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Abstract
The epidemic of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasingly growing 
worldwide. Thus, there is an urgent need for novel, non-invasive, and reliable biomarkers to replace liver 
biopsy for the diagnosis and prognosis of MASLD. Circulating peripheral blood mononuclear cells (PBMCs) 
are highly responsive to various stimuli and physiological changes. Beyond their immunomodulatory role, 
PBMC may act as metabolic sensors in several cardiometabolic disorders, including MASLD, with their 
metabolic programs shifting accordingly. Recent evidence suggests a link between impaired mitochondrial 
bioenergetics in PBMC and MASLD. Additionally, impaired mitochondrial respiration is intricately linked to 
the intracellular depletion of the oxidized form of nicotinamide adenine dinucleotide (NAD+) in various cell 
types. Accumulating preclinical and clinical data show that NAD+-increasing strategies may protect against 
MASLD by restoring intracellular NAD+ pools and improving mitochondrial performance. This review will 
focus on [i] the relevance of mitochondrial dysfunction, including impaired bioenergetics, in PBMC as a 
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marker for the diagnosis and prognosis of MASLD, and [ii] the potential benefits of NAD+ precursors in 
MAFLD and their relationship with improved mitochondrial respiration in blood immune cells.
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Introduction
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty 
liver disease (NAFLD), is a complex chronic metabolic dysfunction of the liver influenced by both genetic 
and non-genetic factors [1]. The recent renaming to MASLD expands the definition of NAFLD by requiring 
the presence of at least one of the components of metabolic syndrome, i.e., obesity, fasting hyperglycemia, 
elevated triglycerides, reduced HDL cholesterol, and hypertension, alongside hepatic steatosis [1].

The global prevalence of MASLD continues to rise steadily, paralleling the epidemics of obesity [2] and 
type 2 diabetes mellitus [3]. MASLD is primarily characterized by abnormal accumulation of triglycerides in 
the liver (hepatic steatosis). It can progress to metabolic dysfunction-associated steatohepatitis (MASH), 
which is mainly characterized by liver inflammation and injury, and in severe cases, hepatic fibrosis [4]. 
Both MASH and liver fibrosis are significant risk factors for the onset of cirrhosis and hepatocellular 
carcinoma, leading causes of liver transplantation [4, 5] and responsible for over 800,000 deaths worldwide 
[6]. Despite these serious implications, MASH is considered a silent disease, frequently diagnosed 
incidentally [7]. Therefore, early and accurate diagnosis of MASH along with the assessment of liver 
fibrosis, is crucial for effective disease management to prevent progression to more advanced stages of liver 
disease [8].

Mitochondrial performance may fail in target tissues under metabolically adverse conditions such as 
type 2 diabetes, obesity, dyslipidemia, and cardiovascular diseases [9]. Therefore, mitochondria have 
emerged as sentinels of cellular metabolic stress [10]. In this regard, mitochondrial dysfunction is 
increasingly recognized as a key feature of MASLD [11–17]. Accordingly, resmetirom, a recently FDA- and 
EMA-approved, oral, liver-directed, thyroid hormone receptor beta-selective agonist for treating biopsy-
proven MASH with advanced fibrosis, has been shown to restore mitochondrial performance [18].

Accumulating data suggests that the cellular content of oxidized nicotinamide adenine dinucleotide 
(NAD+) content is frequently reduced in target tissues due to enhanced NAD+ consumption under 
metabolically adverse scenarios related to impaired insulin signaling conditions, i.e., diabetes, and obesity 
[19]. Because NAD+ reduction is frequently accompanied by impaired mitochondrial performance 
concomitant to tissue damage and dysfunction [20, 21], tissue NAD+ restoration has been proposed as a 
promising therapeutic target in mitochondria-driven strategies to treat metabolic diseases [19]. Supporting 
this, tissue NAD+ replenishment has been associated with improved mitochondrial function and protection 
against metabolic dysfunctions [19]. Particularly, hepatic NAD+ decline has been frequently related to 
MASLD [22], hepatic inflammation [23], and fibrosis [24–27] in experimental models, while its restoration 
is emerging as a therapeutic approach for MASLD treatment [23, 27–30].

Despite significant advances in MASLD diagnosis [31, 32], histological assessment through a liver 
biopsy remains the ‘gold standard’ for diagnosing, staging, and prognosing MASLD/MASH, as well as for 
accurately monitoring fibrosis progression [33]. However, its use is limited by factors such as invasiveness, 
rare but potentially fatal complications, sample variability, and high costs for the healthcare system [34]. 
Furthermore, due to the high prevalence of MASH in the general population, implementing a large-scale 
evaluation plan using liver biopsy is neither feasible nor advised in current clinical practice [35]. Therefore, 
it is crucial to identify new non-invasive and reliable biomarkers that can act as easily accessible diagnostic 
alternatives to liver biopsy for the regular monitoring of individuals at high risk of MASLD and its 
progression to MASH.
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Notably, recent studies suggest that circulating peripheral blood mononuclear cells (PBMCs), obtained 
through minimally invasive approaches such as venipuncture, can serve as sensors of changes in the 
metabolic environment [36–42]. In the context of MASLD, PBMCs may reflect adaptive characteristics of 
internal target tissues, which are often challenging to obtain in response to disease states or therapeutic 
interventions [43, 44]. Supporting this notion, mitochondrial homeostasis is profoundly distorted in human 
PBMCs under various conditions frequently associated with chronic metabolic stress [36–38, 40], including 
MASLD [39, 41, 42]. Interestingly, mitochondrial dysfunction in PBMCs has also been recently related to 
another chronic manifestation of liver disease. Specifically, the degree of hepatic fibrosis has been linked to 
impaired mitochondrial performance and enhanced oxidative stress in PBMCs in postoperatively Fontan 
patients [45].

In this review, we will examine the potential of mitochondrial dysfunction in PBMCs as a potential 
diagnosis/prognosis marker for MASLD. Additionally, we will compile evidence regarding the effects of 
NAD+-boosting therapies—particularly those involving the administration of NAD+ precursors—on PBMC 
mitochondrial bioenergetics in the context of MASLD.

Mitochondrial dysfunction in PBMCs as a diagnosis/prognosis marker for 
MASLD
Mitochondria represent the main energy hub in hepatocytes, profoundly influencing oxidative metabolism 
and liver physiology [46, 47]. Under conditions of chronic metabolic stress, mitochondrial function becomes 
compromised in hepatocytes, including impaired mitochondrial fission and fusion dynamics [48–50]. This 
results in inefficient fatty acid oxidation and an inability to manage the excessive accumulation of reactive 
oxygen species (ROS) [46]. The generation and release of ROS, along with by-products derived from lipid 
peroxidation in the damaged hepatocytes, further triggers the release of inflammatory cytokines [46]. This 
cascade contributes to the inflammation, fibrosis, and necrosis associated with advanced stages of MASLD.

Numerous studies have proposed that PBMCs can act as sensors for tissue mitochondrial dysfunction 
in chronic diseases [51–54]. In most of these studies, the assessment of PBMCs as potential functional 
biomarkers of disease primarily relies on transcriptomic [43, 55–60] and metabolomic analyses [56, 61]. In 
the context of MASLD, assessing anaplerotic perturbations, inflammation, and oxidative stress in circulating 
PBMCs has been proposed as non-invasive biomarkers of liver fibrosis and MASH. Particularly, both 
transcriptomic and metabolomics approaches are widely used to decipher differentially expressed genes 
and patterns of metabolite intermediates in PBMCs, including those with a role in major bioenergetic 
pathways and mitochondrial homeostasis [59, 62].

Only a limited number of studies have explored the relationship between mitochondrial quantity and 
function in PBMCs and MASLD along with its related complications [12–14, 39, 41, 42, 59, 62] (Table 1). 
Various methodological approaches have been used to assess real-time mitochondrial bioenergetics in 
circulating PBMCs isolated from MASLD patients. These methods involve the use of mitochondrially-
targeted compounds (e.g., oligomycin, FCCP) in conjunction with the measurement of oxygen consumption 
rate to assess mitochondrial respiration parameters (Seahorse XFp analyzer technology) [39, 62, 63], as 
well as high-resolution respirometry to evaluate mitochondrial oxidative phosphorylation (OXPHOS) 
capacity with complex I + II-linked substrates (Oroboros O2k-technology) [42]. Some of these studies have 
combined functional analyses of mitochondrial bioenergetics in PBMCs with either metabolomic studies to 
identify differentially-expressed mitochondrial-based molecular profiles [62] or genetic signatures [63] as 
markers for predicting disease progression in MASLD. In other studies, the assessment of mitochondrial 
dysfunction was limited to metabolomic patterns [56, 61].

Mitochondria can adapt their number, mass, and activity through mitohormetic mechanisms in 
response to changes in energy demand and availability during the early stages of liver disease [10, 11, 64, 
65]. However, at advanced stages of MASLD, this mitochondrial flexibility diminishes, leading to oxidative 
stress, inflammation, and release of mitochondrial damage-associated molecular patterns (mito-DAMPs), 
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Table 1. Metrics of PBMCs mitochondrial function in MASLD

MASLD outcome Mitochondrial function metric Key findings Reference

MASLD (non-biopsed, 
diagnosed by ultrasound)

Live mitochondria-specific 
energy changes in PBMCs, 
determined by Seahorse XFp 
analyzer.

The real-time assessment showed 
reduced mitochondrial respiration 
capacity in PBMCs from MASLD 
patients.

Garrafa E, 2023 
[39]

MASLD (simple steatosis, 
estimated by using the FLI 
score)

Mitochondrial OXPHOS 
capacity, determined by 
proteomics analysis.

Increased OXPHOS capacity with 
complex I + II-linked substrates in 
PBMCs from MASLD.

Shirakawa R, 
2023 [42]

Measurement of serum 
mitochondrial respirometry and 
hepatic bioenergetic profiles.

MASLD (diagnosed by biopsy)

Maximal respiratory capacity.

Co-presence of loss-of-function 
polymorphisms in PNPLA3, TM6SF2, 
and MBOAT7 significantly 
predisposes individuals to MASLD 
progression.

Paolini E, 2024 
[63]

MASLD [clinical diagnosis with 
at least 2 criteria (diabetes, 
biopsy, hypertriglyceridemia or 
under treatment, or CT or MRI 
imaging)]

Gene expression analysis 
related to inflammatory and 
metabolic pathways, determined 
by RNA sequencing.

The identified gene signatures 
showed enrichment in inflammation 
and metabolism pathways, suggesting 
their potential as diagnostic 
biomarkers for liver diseases.

Listopad S, 2022 
[55]

MASLD/hepatic fibrosis 
(diagnosed by biopsy)

Live mitochondria-specific 
energy changes, determined by 
Seahorse XFp analyzer.

Significant reduction in mitochondrial 
energy consumption in PBMCs.

Ajaz S, 2021 [62]

MASH [diagnosed by biopsy (n
 = 43) or ultrasound]

mtDNA copy number as a proxy 
for mitochondrial mass, 
determined by transcriptomic 
analysis.

Reduced mtDNA copy number in 
PBMCs from MASLD patients 
compared to healthy subjects.

Lee AH, 2022 [41]

MASH (diagnosed by biopsy) OPA1 (mitochondrial fusion 
marker), DRP1 (mitochondrial 
fission marker), and 
OPA1/DRP1 ratio (mitochondrial 
fusion/fission balance), 
determined by protein 
expression analysis by western 
blot.

Higher levels of OPA1 protein in 
MASH patients with significant fibrosis 
compared to those without fibrosis. 
Additionally, the OPA1/DRP1 ratio, 
indicating the balance between 
mitochondrial fusion and fission, was 
also higher in these patients.

Kunlayawutipong 
T, 2024 [59]

DRP1: dynamin-related protein 1; FLI: fatty liver disease; MASH: metabolic dysfunction-associated steatohepatitis; MASLD: 
metabolic dysfunction-associated steatotic liver disease; MBOAT7: membrane bound o-acyltransferase domain-containing 7; 
mtDNA: mitochondrial DNA; OPA1: optic atrophy 1; OXPHOS: oxidative phosphorylation; PBMCs: peripheral blood 
mononuclear cells; PNPLA3: patatin-like phospholipase domain-containing 3; RNA: ribonucleic acid; TM6SF2: transmembrane 
6 superfamily member 2

with mitochondrial DNA (mtDNA) fragments being one of their major components [66]. These factors 
collectively contribute to hepatocellular injury. Unfortunately, conventional methods for assessing 
mitochondrial function often necessitate a liver biopsy [67–69]. Interestingly, studies have reported a lower 
mtDNA copy number, which serves as a proxy for mitochondria quantity, in PBMCs isolated from patients 
with MASLD compared to healthy subjects [41]. While the number of mitochondria may not directly 
correlate with their quality, this finding highlights the potential of mtDNA as a mitochondrial-based metrics 
in this metabolic disorder.

NAD+ metabolism
NAD+ metabolism is complex and multicompartmental [70]. It involves the participation of intracellular and 
extracellular NAD+-synthesizing and -consuming enzymes, as well as specific cell transporters that facilitate 
the transport and uptake of nicotinamide-related metabolites [70]. Cellular NAD+ pools are constantly 
replaced using various precursors, including tryptophan, nicotinic acid (NA), or nicotinamide, through 
three distinct pathways (Figure 1): [i] the de novo pathway starting from tryptophan, [ii] the Preiss-
Handler pathway from NA, and [iii] the salvage pathway, which uses nicotinamide to synthesize 
nicotinamide mononucleotide (NMN) in a reaction catalyzed by the action of nicotinamide phosphoribosyl 
transferase (NAMPT), followed by the conversion of NMN to NAD+ via NMN adenylyltransferases [71]. In 
turn, nicotinamide is produced by various NAD+-consuming enzymes, such as poly-adenosine diphosphate-
ribose polymerase (PARPs) isoforms, which are involved in DNA repair [72], and sirtuins (SIRTs), also 
known as NAD+-dependent protein deacetylases, that are involved in numerous cellular processes, 
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including inflammation and energy metabolism [73, 74]. As a result of NAD+ consumption, nicotinamide is 
regenerated and either recycled or converted into 1-methylnicotinamide (MeNAM). Additional precursors, 
such as nicotinamide riboside (NR), are directly converted to NMN, thereby contributing to the 
replenishment of NAD+. Collectively, these pathways support the dynamic regulation of cellular health [75, 
76].

Figure 1. Overview of NAD+ biosynthesis and metabolism. Nicotinamide adenine dinucleotide (NAD+) could be synthesized 
through three main pathways: the de novo pathway from tryptophan (Trp), the Preiss-Handler pathway from nicotinic acid (NA), 
and the salvage pathway, from nicotinamide (NAM). In the de novo pathway, Trp is converted to NA mononucleotide (NAMN), 
and NAMN is further converted to NAD+ through NA adenine dinucleotide (NAAD) and NAD+ synthase (NADSYN). In the Preiss-
Handler pathway, NA is converted to NAMN by NA phosphoribosyltransferase (NAPRT), followed by the same steps as the de 
novo pathway to form NAD+. In the salvage pathway, NAM converges into nicotinamide mononucleotide (NMN), via 
nicotinamide phosphoribosyltransferase (NAMPT). Nicotinamide riboside (NR) can also be transformed into NMN by 
nicotinamide riboside kinase 1,2 (NRK1,2). Besides, NMN can be transported into cells directly via the SLC12A8 transporter and 
converted into NAD+ by nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). NAD+ is consumed by various 
enzymes, generating NAM as a byproduct, which can either be recycled or methylated to 1-methylnicotinamide (MeNAM), 
removing it from the NAD+ pool. NAM metabolites such as MeNAM and N-methyl-2-pyridone-5-carboxamide (Me2PY) are also 
produced, potentially contributing to distinct metabolic effects. Mitochondrial NAD+ pools are replenished through cytosolic NAD+ 
import, as mitochondria lack the NAMPT pathway. Created in BioRender. Niño, J. (2025) BioRender.com/y26g025

Impact of NAD+ precursors on mitochondrial function in PBMCs: 
implications for MASLD
NAD+ has emerged as an essential molecule in cell physiology. This molecule is used as a key cofactor for 
hundreds of cellular redox reactions and serves as the mandatory substrate for NAD+-consuming enzymes 
that are critical players in the control of DNA repair (i.e., PARPs) or modulation of cellular energetic status, 
especially the activation of oxidative metabolism and stress resistance in mitochondria in various 
physiological or pathological conditions (i.e., SIRTs) [21, 71]. NAD+ content is negatively influenced by a 
wide range of metabolic complications and has recently emerged as a potential biomarker for metabolic 
diseases [19, 77]. Remarkably, NAD+ depletion has been identified as a characteristic feature of MASLD in 
experimental animals [78, 79], indicating that this molecule could serve as a potential therapeutic target for 
protecting against hepatic steatosis and further advanced stages such as MASH.

https://BioRender.com/y26g025
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Beyond its role in energy metabolism, NAD+ is also involved in regulating the immune response [77, 80, 
81] and adaptation to systemic chronic inflammation and oxidative stress [77, 81–85]. In the context of 
MASH, aberrant immune activation is frequently observed in NAD+-deficient states [73]. For instance, the 
expression and activity of several NAD+-consuming enzymes (i.e., PARPs, CD38) in activated immune cells 
are frequently upregulated during inflammation [20, 21, 38, 82, 86, 87], thereby contributing to further 
NAD+ depletion. Concomitantly, several NAD+-dependent mechanisms, such as DNA repair and epigenetic 
reprogramming, are also upregulated in immune cells, further contributing to decreased cellular NAD+ 
pools [21, 82].

Intracellular NAD+ pools can be replenished through the administration of various nicotinamide-
related metabolites, including NMN, NR, and nicotinamide, all of which serve as NAD+ precursors [71]. In 
the context of MASLD, the beneficial effects of NAD+-boosting strategies have been demonstrated in 
preclinical models of MASLD [23, 28, 29, 88–90] and MASH/hepatic fibrosis [27, 79] (Table 2).

Pioneering studies primarily conducted with healthy participants over short-term periods were 
designed to assess the dose tolerance and safety of NAD+ precursors, particularly NR [76] (Table 2). The 
effect of various NAD+ precursors has been associated with signs of improved liver function in human 
volunteers [94, 95, 105]. For instance, in one of these studies, while no effects of nicotinamide on MASLD 
and liver fibrosis were observed, a significant decrease in circulating alanine transaminase levels was 
reported [105]. In contrast, two other studies reported a significant reduction in hepatic fat content among 
participants treated with NR compared to those receiving a placebo [94, 95].

Although oral administration of NR did not have a direct impact on liver status, as revealed by the 
circulating levels of liver enzymes [97], levels of relevant NR-derived metabolites, especially NAD+ and 
nicotinic acid adenine dinucleotide (NAAD), were significantly elevated in circulating PBMCs of treated 
human participants [76, 97]. Interestingly, concomitant increases in metabolites related to methylated and 
oxidized waste products of nicotinamide were also observed in PBMCs, especially MeNAM, N-methyl-2-
pyridone-5-carboxamide (Me2PY), and N-methyl-4-pyridone-5-carboxamide (Me4PY) [76] (Table 2). 
Consistent findings were reported in an independent study showing significant elevations of cellular NAD+ 
in isolated PBMCs from subjects treated with NMN [104].

Only a few intervention studies have reported that NAD+ precursors, particularly NR, enhance 
mitochondrial respiration in isolated PBMCs using Seahorse technology [38, 98, 99] (Table 2). This effect 
was also associated with reduced mitochondrial ROS (mtROS) production and inhibition of the NLRP3 
inflammasome, as revealed by decreased IL-1β production from isolated leukocytes obtained from NR-
treated human healthy volunteers [99]. However, the impact of this improved bioenergetic and anti-
inflammatory profile in PBMC, driven by NR, on MASLD was not explored, as these studies were not focused 
on MASLD, and liver function was assessed only through routine laboratory tests as part of the safety 
protocols, with no significant changes reported [99, 104].

Conclusions
MASLD and its related complications can be defined as a complex condition involving both genetic and non-
genetic factors, which influence its progression through the MASLD spectrum [106]. Emerging evidence 
suggests that circulating PBMCs act as sensors of metabolic and immunologic changes associated with the 
onset of MASLD/MASH [36, 42]. It has been proposed that PBMCs are sensitive to metabolic alterations in 
internal tissues, including the liver, and can have the capability to modulate their immunomodulatory 
properties in response to MASLD/MASH progression [43, 44, 107]. Since PBMCs can be obtained through 
minimally invasive methods, this characteristic has garnered clinical interest in investigating their potential 
to differentiate between stages of MASLD. However, the contribution of PBMCs to MASLD/MASH diagnosis 
has been assessed in only a limited number of studies [56, 108, 109].

Mitochondrial performance is tightly linked to the immune response of PBMCs. For instance, recent 
evidence shows that transcriptomic and metabolomic markers related to mitochondrial dynamics and cell 
death are differentially expressed in PBMCs from subjects with MASLD/MASH, as demonstrated through 
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Table 2. Effects of NAD+ precursor-based clinical interventions on the liver and isolated PBMCs

NAD+ 
precursor

Doses and study design Liver effects PBMC effects Other effects Clinical trial identifier Reference

NR Non-randomized, open-label pharmacokinetic 
study of 8 healthy volunteers; 250 mg NR were 
orally (capsules) administered on days 1 and 2, 
then up-titrated to peak dose of 1,000 mg twice 
daily on days 7 and 8. On the morning of day 
9, subjects completed a 24-hour study after 
receiving 1,000 mg NR.

Not reported. nd No adverse side effects. NCT02689882 (a) Airhart SE, 
2017 [91]

NR One hundred and forty healthy male and 
female participants were enrolled in a 
randomized, double-blind, placebo-controlled 
parallel study; oral NR (100 mg/day, 
300 mg/day, and 1,000 mg/day) were 
administered over 8 weeks.

Not reported. nd No adverse side effects; 
elevated values of NAD+ 
derived metabolites in blood 
and urine.

NCT0271593 (a) Conze D, 
2019 [92]

NR A multicenter, three-arm, randomized, double-
blinded, placebo-controlled study in a 
population of 120 healthy adults between the 
ages of 60 and 80 years; oral (capsules) 
combined NR (250 mg and 500 mg/day) and 
pterostilbene (50 and 100 mg/day) were 
administered (being NRPT 1× the 
recommended dose and NRPT 2×, the double 
of recommended dose, respectively); the 
intervention phase was 8 weeks with a 30-day 
follow-up period.

Not reported. nd No adverse side effects; 
elevated values of NAD+ in 
blood.

NCT02678611 (a) Dellinger 
RW, 2017 
[93]

NR A randomized, placebo-controlled, double-
blinded, and parallel-group designed clinical 
trial, forty healthy, sedentary men with a BMI > 
30 kg/m2, age-range 40–70 years were 
randomly assigned to 12 weeks of NR (2,000 
mg/day) or placebo.

Borderline decrease in 
hepatic triglycerides.

Not assessed. No effects on glucose and 
insulin tolerance; increased 
urinary NR-derived metabolites.

NCT02303483 (a) Dollerup 
OL, 2018 
[94]

NR A multicenter, randomized, double blind, 
placebo-controlled trial; the intervention phase 
was 26 weeks, with a 14-day follow-up period; 
participants were randomized into three arms 
(1:1:1): placebo, recommended dietary 
supplement dose (NRPT 1×), or double the 
recommended dose (NRPT 2×).

At the end of the study, no 
significant change was seen 
in the primary endpoint of 
hepatic fat fraction with 
respect to placebo; a time-
dependent decrease in the 
circulating levels of the liver 
enzymes ALT and GGT was 
observed in the NRPT 1× 
group, and this decrease was 
significant with respect to 
placebo.

Not assessed. A significant decrease in the 
circulating levels of the toxic 
lipid ceramide 14:0 was also 
observed in the NRPT 1× group 
versus placebo.

NCT03513523 (a) Dellinger 
RW, 2023 
[95]
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Table 2. Effects of NAD+ precursor-based clinical interventions on the liver and isolated PBMCs (continued)

NAD+ 
precursor

Doses and study design Liver effects PBMC effects Other effects Clinical trial identifier Reference

NR A randomized, double-blinded, placebo-
controlled, crossover intervention study was 
conducted in 13 healthy overweight or obese 
men and women. Participants received NR for 
6 weeks (1,000 mg/day) and placebo 
supplementation.

No effects on hepatic lipid 
accumulation.

nd Increased skeletal muscle NAD+ 
metabolites, especially NAAD 
and MeNAM; supplementation 
with NR did not result in any 
change in mitochondrial 
respiration compared with the 
placebo state; affected skeletal 
muscle acetylcarnitine 
metabolism and induced minor 
changes in body composition 
and sleeping metabolic rate.

NCT02835664 (a) Remie 
CME, 2020 
[96]

NR A 2  ×  6-week randomized, double-blind, 
placebo-controlled crossover clinical trial. 
Subjects (middle-aged and older men and 
postmenopausal women aged 55−79 years) 
ingested NR chloride (NIAGEN®; 500 mg, twice 
per day; ChromaDex, Inc.) and placebo 
capsules for 6 weeks each in a randomly 
determined order.

Not shown. Elevated content of 
NAD+ in PBMCs by 
~60% compared with 
placebo, especially 
NAAD and NAD+.

Increased blood cellular NAD+ 
concentrations.

NCT02921659 (a) Martens 
CR, 2018 
[97]

NR Escalating doses of NR (250 mg twice a day 
for day 1, 500 mg twice a day for day 2, and 
1,000 mg twice a day from day 3 on) for 5 to 
9 days, 19 hospitalized patients with (stage D 
HFrEF) heart failure were compared with that 
of 19 healthy participants.

Not shown. Improved mitochondrial 
respiration using 
standard Seahorse 
Mito Stress Test; 
attenuated 
proinflammatory 
activation.

nd NCT03727646 (a) Zhou B, 
2020 [38]

NR A 12-week, randomized, placebo-controlled 
trial, 30 participants with Stage C HFrEF were 
randomized to either NR or matching placebo 
(2:1 allocation ratio).

nd Improved mitochondrial 
respiration using a 
Seahorse Extracellular 
Flux Analyzer; 
attenuated 
proinflammatory 
activation.

nd NCT04528004 (a) Wang DD, 
2022 [98]

NR A group of 8 healthy volunteers enrolled in a 
blood collection protocol to enable the 
collection of blood cells to test the effects of 
NR. This group consisted of 6 women and 2 
men, with an age range of 23 to 48 years. 
These subjects had no history of acute or 
chronic disease.

nd Increased maximal 
respiratory capacity 
assessed by using a 
Seahorse Extracellular 
Flux Analyzer; reduced 
inflammasome 
induction-mediated IL-
1β secretion.

nd NCT02122575 and 
NCT00442195 (a)

Traba J, 
2015 [99]
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Table 2. Effects of NAD+ precursor-based clinical interventions on the liver and isolated PBMCs (continued)

NAD+ 
precursor

Doses and study design Liver effects PBMC effects Other effects Clinical trial identifier Reference

NR A 7-day NR supplementation on whole-body 
metabolism and exercise-induced 
mitochondrial biogenic signaling in skeletal 
muscle. Eight male participants received NR (1 
g/day) or cellulose placebo supplementation for 
one week.

Not assessed or reported. Not analyzed. No effect of NR 
supplementation on skeletal 
muscle NAD+ concentration, but 
it did increase the concentration 
of deaminated NAD+ precursors 
NAR and NAMN and 
methylated nicotinamide break-
down products (Me2PY and 
Me4PY); global acetylation, 
auto-PARylation of PARP1, 
acetylation of p53 Lys382, and 
MnSOD Lys122 were not 
affected.

Not reported, but the study 
was pre-approved by the 
National Health Service 
Research Ethics 
Committee Black Country, 
West Midlands, UK 
(17/WM/0321).

Stocks B, 
2021 [100]

NMN A 10-week, randomized, placebo-controlled, 
double-blind trial to evaluate the effect of NMN 
supplementation on metabolic function in 
postmenopausal women with prediabetes who 
were overweight or obese.

nd Increased basal NAD+ 
content in PBMCs after 
treatment.

nd NCT03151239 (a) Yoshino M, 
2021 [101]

NR A randomized, double-blind, three-arm 
crossover pharmacokinetic study of oral NR 
chloride to 12 healthy, non-pregnant subjects 
(6 males and 6 females) (between the ages of 
30 and 55 with body mass indices of 
18.5–29.9 kg/m2) was performed at 100, 300 
and 1,000 mg doses after overnight fasting 
were given on 3 test days separated by 7-day 
periods.

nd Increased PBMC NAD+ 
metabolome, especially 
NAD+, Me2PY, and 
NAAD was elevated.

Increased NAD+ metabolome in 
human plasma and urine 
samples, especially MeNAM, 
Me2PY, and Me4PY.

NCT02191462 (a) Trammell 
SAJ, 2016 
[76]

NR Oral administration in 12 aged men with 1 g 
NR per day for 21 days in a placebo-controlled, 
randomized, double-blind, crossover trial.

Not assessed; but hepatic 
ALT was not changed by NR 
administration.

Not assessed. Elevations in NAD+ metabolites, 
and induction of transcriptomic 
and anti-inflammatory 
signatures in treated elder 
skeletal muscle biopsies.

NCT02950441 (a) Elhassan, 
2019 [102]

NMN An open-label, single-arm exploratory study on 
10 healthy individuals, including five males and 
five females (age, 20–70 years), recruited from 
the Tokyo Tsukishima Clinic; after a 12-hour 
fast NMN was intravenously administered until 
the end of the clinical trial; intravenous drip 
infusion was performed at 5 mL/min by 
dissolving 300 mg of NMN in 100 mL of saline 
and inserting an extension tube through a vein 
in the middle of the arm.

Clinical variables of liver 
function were within the 
normal range.

nd Increased blood NAD+; reduced 
blood triglycerides.

Not reported but the study 
was approved by the 
Japanese Organization for 
Safety Assessment of 
Clinical Research 
(#20210623-02; 
23/06/2021) and 
registered with the 
University Hospital Medical 
Information Network 
(UMIN; Japan) (UMIN-ID: 
UMIN000047134; 
09/03/2022)

Kimura S, 
2022 [103]
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Table 2. Effects of NAD+ precursor-based clinical interventions on the liver and isolated PBMCs (continued)

NAD+ 
precursor

Doses and study design Liver effects PBMC effects Other effects Clinical trial identifier Reference

NMN A single-center, single-arm, open-label trial; 
twenty-eight healthy adult Japanese 
(40–60 years) male volunteers; a dose of 250 
mg/day was administered for 8 weeks.

Not observed; no changes in 
hepatic transaminases were 
seen.

NAD+ levels in PBMCs 
increased over the 
course of NMN 
administration.

No adverse effects were 
observed.

Japanese 031180242 (b) Yamaguchi 
S, 2024 
[104]

NAM Seventy diabetic MASLD patients were 
randomly assigned either to the nicotinamide 
group (n = 35) who received nicotinamide 
1,000 mg once daily for 12 weeks in addition to 
their antidiabetic therapy or the control group 
(n = 35) who received their antidiabetic therapy 
only.

Decreased serum ALT, but no 
effect on liver fibrosis or 
steatosis.

nd nd NCT03850886 (a) El-Kady 
RR, 2022 
[105]

ALT: alanine aminotransferase; BMI: body mass index; GGT: gamma-glutamyl transferase; HFrEF: heart failure with reduced ejection fraction; MeNAM: 1-methylnicotinamide; Me2PY: N-methyl-
2-pyridone-5-carboxamide; MnSOD: manganese superoxide dismutase; NAAD: nicotinic acid adenine dinucleotide; NAD+: nicotinamide adenine dinucleotide; NAMN: nicotinic acid 
mononucleotide; NAR: nicotinic acid riboside; nd: not described; NMN: nicotinamide mononucleotide; NR: nicotinamide riboside; NRPT: nicotinamide riboside and pterostilbene; PARP1: poly-
adenosine diphosphate-ribose polymerase 1; PBMCs: peripheral blood mononuclear cells; p53: tumor protein 53. (a) registered at ClinicalTrials.gov (https://clinicaltrials.gov/). (b) registered at 
jRCT

transcriptomic [43, 55–59] and metabolomic analyses [61]. Supporting this concept, mitochondrial dysfunction in circulating PBMCs features enhanced 
immunomodulation in patients with advanced acute-chronic liver diseases [110, 111]. Recent investigations suggest mitochondrial dysfunction in PBMCs could 
serve as a diagnostic and functional biomarker of MASLD [12–14, 39, 41, 42, 59, 62]. Several studies have used the Seahorse technology to assess mitochondrial 
function [38, 39, 61, 98, 99], introducing a novel automated methodology to precisely sense ex vivo metabolic alterations associated with MASLD.

The use of NAD+ precursors offers potential new avenues for therapeutic intervention approaches targeting activated immune cells; however, the mechanisms 
by which NAD+ and its precursors regulate immune cell function are poorly understood, and the contribution of NAD+ metabolizing enzymes to this process 
remains unclear. Currently, very little is known about the impact of NAD+-based interventions on the metabolic reprogramming and improved mitochondrial 
respiration of PBMCs in MASLD. Emerging data suggests that NAD+-increasing therapeutic interventions targeting mitochondrial performance in PBMC may show 
promise in monitoring MASLD [38]. Further research in this area is therefore warranted.

Abbreviations
MASH: metabolic dysfunction-associated steatohepatitis

MASLD: metabolic dysfunction-associated steatotic liver disease

Me2PY: N-methyl-2-pyridone-5-carboxamide

MeNAM: 1-methylnicotinamide

mtDNA: mitochondrial DNA

https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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NA: nicotinic acid

NAD+: nicotinamide adenine dinucleotide

NAFLD: non-alcoholic fatty liver disease

NMN: nicotinamide mononucleotide

NR: nicotinamide riboside

PARPs: poly-adenosine diphosphate-ribose polymerase

PBMC: peripheral blood mononuclear cells

SIRTs: sirtuins
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