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Abstract
A short overview of the main features of progressive myoclonus epilepsies (PMEs), such as Lafora disease 
(LD), neuronal ceroid lipofuscinoses (NCLs), and myoclonus epilepsy with ragged-red fibers (MERRF) is 
given. The stress of this review paper is put on one of the PME’s, the Unverricht-Lundborg disease 
(ULD)—EPM1, which is caused by mutations in the human cystatin B gene (stefin B is an alternative 
protein’s name). However, different other genes/proteins were found mutated in patients presenting with 
EPM1-like symptoms. By understanding their function and pathophysiological roles, further insights into 
the underlying processes of EPM1 can be obtained. On a broader scale, common pathophysiological 
mechanisms exist between ULD, LD and NCLs, such as, reactive glia, synaptic remodeling, neuronal 
hyperexcitability, impairements in the lysosomal/endocytosis system, cytoskeletal functions, and 
mitochondria. Oxidative stress is also in common. By understanding the underlying molecular and cellular 
processes, early interventions, better therapies and eventually, by using modern stem cell, gene editing or 
replacement methods, a cure can be expected.
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Introduction
Proteinopathies comprise a large number of different diseases where proteins misfold and aggregate or 
condense [1]. Proteostasis (i.e., balance between protein synthesis, folding, and degradation when proteins 
aggregate) goes awry in many entry points [2]. Impairments of mitochondrial, ubiquitin proteasomal and 
lysosomal systems can occur. Together with gut-brain axis unbalance the brain can get affected with 
neuroinflamamtion, oxidative stress (OS), cytokine release, and glia cells activation. This latter causes 
excitotoxicity and hyper-excitability of neurons. A subclass of proteinopathies are amyloidoses, systemic 
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and local, among them neurodegenerative diseases (NDs), such as Alzheimer’s, Huntington’s, and 
Parkinson’s disease. Apart from NDs, protein aggregation and subsequent accompanying consequences 
have recently been reported for major mental health diseases, such as schizophrenia and depression. Not to 
dismiss, traumatic brain injury also causes protein aggregation (taupathy), neurodegeneration and epilepsy 
[3]. Progressive myoclonus epilepsies also have common pathology resembling proteinopathies, with 
autophagy and mitochondrial systems impaired [4]. We assume that protein aggregation and various 
inclusions observed in these type of epileptic syndromes contribute to the common pathology of “gain in 
toxic function” as also observed in other neurodegenerative conditions. These commonly observed 
processes are: OS, mitochondria, and autophagy impairements. As for the “loss of function” of the genes 
affected, either by their absence or mutation/aggregation, even though they have different functions, they 
also are part of some common molecular and cellular processes over progressive myoclonus epilepsies 
(PMEs).

What can we learn from familial forms of PMEs
There are several types of PMEs. They are all characterized by myoclonic and tonic-clonic seizures. Later 
symptoms comprise muscle rigidity, problems with balance and, in some PMEs mental decline and even 
behavioral, and psychiatric problems. Patients can become wheelchair-bound. The most known among 
PMEs are Lafora disease (LD) and Unverricht-Lundborg disease (ULD), the latter also called progressive 
myoclonic epilepsy type 1 (EPM1). Other, less common forms of PMEs include mitochondrial 
encephalopathies, neuronal ceroid lipofuscinoses (NCLs), sialidoses, myoclonus epilepsy with ragged-red 
fibers (MERRF), neuronopathic Gaucher disease, Farber disease and, Dentatorubral-pallidoluysian atrophy. 
The causal genes are known for ULD, LD, NCLs, MERRF, Farber disease and sialidoses [5]. EPM1 will be 
described separately.

LD (also marked as EPM2) is caused by mutations in EPM2A and NHLRC1 genes, which encode laforin 
and malin, respectively [6, 7]. Laforin is a dual specificity phosphatase and malin is an E3 ubiquitin ligase. 
Both proteins are involved in glycogen processing, and due to their mutations and consequent loss of 
function, insoluble bodies of glycogen (Lafora bodies) accumulate in the brain and some other tissues, such 
as the liver and skin. Lohi et al. [8] 2005, proposed that laforin might direct two negative feedback loops: 
polyglucosan-laforin-GSK3β-GS to inhibit glycogen synthase (GS) activity and polyglucosan-laforin-malin-
GS to remove GS through proteasomal degradation. In addition, autophagy is impaired in LD [9]. The ER 
stress and unfolded proteins response are activated, due to protein aggregation (Figure 1) Oxidative stress 
and autophagy impairment follow increased protein aggregation, due to less efficient ubiquitin proteasome 
clearance [10]. The disease onset is in late childhood or adolescence. It is characterized by progressive 
neurologic deterioration and mental health symptoms, leading to death within 10 years. Fortunately, by 
using modern gene managing techniques there are several options, how to treat LD [11].

Among the fatal myoclonus epilepsies fall different NCLs, a group of monogenic, autosomal recessive 
neurodegenerative disorders [13]. The majority of the 14 NCL genes [14, 15] discovered thus far encode 
proteins, which are part of endo/lysosomal pathways. CLN1/PPT1, CLN2/TPP1, CLN5, CLN10/CTSD, 
CLN13/CTSF, and CLN11/GRN are lysosomal proteins, more specifically: lysosomal enzymes (CLN1, CLN2, 
CLN10, and CLN13), a soluble protein (CLN5), and a protein in the secretory pathway (CLN11), whereas 
CLN3, CLN7/MFSD8, CLN12/ATP13A2 are membrane proteins [14, 15]. Two NCL genes encode 
endoplasmic reticulum membrane proteins (CLN6, CLN8) [14, 15]. The phenotype of lipofuscinoses 
depends somewhat on the mutated gene and the mutation. Apart from the myoclonus, they present with 
psychomotor delay, progressive loss of vision and dementia. Patients die early. The name comes from 
lipofuscin, an indigestible mixture of fluorescent cross-linked proteins and lipids. The debris affects 
neuronal cytoskeleton and cellular trafficking. It triggers lysosomal membrane permeabilization and 
subsequent atypical necroptosis.

MERRF is caused by mutations in the mitochondrial DNA (mtDNA), with A8344G mutation in the 
tRNA(Lys) gene being the most common [16, 17]. mtDNA is transmitted vertically from the mother to the 
offspring. The disease onset is in childhood and early adolescence. MERRF is a rare disease, multisystem 
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Figure 1. Laforin functions in cell physiology [12]. Schematic view of the different functions of laforin. GS: glycogen synthase; 
GDE: glycogen debranching enzyme; HSP70: heat shock protein 70; U: ubiquitin; P: phosphate
Note. Reprinted with permission from “Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii” by Gentry 
MS, Romá-Mateo C, Sanz P. FEBS J. 2013;280:525–37 (https://febs.onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2012.
08549.x). © 2012 FEBS.

mitochondrial syndrome characterized by progressive myoclonus and generalized epileptic seizures. 
Cerebellar ataxia, weakness of muscles-myopathy, cardiac arrhythmia, hearing loss, optic atrophy, and 
dementia occur concomitantly. Furthermore, lactic acidosis and stroke-like episodes (MELAS) are 
established phenotypes of mitochondrial encephalopathies [17], which are also caused by mtDNA and 
tRNA(Leu) mutation.

A myoclonus epilepsy EPM7, albeit usually more severe than EPM1, results from mutations in the 
KCNC1 gene [18] encoding the potassium ion channel subunit of the Kv3 subfamily of voltage-gated 
tetrameric channels.

Yet another rare myoclonus epilepsy is the Dravet syndrome, previously termed severe myoclonic 
epilepsy of infancy. It is caused by a mutation of the sodium voltage-gated channel alpha subunit (SCN1A) 
gene [19].

EPM1 on the molecular and cellular level: what are consequences of the 
loss of cystatin B function to neural physiology
ULD or EPM1 is caused by mutations in CSTB gene, coding for cystatin B [20, 21]—equaly assigned as cysB, 
stefin B, stB, a cysteine protease inhibitor. The EPM1 disease in most cases starts in childhood or early 
adolescence. Usually, an earlier onset of symptoms predicts a more severe course. In addition to myoclonus 
and tonic-clonic seizures, gait unstability, muscle rigidity, symptoms comprise dysarthria (trouble speaking 
clearly), dysphagia (difficulty swallowing), and tremor. The phenotype can be mild or more severe, whereas 
patients become wheelchair-bound. They do not have major cognitive decline but depression is common.

At least 14 genetic mutations CSTB gene [20, 21] have been found. The group of Lehesjoki has 
determined many other mutations apart from dodecamer repeats, among them are missense, nonsense, 
frameshift, and deletion mutants [22]. Up-date of the mutations and splice-variants in CSTB gene has been 
gathered recently by Singh and Hämäläinen [23]. The patients heterozygous for the dodecamer repeat and 
a point mutation, either frameshift, stop or missense with loss of function, are differently affected [24]. 
Patients homozygous for two null alleles manifest the most severe neonatal-onset progressive 
encephalopathy [25].
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We have shown that some of the mutations change the protein’s stability, folding/unfolding and 
propensity to aggregate. They may attain cytotoxic function similar to other amyloid-forming proteins—as 
we have proposed already in 2005 [26]. Our later studies have shown different inclusions upon expression 
of selected EPM1 mutants in cell culture, which proved more or less toxic, depending on the unfolding 
intermediate and type of oligomers formed [27, 28]. We also have studied stefin B knock-out (KO) mice 
primary astrocytes, and have observed more protein aggregates by other proteins and an impaired 
autophagic flux [29]. As possible confirmation of gain in toxic function, patients bearing one allele of the 
usual dodecamer repeat expansion and one allele of R68X in the cystatin B gene, show more severe 
pathology and clinical symptoms [30]. This mutation leads to an unfolded protein, which aggregates 
extensively [31], therefore, it is reasonable that cells degrade it fast. Patients who are heterozygous for the 
dodecamer repeat and Q71P or G50E mutation, which forms aggresomes in cell culture [28], may be 
expected to show more severe symptoms, due to gain in toxicity. However, most of the mutations also affect 
the protein’s function. Thus, G4R, Q71P and G50E mutations showed loss of lysosomal localization [22, 32], 
which may be reflected in a normal course of the EPM1 disease, which is due to decreased activity of this 
protein.

Function-wise, human stefin B [33] is a cysteine protease inhibitor [34, 35] but there is more and more 
evidence that this protein may exert alternative functions [36, 37]. We have proposed it may act as an 
amateur chaperone, helping other proteins to fold or prevent their unfolding [38, 39]. It readily forms 
domain-swapped dimers, similar to stefin A [40, 41], and tetramers composed from two such entities [42]. 
We have shown that stefin B tetramers interact with amyloid-beta peptide and reduce its amyloid fibril 
formation [43]. Importantly, the group of Melli has confirmed the oligomeric nature of this protein in cells 
[44] and that the oligomers depend on the redox state of the cell [44, 45].

Furthermore, the Italian groups have reported that cystatin B has a role in vesicular transport [46] as 
well as in neural proliferation and interneuron migration [47], in synapse physiology [46, 48] and in 
neurogenesis [47]. That cystatin B has important roles in the brain [23], contributing to synaptic plasticity 
has been confirmed more recently in studies of human cerebral organoids [49]. Already in 2002, by Di 
Giaimo et al. [50], it has been shown that cystatin B in the rat cerebellum interacts with proteins, which play 
a role in cellular growth, proliferation and differentiation. By yeast two-hybrid system cystatin B was 
shown to interact with brain β-spectrin, a cytoskeletal protein, with NF-L (neurofilament light chain), which 
is important for cytoskeleton dynamics and with RACK-1 (receptor for activated C kinase 1), which 
mediates the interaction of the activated C kinase embedded in the cell membrane, with the cytoskeleton. 
The three proteins—RACK-1, β-spectrin, and NF-L co-localize in Purkinje cells and in Bergmann glia, where 
in complexes with cystatin B they contribute to cell development and differentiation [23].

In stefin B (cystatin B) KO cells [51], animal models and patients [52], OS was found to be increased. 
Therefore, anti-oxidant treatment with N-acetyl cysteine (NAC) has been tried to treat EPM1 patients with 
variable outcomes [53]. Maher et al. [54], showed that murine stefin B deficient macrophages were 
significantly more sensitive to the lethal lipopolysaccharide (LPS)-induced sepsis due to increased caspase-
11 expression and NLRP3 inflammasome activation [54]. They also showed that stefin B deficiency resulted 
in the destabilization of the mitochondrial membrane and elevated mitochondrial reactive oxygen species 
(ROS) generation [51, 54], leading to cell death. Recently, the same group has shown that stefin B inhibits 
NLRP3 inflammasome activation via AMPK/mTOR signalling [55].

In conclusion, stefin B (cystatin B) function has been associated with many biological processes such as 
apoptosis [56], the response to OS [52], cell cycle regulation [57, 58], inflammation [54, 55]. However, the 
molecular mechanisms by which stefin B mediates these processes remain largely unknown. Which of the 
stefin B functions are expressed first and upstream of OS is not clear as yet. In addition, nuclear localization 
and function(s) [57, 58] of this protein are most important in neurons and astrocytes.

Importantly, CSTB gene is part of chromosome 21 (Ch21q22.3) together with some other important 
neural system genes, such as amyloid-beta precursor protein (APP), Copper/zinc superoxide dismutase 1 
(SOD-1), glutamatergic receptor GluR5, and prion. An additional copy of chromosome 21 is present in Down 
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syndrome (DS) patients. Due to the triplicated gene, SOD-1 increased function causes OS in people with DS, 
leading to early Alzheimer’s disease (AD). Cystatin B increased amount and function does not seem to 
improve symptoms of concominant AD [59]. Whereas EPM1 symptoms would be milder or more severe in 
people with DS has not been reported as yet but the so-called late-onset myoclonic epilepsy (LOMEDS) is 
frequent after the age of 40 in people with DS and leads to worse cognitive outcomes and early mortality 
[59]. It would be of interest to check for an increased protein aggregation in DS patients.

Other genes mutations causing EPM1-like symptoms
Another mutation producing similar symptoms as EPM1 was identified in Prickle1 protein [60, 61]. Apart 
from progressive myoclonus syndrome, Prickle paralogs have been associated with several neurological 
and NDs, including autism spectrum disorder and AD, and with autoimmune diseases, such as rheumatoid 
arthritis. Prickle family of proteins take part in planar cell polarity (PCP) signalling [62]. Prickle binds to the 
transmembrane protein Vangl and the Vangl-Prickle complexes accumulate at the plasma membrane, 
where they regulate the actin cytoskeleton [63, 64]. In addition, Prickle inhibits Dishevelled (Dsh) [62] in 
the cytoplasm and the transmembrane protein Frizzled (Fz) (see Figure 2).

Figure 2. Schematic view of the common pathophysiological mechanisms of Unverricht-Lundborg disease (ULD), Lafora 
disease (LD) and neuronal ceroid lipofuscinoses (NCLs) [4]. LB: Lafora bodies. In the intersection, are given the common 
pathological processes affected in the three disorders, according to the data obtained with animal models of the diseases. 
These are: reactive glia, release of cytokines/chemokines, synaptic remodeling, oxidative stress, neuronal 
hyperexcitability—and, as added, the mitochondrial impairment
Note. Adapted from “Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities” 
by Sanz P, Serratosa JM. Expert Rev Mol Med. 2020;22:e4 (https://www.cambridge.org/core/journals/expert-reviews-in-
molecular-medicine/article/neuroinflammation-and-progressive-myoclonus-epilepsies-from-basic-science-to-therapeutic-
opportunities/FFDB1F62EBB390CC1CEF30A5AB5B35CE). CC BY.

Another mutation producing similar symptoms was found in the SCARB2 gene [65]. Function of the 
SCARB2 gene coding for lysosomal integral membrane protein—LIMP2, is only partially resolved. A better-
known function is membrane transport at the endosomal/lysosomal compartment [66]. It has been 
discovered that LIMP2, apart from lysosomal membranes, resides at intercalated discs of the heart, where it 
interacts with N-cadherin. Knockdown of LIMP2 with RNA interference (RNAi), decreased the binding of N-
cadherin to the phosphorylated form of β-catenin, and LIMP2 overexpression had the reverse effect [67].

https://www.cambridge.org/core/journals/expert-reviews-in-molecular-medicine/article/neuroinflammation-and-progressive-myoclonus-epilepsies-from-basic-science-to-therapeutic-opportunities/FFDB1F62EBB390CC1CEF30A5AB5B35CE
https://www.cambridge.org/core/journals/expert-reviews-in-molecular-medicine/article/neuroinflammation-and-progressive-myoclonus-epilepsies-from-basic-science-to-therapeutic-opportunities/FFDB1F62EBB390CC1CEF30A5AB5B35CE
https://www.cambridge.org/core/journals/expert-reviews-in-molecular-medicine/article/neuroinflammation-and-progressive-myoclonus-epilepsies-from-basic-science-to-therapeutic-opportunities/FFDB1F62EBB390CC1CEF30A5AB5B35CE
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Signaling pathways in common between PMEs and NDs
In EPM1, EPM2, and MERRF increased OS and mitochondrial impairment is observed. For example, 
mitochondrial impairment with increased OS happens in stefin B KO mice upon LPS challenge [51]. 
Neuroinflammation happens in EPM1 and also some other PMEs, such as NCLs and LD [4]. In EPM1, 
represented by model stefin B KO mice, neuroinflammation is a key hallmark [68]. As well, innate immunity 
response and inflammasome activation were observed [69, 70]. Activated glia with accompanying 
excitotoxicity are also in common. Together, these pathological phenomena: mitochondrial impairment, 
increased OS, neuroinflammation and activated (reactive) glia, likely end-points of other upstream events, 
are in common with several PMEs (Figure 2) but also with many other neurodegenerative conditions.

A common signaling pathway impaired in PMEs, NDs with AD as prototype, as well as in 
neuropsychiatric diseases (NPDs) is the Wnt signaling, as observed and suggested by Polajnar and Žerovnik 
[71, 72]. Wnt signaling is an autocrine paracrine signal transduction pathway. It plays a role in cytoskeleton 
and midbrain development, among others. Ablation of Wnt-1 results in severe defects of the midbrain, the 
cerebellum and the spinal cord while ablation of Wnt-3a results in a total loss of the hippocampus. One can 
distinguish canonical and non-canonical Wnt signaling pathways. The canonical (classical) pathway is 
described in the legend to Figure 3. In short: the Wnt-protein ligand binds to a Fz family receptor, which 
passes the signal to the protein Dsh. Dsh negatively regulates GS kinase-3 beta (GSK3β), which inhibits β-
catenin. At least two non-canonical Wnt pathways exist: the PCP pathway, in which Fz acts through 
monomeric GTPase and Jun N-terminal kinase (JNK) to regulate the cytoskeleton [73] and the Wnt/Ca2+ 
signaling pathway, in which Fz activation leads to increased intracellular Ca2+ [74].

mTOR signaling is indeed affected in LD and in EPM1, where in addition Prickle gene is part of PCP 
signaling [62] and stefin B is also involved in PCP signaling [37] and in autophagy [29]. A recent paper 
reports that stefin B over-expression downregulated mitochondrial ROS and lowered inflammasome 
activation. This occurred concomitantly with AMPK phosphorylation and downregulation of mTOR activity, 
leading to the induction of autophagy [55].

To be noted, in AD and in schizophrenia the disrupted Wnt signaling pathway leads to poor working 
memory. Namely, inhibition of Wnt signaling impairs long-term potentiation (LTP) while its activation 
facilitates LTP, as a study on a mouse model showed. Huperzine A and lithium, both inhibit (GSK3β) and 
thus stabilise levels of β-catenin [74].

What are the prospects for a cure or early treatment of various monogenic 
PMEs?
Treatments for PMEs thus far have been supportive and palliative. With recent advances in enzyme 
replacement methods, short RNA-based therapies, stem cell and gene therapies, prospects are brighter [5]. 
In more detail, enzyme replacement therapy by providing active enzymes into the affected cells seems a 
likely way forward for ULD, NCLs, Farber disease and sialidoses. To replace the impaired gene either by 
viral delivery or by mRNA embedded in liposomes might soon become possible for ULD [75] and Batten 
disease [76] and, if side effects are manageable, this would represent a cure. Gene replacement has been 
successfully applied also in LD mouse model [77].

As autophagy is impaired in LD, we suggested this might be helped by autophagy-enhancing molecules, 
such as rapamycin analogs [72]. Recently, indeed such a trial for LD model mice was performed by using 
trehalose [78]. This treatment resulted in lower susceptibility to PTZ-induced seizures but did not reduce 
the burden of Lafora bodies [5].

In LD and ULD proteostasis is also impaired (see Figures 1 and 3), therefore, heat shock proteins would 
seem beneficial. Such a trial was performed on LD model mice, where heat shock factor-1 (HSF1) was 
restored by using dexamethasone treatment [79].
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Figure 3. The signalling pathways connected to autophagy [71]. Phosphatidylinositol signalling pathway is regulated by Class I 
phosphoinositide 3-kinases (PI3Ks), which are activated by kinase receptors like insulin receptors (IRs) and responsible for the 
production of phosphatidylinositol (3,4,5)-triphosphate (PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). Phospholipase 
C (PLC) cleaves the PIP2 into diacyl glycerol and inositol 1,4,5-trisphosphate (IP3). Inositol polyphosphate 1-phosphatase 
(IPPase) catalyses inositol bisphosphate (IP2) to inositol monophosphate (IP), which is further dephosphorylated by inositol 
monophosphatase (IMPase) to inositol. High-affinity inositol transport is additionally catalysed by the active myo-inositol/H+ 
transporter (MIT). MIT, IPPase and IMPase are all inhibited by carbamazepine (CBZ), valproic acid (VPA) and lithium (Li+). 
PI3Ks have been linked to an extraordinarily diverse group of cellular functions through regulation of the Akt/TSC1-TSC2/mTOR 
pathway. Disrupted in Schizophrenia 1 (DISC1) in its wild-type form also negatively regulates both GSK3β and Akt (also known 
as protein kinase B, PKB). Tuberous sclerosis protein 1 and 2 (TSC1/2) form a complex that like rapamycin (Rap) inhibits 
mammalian target of rapamycin (mTOR) kinase. Wnt signalling activation is mediated through binding of a Wnt-protein ligand to 
a Frizzled family receptor, which passes the biological signal to the protein Dishevelled (Dsh). Dsh negatively regulates 
glycogen synthase kinase-3 beta (GSK3β), which alternatively inhibits β-catenin, one of the central proteins of the Wnt signalling 
pathway. β-Catenin, however, negatively regulates LKB1/AMPK pathway (liver kinase B1/5’ adenosine monophosphate-
activated protein kinase) that indirectly regulates autophagy
Note. Reprinted from “Impaired autophagy: a link between neurodegenerative and neuropsychiatric diseases” by Polajnar M, 
Zerovnik E. J Cell Mol Med. 2014;18:1705–11 (https://onlinelibrary.wiley.com/doi/10.1111/jcmm.12349). CC BY.

Neuroinflammation, which is a hallmark of most of PMEs can be decreased by using known anti-
inflammatory drugs but also by other modulators of inflammation [80] as was shown in a study of LD 
model mice.

Another common impairment of PMEs is OS. Anti-oxidants, such as NAC [81], and different vitamins 
have been applied to improve EPM1, EPM2, and MERRF, however, often with no clear benefit. The reason 
might be that oxidative damage has already occurred. An early treatment would likely bring more benefit, 
however, it depends on the time of diagnosis. Based on case studies NAC proved beneficial for ULD [82, 83].

Of note, some anti-oxidant molecules can also decrease the number of protein aggregates, which may 
increase along with the decrease of autophagic flux and increase in OS (this makes a vicious circle, negative 
feedback). We have performed a study where polyphenols and some vitamins affect on aggregation of stefin 
B [84].

https://onlinelibrary.wiley.com/doi/10.1111/jcmm.12349
https://onlinelibrary.wiley.com/doi/10.1111/jcmm.12349
https://onlinelibrary.wiley.com/doi/10.1111/jcmm.12349
https://onlinelibrary.wiley.com/doi/10.1111/jcmm.12349
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Conclusion
PMEs entered into an exciting era when the disease cure may be expected. By more understanding of the 
underlying molecular and cellular processes, which will lead to early interventions, better supportive 
therapies and eventually, by using stem cells, enzyme replenishment (delivery of liposome enwrapped 
proteins or by mRNA vaccination) and lowering gene expression (by RNAi) or totally new gene 
incorporation, i.e., replacement of the mutated gene, familial PMEs might get cured at the core cause. 
Similar development is seen with some of the so called orphan diseases [85].
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