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Abstract
Hepatitis B virus (HBV) infection is a major risk factor of cirrhosis and hepatocellular carcinoma (HCC) 
worldwide. Pathogenesis of HBV-induced cirrhosis and HCC involves viral factors and virus-triggered local 
inflammatory and immune responses, the latter leading to progressive fibrosis, cirrhosis and 
carcinogenesis. Antiviral therapeutics suppress HBV replication and reduce the risks of cirrhosis and HCC. 
We discuss the current knowledge on the pathogenesis of HBV-induced cirrhosis and HCC, focusing on 
mechanisms of current and emerging antiviral therapeutics.
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Introduction
Chronic hepatitis B (CHB) is caused by hepatitis B virus (HBV) infection. 296 million people are estimated 
to be chronically infected with HBV worldwide [1], causing 1.1 million deaths in 2022 [2]. CHB is a major 
risk factor for cirrhosis and hepatocellular carcinoma (HCC). The 5-year incidence of cirrhosis for untreated 
CHB patients is 8%–20%, while the annual risk of patients with cirrhosis developing HCC is 2%–5% [3].

China represents one-third of the global burden of hepatitis B worldwide [2]. China has established a 
national plan to eradicate viral hepatitis by 2030, including the hepatitis B vaccine program for newborns 
and strategies to prevent vertical transmissions of HBV [4]. Nevertheless, incidence rate of HBV infection in 
China is still the highest among category B infectious diseases [5]. The large sum of chronic HBV-infected 
people still poses a dire challenge to healthcare providers.
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Multiple mechanisms have been identified as potential factors of HBV-induced cirrhosis and HCC. In 
this review, we introduce the pathogenic pathways potentially leading to HBV-induced cirrhosis and HCC, 
both virus-related mechanisms and host-related mechanisms. We further discuss current and emerging 
antiviral therapeutics against HBV infection, focusing on their activities to suppress viral replication and 
alleviate cirrhosis and HCC risks.

Mechanisms of HBV-induced cirrhosis and HCC
The pathogenic process of CHB and the cirrhogenic and carcinogenic effects of CHB can be described by the 
interactions of virus-related mechanisms and host-related mechanisms [6]. Virus-related mechanisms 
include effects of virally expressed proteins and HBV DNA integrations. Host-related mechanisms are 
mainly the chronic inflammation response triggered by CHB.

Virus-related mechanisms

HBV is a non-cytopathic, hepatotropic DNA virus, a member of the Hepadnaviridae family. HBV is 
transmitted through blood or mucosal exposure to infectious blood and bodily fluids. Common 
transmission routes include sexual transmission, vertical transmission, and nosocomial transmission [7].

The HBV virion, known as Dane particle, is comprised of an envelope of lipids and hepatitis B surface 
antigens (HBsAg), a nucleocapsid composed of core proteins, and a partially double-stranded genomic DNA 
linked to the viral polymerase [8]. When virus particles reach hepatocytes via blood circulation, the HBV 
virion attaches to the host cell surface by binding to sodium taurocholate co-transporting peptide (NTCP) 
on the hepatocyte membrane [9]. The relaxed-circular DNA (rcDNA) form of HBV genome contained in the 
viral capsid is transported into the nucleus, where it is converted by the cellular DNA repair system to the 
covalently closed circular DNA (cccDNA) which serves as the template for HBV transcription [10]. 
Transcription products include pregenomic RNA (pgRNA) and mRNAs that are translated into viral 
proteins. pgRNA undergoes reverse transcription to form progeny viral rcDNA [11] (Figure 1).

Viral protein-related mechanisms

HBV X protein (HBx) is an oncogenic protein critically involved in HCC tumorigenesis [12]. HBx is a key 
driver of HBV infection by mediating cccDNA transcription, modulating cellular and viral promoters and 
enhancers, and influencing various signal transductions and cell cycle regulation. HBx can promote cell 
proliferation through the activation of multiple signaling pathways including Wnt/β-catenin, PI3K/AKT, 
and STAT3 signaling pathways [13]. HBx may inhibit cell apoptosis through various mechanisms, allowing 
damaged liver cells to survive and accumulate gene mutations, increasing the risk of tumorigenesis [14]. 
HBx can cause epigenetic changes such as DNA and histone methylation, affecting expression of numerous 
genes including certain tumor suppressor genes, and promoting liver cell carcinogenesis. HBx can promote 
cell proliferation signaling in hepatocarcinogenesis, inducing hepatocytes to enter and remain in the G1 
phase of the cell cycle [15]. Although it has been reported to have potential effects on numerous 
tumorigenic pathways, HBx’s precise role in HCC tumorigenesis is yet to be clarified.

Mutations in HBsAg have been associated with HCC [16]. A cross-sectional study of HBsAg-positive 
patients showed patients with cirrhosis or HCC had a higher frequency of substitution in the major 
hydrophilic region and immune epitopes in HBsAg [17]. Mutations in antigenic epitopes could impact the 
conformational structure and alter the immunogenicity of HBsAg in CHB/HCC patients [16].

Gene deletions in HBV pre-S gene segments are valuable biomarkers for higher incidence rates of HCC 
[18]. HBV pre-S deleted proteins are important oncoproteins that can induce DNA damage and promote 
growth and proliferation of hepatocytes by activation of endoplasmic reticulum stress-dependent signaling 
pathways [19]. HBV pre-S2 deleted proteins can further inhibit DNA repair, enhance hepatocyte survival 
and drug resistance [20].
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Figure 1. Life cycle of HBV. HBV enters the hepatocyte via NTCP receptor. rcDNA enters the nucleus after uncoating and is 
converted to cccDNA. cccDNA is the template for transcription of viral mRNAs including pgRNA. HBc and three HBs are 
reponsible for capsid formation and virion formation, respectively. HBs can also form subviral particles. Both HBs subviral 
particles and HBe are secreted. HBx modulates viral transcription. New viral nucleocapsids are encapsidated by HBs proteins to 
become virions. They can also be transported into the nucleus. HBV dslDNA, a by-product of replication, is believed to be the 
major source of HBV DNA integration. Antiviral targets are shown in green boxes, including NAs, ASOs, siRNA, and CAMs. NAs 
bind to viral DNA polymerase, causing premature termination of viral DNA transcription; ASOs inhibit transcription by blocking 
viral mRNA; siRNA induce mRNA degradation; CAMs inhibit encapsidation of pgRNA; HBV entry inhibitors suppress virions 
entering hepatocytes; HBsAg inhibit HBs protein envelopment of capsid; IFN-α has antiviral and immunomodulatory effect via 
intercellular and intracellular mechanism, also modulating host immune responses. Immunomodulators alter host innate and 
adaptive immune responses. ASOs: antisense oligonucleotides; CAMs: capsid assembly modulators; cccDNA: covalently 
closed circular DNA; dslDNA: double-stranded linear DNA; HBV: hepatitis B virus; HBc: HBV core protein; HBe: HBV e protein; 
HBeAg: HBe antigen; HBs: HBV surface protein; HBsAg: HBs antigen; HBx: HBV X protein; IFN-α: alpha-interferon; NAs: 
nucleoside/nucleotide analogs; NTCP: sodium taurocholate co-transporting peptide; pgRNA: pregenomic RNA; rcDNA: relaxed-
circular DNA; siRNA: small interfering RNA

HBV DNA integration-related mechanisms

The integration of HBV DNA into the hepatocyte chromosome is a crucial contributing factor to the 
development of HCC. Integrated HBV DNA can make stable transcription of viral genes including HBx and 
HBV surface protein (HBs). HBV integrations can facilitate chromosomal translocations, causing genomic 
instability [21]. Using long-read DNA sequencing method, multiple unique HBV-associated inter-
chromosomal translocations have been identified in early stages of HBV infection in both HCC and non-HCC 
CHB patients [22]. Collectively, HBV integration may lead to significant transcriptional dysregulation of 
cellular genes and drive progression to HCC.

HBV genotypes and sub-genotypes are also related to the development of cirrhosis and HCC. Studies 
suggest genotype C is associated with higher HCC risk than genotype B, and genotype A has a higher HBsAg 
clearance rate after interferon therapy [23]. Yet, the clinical significance of HBV genotypes is not completely 
understood.

Host-related mechanisms

The antiviral response of the host immune system in chronic HBV infection can cause a series of pathogenic 
reactions such as liver injury, necrosis, and inflammation, which are manifested by biochemical 
abnormalities such as elevated serum liver enzymes [24]. Chronic inflammation and fibrogenesis is a 
dynamic process that involves at least hepatocytes, lymphocytes, macrophages, hepatic stellate cells (HSCs), 
stromal cells, and their interactions [25]. Persistent viral infection and repetitive inflammatory 
damage/repair responses lead to irreversible cirrhosis.



Explor Dig Dis. 2025;4:100565 | https://doi.org/10.37349/edd.2025.100565 Page 4

HBV-specific CD8+ T cells are the key effector of host adaptive immune response. Patients with CHB 
have lower levels of HBV-specific CD8+ T cells in blood and liver than those with acute HBV infections [26]. 
CHB might be viewed as a disease in which HBV-specific CD8+ T cells that escape central tolerance and 
peripheral CD8+ T cells are not capable of eliminating HBV from the liver [6]. Persistent CD8+ T cell-
dependent liver disease leads to continuous episodes of hepatocellular necrosis and regeneration, 
ultimately resulting in fibrosis, cirrhosis, and HCC [27]. In addition, the process of liver fibrosis and 
cirrhosis reduces CD8+ T cell-mediated immune surveillance towards infected hepatocytes [28]. Novel 
epigenomic and transcriptomic methods further clarified T cell responses to HBV and HBV-related HCC. 
Apart from effector CD8+ T cells, HBV-related tumor-infiltrating regulatory T cells (Tregs) have also shown 
correlations with viral titer, carcinogenesis, and poor prognosis [29].

Chronic liver inflammation and fibrosis cause malignant alterations in liver microenvironment. In 
general, persistent hepatic inflammation induces an imbalance between liver fibrogenesis and fibrolysis, 
and promotes cell proliferation and genomic instability. Activation of HSCs is the primary driver of liver 
fibrogenesis [30]. Acute liver injury activates tumor growth factor β1 (TGF-β1) and platelet-derived growth 
factor subunit B (PDGFB) signaling pathways to transdifferentiate quiescent HSCs into activated 
myofibroblast-like HSCs, producing excessive collagens deposited to extracellular matrixes [31]. In chronic 
liver inflammation, fibrogenesis initiated by activated HSCs results in a favorable microenvironment for 
tumor development [32]. In addition, single-cell omics have identified CD36+ cancer-associated fibroblast 
can secrete macrophage migration inhibitory factors, creating an immunosuppressive microenvironment 
[33]. The crosstalk between hepatic cells and extracellular microenvironment in chronic HBV infection and 
inflammation remains to be further clarified.

Multiple molecular signaling pathways have been identified in hepatic fibrosis, cirrhosis, and 
carcinogenesis [34]. TGF-β pathway can activate fibroblasts, induce cell apoptosis, and initiate epithelial-
mesenchymal transition (EMT) [35]. Other growth factor-associated pathways such as JAK/STAT pathways 
[34], PDGF/PDGFRs pathways [36], and PI3K/AKT pathways [37] mainly regulate fibrosis activation and 
EMT initiation. Pathways regulating inflammation and metabolism can modulate myofibroblasts activation 
and carcinogenesis. Toll-like receptor 4 (TLR-4) signaling pathway could sensitize HSCs to TGF-β 
stimulation and activate Kupffer cells to regulate fibrosis [38].

Antiviral therapeutics of HBV-associated cirrhosis and HCC
Therapeutic goals

The goal of treating CHB is to achieve a functional cure. Functional cure is defined as sustained undetectable 
circulating HBsAg (< 0.05 IU per milliliter) and HBV DNA after a finite course of treatment [39, 40]. Timely 
and effective antiviral therapy can improve the prognosis of patients, resulting in reduction of the 
progression of liver inflammation, necrosis, and fibrosis in the majority of patients, reduction of the risk of 
HCC, and improvement of survival and quality of life.

Indications for treatment

Conducting antiviral therapy requires a comprehensive assessment of the patient’s risk of disease 
progression based on serum HBV DNA, alanine aminotransferase (ALT) levels, and severity of liver disease, 
as well as age, family history, and concomitant diseases [41].

The 2022 Guidelines on the Prevention and Control of Chronic Hepatitis B in China recommends 
screening for HBsAg in high-risk and general populations, emphasizing timely initiation of antiviral 
treatment in patients at risk for disease progression [42]. It is recommended that antiviral therapy should 
be initiated in HBsAg-positive patients with one or multiple characteristics including a family history of 
CHB cirrhosis or HCC; over 30 years of age; significant inflammation (≥ G2) or fibrosis (≥ F2) manifested by 
non-invasive markers or liver histology examination; HBV-related extrahepatic manifestations such as 
glomerulonephritis or vasculitis [43]. Serum ALT and HBV DNA levels should be conducted to assess 
treatment response and/or disease progression [44]. Follow-up and monitoring of HBV reactivation should 
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be conducted once in 6–12 months, including surveillance for alpha-fetoprotein (AFP) and ultrasonography. 
The process of selecting indications for antiviral therapies in chronic HBV infection patients is shown in 
Figure 2.

Figure 2. Selecting indications for antiviral therapies in chronic HBV infection patients. ALT: alanine aminotransferase; 
CHB: chronic hepatitis B; DAA: direct-acting antiviral; HBsAg: hepatitis B surface antigen; HBV: hepatitis B virus; HCC: 
hepatocellular carcinoma; NAs: nucleoside/nucleotide analogs; Peg-IFN-α: pegylated interferon-α; ULN: upper limit of normal

Principles of current antiviral therapeutics

The two classes of current therapeutic drugs for CHB are oral antiviral nucleoside/nucleotide analogs (NAs) 
and interferons (IFNs).

NAs are essential as the first-line antiviral therapy for CHB. NAs with a high genetic barrier [45], which 
includes entecavir (ETV), tenofovir disoproxil fumarate (TDF), tenofovir alafenamide (TAF), tenofovir 
amibufenamide (TMF), is strongly recommended. NAs with a low genetic barrier, such as lamivudine 
(LAM), adefovir dipivoxil (ADV), and telbivudine (LdT), are no longer recommended in the latest guidelines 
[46]. The 2022 edition of the Guidelines on the Prevention and Control of Chronic Hepatitis B in China 
includes ETV, TDF, TAF, and TMF as the first-line recommended drugs for CHB antiviral treatment [47]. 
ETV can inhibit HBV viral replication potently with a good safety profile and a low resistance rate [48]. 
ETV’s 5-year cumulative resistance incidence rate is 1% [48]. ETV is suitable for the treatment of CHB with 
active viral replication in adults, persistently elevated ALT levels, or liver histology showing active lesions 
[49]. However, an increased risk of spontaneous abortion has been found in patients with HBV infection 
taking ETV or ADV, in comparison with those prescribed with LAM [50]. TDF also has a potent antiviral 
effect and an extremely low resistance rate [51]. However, TDF has a certain degree of nephrotoxicity. Its 
long-term use produces a slight risk of kidney damage and reduced bone density and is not suitable for 
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patients with renal insufficiency and osteoporosis [52]. The 2020 WHO guideline recommends 
administering antivirals during pregnancy, specifically TDF, for the prevention of HBV mother-to-child 
transmission [53]. Compared with TDF, TAF has almost no nephrotoxicity and less ill-impact on bones. 
Drug resistance to TAF has yet to be found. The dosage of TAF is lower than TDF at the same efficacy, with 
25 mg of TAF being comparable to 300 mg of TDF [51]. TMF is non-inferior to TDF in terms of anti-HBV 
efficacy and showed better bone and renal safety [54]. Nucleoside analog therapy can safely and effectively 
inhibit HBV replication. However, NAs affect the viral life cycle by inhibiting viral reverse transcription and 
do not target cccDNA which is the key to the risk of recurrence of HBV replication in patients with CHB after 
discontinuing NA treatment [49].

Interferon acts on HBV transcription and replication by enhancing the function of immune cells and 
promoting the expression of cytokines and interferon-stimulated genes (ISGs), thus exerting the dual roles 
of immune regulation and antiviral therapy [55]. IFNs can inhibit HBV transcription and reduce the 
expression of viral proteins by promoting the degradation of HBV pgRNA and core particles, or by 
epigenetic modification of cccDNA [55]. Several studies have shown the advantage of IFN-α therapy over 
nucleoside analogs in reducing the incidence of HCC in high-risk HBV carriers [56]. Nevertheless, the use of 
interferon therapy is limited by its various side effects [57].

Several studies have been conducted to find new classes of antiviral drugs aimed at reducing the 
incidence of HCC by completely eliminating all HBV antigens and genetic materials in the body with a 
limited course of therapy [49]. To achieve the goal of a complete cure for HBV infection, future new drugs 
will need to break through the following bottlenecks: complete elimination of HBV DNA replication, 
complete inhibition of HBsAg production, and restoration of a normal immune response against HBV [58]. 
It is thought that only a combination of multiple types of drugs can achieve several of these goals 
simultaneously [59].

Management and monitoring of antiviral therapy

During antiviral therapy, it is important to follow medical advice, adhere to medication, and do regular 
monitoring to determine the efficacy of antiviral therapy, medication adherence, drug resistance, and 
adverse effects [60].

Although potent low-resistance oral NA therapy results in strong suppression of HBV replication, some 
patients still show poor response and hypoviremia, leading to disease progression. It is recommended that 
potent low-resistance drugs should be preferred for patients on initial therapy; for patients on treatment, 
HBV DNA quantification should be performed periodically, and for patients with virological breakthroughs 
and low viremia [58]. HBV drug-resistant mutations should be tested and the patients should be given 
salvage therapy as early as possible [41], as shown in Table 1.

Table 1. Drug resistance mutations in HBV polymerase gene and rescue anti-HBV therapies after developing drug 
resistance

Type of drug 
resistance

Drug resistance mutations in HBV polymerase 
gene [61]

Recommended treatment [47]

LAM resistance rt80V/I, rtl169T, rtV173L, rtL180M, rtA181T, rtT184S, 
rtM204V/I, rt236T

Change to TDF or TAF

Telbivudine 
resistance

rtM204I Change to TDF or TAF

Adeforvir resistance rt181T/V, rt236T Without LAM/telbivudine resistance: change to 
ETV, TDF or TAF;

With LAM/telbivudine resistance: change to TDF 
or TAF

Tenofovir 
resistance

rtA194T No resistance detected to date

ETV resistance rtl169T, T184A/C/F/G/I/L/M/S, rtM204V/I, rt202G/C/I, 
M250I/L/V

ETV + TDF or ETV + TAF;

Change to TDF or TAF
ETV: entecavir; LAM: lamivudine; TAF: tenofovir alafenamide; TDF: tenofovir disoproxil fumarate
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For patients who discontinue medication at the end of treatment, liver function, HBV serum markers, 
and HBV DNA should be tested once a month for 3 months after discontinuation of medication, regardless 
of whether or not the patient has achieved a response during antiviral therapy; and every 3 months 
thereafter, in order to detect recurrence of hepatitis and deterioration of liver function in a timely manner 
[61]. AFP and ultrasonography should be examined every 3 to 6 months. For patients with cirrhosis, AFP 
and abdominal ultrasonography should be tested every 3 months, and CT and MRI should be done if 
necessary for early detection of HCC [62].

Investigational therapies for HBV infection-related cirrhosis and hepatocarcinoma

Current antiviral therapy faces low effectiveness for functional cure of chronic HBV infection and does not 
completely eradicate the risk of HBV-induced cirrhosis and HCC. NAs are effective in suppressing HBV 
replication by inhibiting the reverse transcription step in viral life cycle. However, they do not directly 
target HBV cccDNA in the nucleus of infected hepatocytes. In addition, reservoir HBV DNA inside 
hepatocyte nucleus can integrate into host chromosomal DNA which is a crucial process of 
hepatocarcinogenesis [63]. Numerous investigational therapies are underway in order to reach a functional 
cure for chronic HBV infection, as shown in Table 2. Two major categories of new anti-HBV therapies are 
direct-acting antivirals (DAAs) and host-directed antivirals (HDAs). DAAs target proteins that are essential 
in viral replication or interfere expression of viral antigens. HDAs mainly modulate the immune system 
[64]. Some early-stage clinical trials have achieved functional cure in a small portion of patients, but an 
optimal strategy of combination therapy for the large part of patients remains challenging [65]. 
Nevertheless, combining different antiviral agents in one therapy is likely the answer for a functional cure 
for chronic HBV infection.

Table 2. Investigational novel therapies for HBV infection (selected)

Categories of
novel therapies

Types and compounds Clinical trial (Phase) References

Capsid assembly modulators (CAMs)
    Bersacapavir (JNJ-6379) Phase 2b [67]
    Morphothiadin (GLS4) Phase 2 [68]
    EDP-514 Phase 1 [69]
siRNA agents
    JNJ-3989 Phase 2b [67]
    RG6346 Phase 2 [70]
    AB7-29-001 Phase 2 [71]
Antisense oligonucleotides (ASOs)
    Bepirovirsen (GSK32228836) Phase 2 [72]
    RO7062931 Phase 1 [73]
HBV entry inhibitors
    Bulevirtide Phase 2 [78]
HBsAg inhibitors

Direct-acting antivirals (DAAs)

    REP2139 Phase 2 [73]
Immunomodulators, innate immune response
    RO7020531 Phase 1 [74]
    Selgantolimod Phase 2 [75]
Immunomodulators, adaptive immune response
    Epcoritamab Phase 2a [68]
Therapeutic vaccines

Host-directed antivirals (HDAs)

    BRII-179 Phase 2 [76]

Capsid assembly modulators (CAMs) are a class of antiviral agents that target the assembly of HBV 
capsid, inhibiting encapsidation process of HBV pgRNA. Oral small-molecule CAMs are capable of 
decreasing serum HBV DNA and HBV RNA levels. CAMs are not capable of reducing HBV cccDNA or 
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transcription. Therefore, CAMs are used in combination with other agents in investigational therapies [66]. 
A phase 2b, double-blind, placebo-controlled randomized trial investigates a combination therapy of 
bersacapvir (CAM) + JNJ-3989 (siRNA) + NA in CHB patients [67]. All patients had significant declines in 
HBsAg after 48 weeks of the therapy. However, no functional cure was achieved in this study.

Antisense oligonucleotide (ASO) can act as an inhibitor for virus mRNA, blocking viral protein 
translation. Bepirovirsen (BPV) is a 2′-O-methoxyethyl modified ASO that targets all HBV RNAs. A phase 2b, 
random, investigator-unblinded trial evaluating the efficacy and safety of BPV in patients with chronic HBV 
infection has resulted in a sustained HBsAg and HBV DNA loss in 9%–10% of participants [68]. However, 
patients with cirrhosis and HCC are excluded from this trial, and no further analysis of cirrhosis and HCC 
risks has been reported.

siRNA, or small interfering RNA, is a type of double-stranded RNA molecule that can induce the 
degradation of mRNA, thereby silencing the expression of target genes. Xalnesiran (RG6346) is a GalNAc-
conjugated, double-stranded siRNA targeting the S-region of HBV genome, leading to degradation of HBV 
mRNA and reducing production of HBV antigens including HBsAg [69]. A combination of xalnesiran plus an 
immunomodulator has been proposed as a promising therapeutic approach to achieve a functional cure. A 
phase 2, randomized, open-label study of efficacy and safety of xalnesiran with and without a pegylated 
interferon-α (Peg-IFN-α) in participants (NCT04225715) has been conducted [66]. Xalnesiran combined 
with a Peg-IFN-α resulted in higher rates of HBsAg loss than without a Peg-IFN-α. No progression of 
cirrhosis and HCC was reported.

HBV entry inhibitors target NTCP on hepatocyte membrane, inhibiting HBV virion from entering 
hepatocytes. Bulevirtide, a selective NTCP receptor currently marketed as hepatitis delta virus (HDV) 
treatment in Europe, is in phase 2 clinical trial stage to treat HBV [70]. Several monoclonal antibodies 
against NTCP have been tested on in vitro and animal in vivo models [71].

HBsAg inhibitors disrupt HBsAg secretion processes, which can effectively decrease HBsAg availability 
[72]. REP2139 is a nucleic acid polymer that blocks the release of HBsAg. An open-label, phase 2 study 
(REP401) evaluating the safety and efficacy of the combination therapy of TDF + Peg-IFN-α + REP2139 did 
not result in an increased rate of functional cure compared with TDF + Peg-IFN-α therapy [73]. Further 
clinical investigation is needed to assess the efficiency of HBsAg inhibitors.

Immunomodulatory agents in combination therapy can restore innate immune responses and HBV-
specific adaptive immune responses. Novel immunoregulatory agents in development include 
selgantolimod, a TLR-8 receptor antagonist [74]; RO7020531, a TLR-7 receptor antagonist [75]; 
epcoritamab, a bispecific T-cell-engaging antibody [76], and many others. In addition, immunogenic 
therapeutic anti-HBV vaccines are being investigated at an early stage of development.

Future directions
Effectiveness of novel anti-HBV therapeutics in reducing HBV-induced cirrhosis and hepatocarcinoma risks 
requires long-term evaluation. High level of HBV DNA level (> 2,000 IU/mL) is a strong predictor of 
cirrhosis and HCC [66], and there is a linear relationship between HBV DNA and risk of cirrhosis and HCC in 
hepatitis B e antigen (HBeAg)-negative patients. However, in HBeAg-positive patients, a relatively higher 
HBV DNA level is associated with a lower immediate risk of developing cirrhosis and HCC [58]. Reaching a 
functional cure for HBV with a lower risk of cirrhosis and HCC would benefit millions of patients with CHB.

The major challenge of developing novel therapeutics is to overcome cccDNA in HBV infection as well 
as maintain a life-long adaptive immune response without inducing excessive cytopathic effects. Apart 
different therapeutic approaches discussed above, we suggest mRNA therapeutic vaccines might be an 
effective strategy to achieve a functional, even complete cure. mRNA vaccines have shown stronger ability 
to induce desired immune responses and lower production costs compared to traditional vaccines [77]. 
Currently, only animal models have been utilized to test the potential effect of mRNA vaccine in HBV 
therapeutics. A type of lipid nanoparticle-formulated mRNA vaccine optimized for the expression of HBV 
core, polymerase, and surface antigens was tested on CHB mouse models. After three immunizations, a 
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significant drop in HBsAg and HBeAg serum levels was observed [78]. This emerging field of therapeutics 
may have the potential to greatly improve HBV prevention and treatment efficacy.

Conclusions
Managing chronic HBV infection would alleviate the risk of developing cirrhosis and HCC. In-depth studies 
on virus life cycles, hepatic immune response, and inflammatory and fibrosis processes provide insights 
into infection-cirrhosis-carcinoma transition, as well as potential therapeutic targets.

Current antiviral therapies with NAs and IFNs are essential for preventing cirrhosis and HCC in chronic 
HBV infection patients. Close monitoring for drug resistance and improving compliance would benefit 
treatment outcomes.

Investigational therapies for chronic HBV infection have shown potentials to achieve a functional cure. 
Combination of different categories of anti-HBV agents is likely to be more effective. Effectiveness of these 
novel therapies to reduce and prevent the development of cirrhosis and HCC remains to be answered.
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