI CRC lies in the tumor immune microenvironment (TIME). Early-stage tumors are 
characterized by a higher infiltration of cytotoxic CD8+ T cells and a lower proportion of Tregs, creating a 
more immunogenic environment. In contrast, advanced tumors exhibit an increase in immunosuppressive 
elements, such as Tregs and exhausted CD8+ T cells expressing PD-1, LAG3, and TIM-3. Additionally, 
advanced tumors harbor more tumor-associated macrophages (TAMs) with an M2 immunosuppressive 
phenotype, which further contributes to immune evasion [111–113]. These distinctions in TIME likely 
explain the reduced efficacy of ICIs in advanced-stage MSI tumors compared to early-stage tumors.

Liquid biopsy (LB) analysis (determination of mutations in blood) soon after surgical resection (4–8 
weeks) adds valuable prognostic clinical information in early colon cancer. Patients with LB positivity (LB+) 
(usually 10%–20% of patients) have a high risk of metastasis (> 50% risk and usually with a short follow-
up). In contrast, LB negative (LB−) patients (which constitute 80%–90% of resected tumors) have less than 
a 10% risk of relapse [114]. Unfortunately, the intrinsic biological and metabolic characteristics of the LB+ 
and LB− patients that ultimately develop metastases are poorly understood.

We previously identified two major clusters with metabolic interactions among tumors, stromal cells, 
and immune cells across 11 different tumor types [115–117]. Specifically in colon cancer, cluster 1 (IMC1) 
has mesenchymal features, atypical glycolysis, and high stromal and immune infiltration and is represented 
by the CMS4 subtype, correlated with ICI-resistance and are increased in advanced disease compared with 
early CRC [86, 90, 118]. Cluster 3 (IMC3) is driven by high chromosomal instability, high OXPHOS with 
uptake of multiple nutrients (lactate, fatty acids, glucose, and glutamine), and high metabolic flexibility 
supported by multiple antioxidant mechanisms and is represented by the CMS2 and CMS3 subtypes [119]. 
This CMS can also induce immune-suppression through ammonia and polyamine accumulation [110, 120]. 
As mitochondrial respiration and antioxidant stress protection (in the IMC3 subtype) and atypical 
glycolysis (in the IMC1 subtype) play critical roles in metastatic spread, we hypothesize that adaptation of 
the metabolic microenvironment in metastatic sites can potentially explain ICI resistance in at least a subset 
of patients with advanced MSI CRC. Supporting it, our group [121], also showed, using 13C-labelled glucose, 
that the entry of glucose into the TCA cycle is higher in the metastatic colon cancer cell lines SW620 and 
LIM2 than in the paired primary cell line SW480 and that the levels of phosphorylated pyruvate 
dehydrogenase (pPDH) are consistently lower in metastatic cells.

Conclusions
Although early and advanced MSI diseases exhibit a similar T cell infiltration and TMB, they show high 
disparities in ICI efficacy. Due to marked differences in metabolism between limited and metastatic disease, 
potential metabolic vulnerabilities can also enhance ICI efficacy specially in advanced MSI. We strongly 
support to evaluate immune-suppressive metabolic profiles in MSI CRC [for example, mesenchymal 
metabolic tumors (IMC1) and high glycolytic/high OXPHOS (IMC3)] to identify those patients that can be 
potentially ICI resistant. In IMC1 profile, hexosamine biosynthesis inhibitors or MCT4 inhibitors can 
increase ICI efficacy. Alternatively, in IMC3 subtype, OXPHOS inhibitors, PPP inhibitors, or inhibitors of 
polyamine synthesis can increase ICI efficacy.
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