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Abstract
Aim: Neuroinflammation is a characteristic of multiple sclerosis (MS). Resveratrol (RSV) has potent 
antioxidant properties and has emerged as a promising therapeutic agent for various inflammatory 
diseases. This study investigated the effects of RSV on inflammatory responses via reactive oxygen species 
(ROS) production and leukocyte cytokine secretion in patients with MS and healthy controls.
Methods: The effects of RSV on ROS production in resting and stimulated granulocytes (in the presence of 
opsonized particles) were assessed using luminol-dependent chemiluminescence. The cytokines 
interleukin (IL)-10, IL-1β, IL-6, and high mobility group box 1 (HMGB1) in the supernatant of peripheral 
blood mononuclear cells (PBMNCs) were quantified using enzyme-linked immunosorbent assay (ELISA).
Results: RSV significantly downregulated ROS production in resting and stimulated granulocytes in 
patients with MS and healthy controls. In the control group, RSV reduced IL-6 levels by 49% in the PBMNC 
supernatant, whereas IL-6 levels remained unchanged in the MS group. Interestingly, higher levels of IL-10 
were detected in PBMNC supernatants from patients with MS than in controls. No significant changes were 
observed in IL-1β and HMGB1 levels in the PBMNC supernatant.
Conclusions: Controlling ROS production is a key target for treating inflammatory diseases. Our findings 
suggest that RSV can effectively modulate ROS production in MS, highlighting its potential as a promising 
adjunct therapy for controlling oxidative innate immune responses in MS.
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Graphical abstract. RSV inhibited the ROS production via NADPH-oxidase of patients with MS. ROS: reactive oxygen species; 
RSV: resveratrol; ZyC3b: zymosan recovered using C3b fragments (opsonized particles); MS: multiple sclerosis

Introduction
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system 
(CNS), making it the second most prevalent cause of neurological disability among young adults, and 
impacting approximately 2.5 million individuals globally [1–4].

There is no consensus regarding the etiology of MS. Several theories have been proposed, including 
idiopathic loss of self-tolerance, altered blood-brain barrier (BBB) permeability due to unknown 
mechanisms, molecular mimicry, and chronic viral infection. These factors, combined with genetic 
predispositions and environmental influences, collectively contribute to the development of this disease [5–
8].

Infiltration of immune cells into the CNS in MS is closely associated with producing reactive oxygen 
species (ROS). Immune cells such as autoreactive T and B lymphocytes, macrophages, and dendritic cells 
produce ROS, contributing to chronic inflammation and tissue damage in the CNS. Excessive ROS 
production can lead to lipid peroxidation, DNA damage, and cell death and plays a pivotal role in 
demyelination, axonal/neural injury, and modulation of BBB integrity. This process can result in partial or 
total disruption of neuronal signaling, contributing to disease progression and symptoms observed in MS, 
including sensory and visual disturbances, motor deficiencies, fatigue, pain, and cognitive deficits [9–14].

There is no cure for MS. Treatment is based on immunosuppression intended to modulate the 
inflammatory component of the disease. Still, most immunosuppressants have limited efficacy and serious 
side effects, and some patients are non-responsive or develop tolerance [15–18]. Adjunctive therapies, such 
as vitamins and dietary supplements, are being explored and are considered acceptable for patients with 
MS [19].

Resveratrol (trans-3,4’,5-trihydroxystilbene, RSV), a naturally derived polyphenol found in grapes, 
seeds, and red wine, has the potential to affect human diseases, including neurodegenerative diseases, 
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ischemia/reperfusion, and depression [20–23]. RSV has recently emerged as a potential therapeutic agent 
for treating various inflammatory diseases, owing to its anti-inflammatory and antioxidant properties [24]. 
RSV is commonly addressed in several pathologies, and its effects are evident in cardioprotection, 
neuroprotection, improving remyelination, immune modulation, and malignant neoplastic cells. It is water-
soluble and can cross the BBB [25–38]. Despite its promising therapeutic potential, RSV may cause side 
effects, especially when administered at high doses or for extended periods, including gastrointestinal 
discomfort, allergic reactions, and interactions with other medications [39–44]. The mechanism of action of 
RSV involves its ability to activate various cellular pathways, including sirtuin activation, AMP-activated 
protein kinase (AMPK) activation, and modulation of nuclear factor-kappa B (NF-κB) signaling, which is 
involved in the production of pro-inflammatory cytokines [23, 45, 46]. RSV can also modulate oxidative 
stress by downregulating ROS production through the NADPH-oxidase (NOX) complex and mitochondria 
[37, 47–49]. ROS and pro-inflammatory cytokines play essential roles in the pathogenesis of MS by inducing 
severe CNS damage [50, 51]. Therapeutic targeting based on the inflammatory response represents an 
exciting approach to developing novel neuroprotective strategies [52, 53]. Several studies have shown that 
RSV may be beneficial for treating chronic diseases involving oxidative stress and inflammation. Therefore, 
we hypothesized that RSV prevents inflammation via ROS production and cytokine secretion in the 
leukocytes of patients with MS.

Materials and methods
Study population

This comparative cross-sectional parallel-group study was approved by Dr. Francisco das Chagas Lima and 
Silva Ethics Committee of Santa Casa Hospital of Belo Horizonte, Brazil (approval number 
69385917.7.0000.5138). Informed consent was obtained from all participants. Peripheral venous blood 
was collected from twenty-four MS patients and twenty-two healthy individuals (control group) aged 21 to 
60. Table 1 displays the detailed profiles of the study population, including disease duration, disease course, 
and degree of disability, as measured by the expanded disability status scale (EDSS) and categorized as mild 
(EDSS 0–2.5), moderate (EDSS 3–5), or severe (EDSS 5.5–10). The EDSS, which ranges from 0 to 10, 
quantifies disability progression in patients with MS based on a neurologist’s examination, with higher 
scores indicating worse disability [54]. All patients in the MS group were non-smokers and had received 
immunotherapy. The exclusion criteria were pregnancy, dementia, inflammation, malignant disease, 
infection, and tobacco or alcohol dependence.

Table 1. Characteristics of study subjects

Parameters Control group Multiple sclerosis P

N 22 24 Ns
Sex, N (%) Female b 16 (72.7%) 16 (66.6%) Ns
Age in years a 38.4 ± 14 35.5 ± 10 Ns
Disease duration in years a Na 15.9 ± 12.5 -
EDSS
    Mild, N (%) Na 17 (70.8%) -
    Moderate, N (%) Na 4 (16.7%) -
    Severe, N (%) Na 3 (12.5%) -
Disease course
    Relapsing-remitting, N (%) Na 20 (83.3%) -
    Primary progressive, N (%) Na 4 (16.7%) -
a Values expressed in mean ± standard deviation, student’s t-test; b values expressed in percentage, χ2 test. Na: not applicable; 
Ns: non-significant (P > 0.05). Expanded disability status scale (EDSS) scores were categorized as mild, no to minimal disability 
(EDSS 0–2.5), moderate (EDSS 3–5), and severe (EDSS 5.5–10)
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Preparation of leukocytes

Granulocytes and peripheral blood mononuclear cells (PBMNCs) were purified using a modified version of 
the Ficoll-Hypaque density gradient method as described by Bicalho et al. [55]. Cells were identified and 
counted based on their morphology, granulation, and size in a Neubauer chamber. The final concentration 
of the suspension was adjusted to 1 × 106 cells/mL. The viability of the cell suspensions was determined 
using the trypan blue exclusion test, and cell viability exceeded 90% for all samples.

Reactive oxygen species assay

ROS levels in the granulocytes were determined using a luminol-based chemiluminescence method. 
Aliquots (100 µL) containing a suspension of granulocytes in phosphate-buffered saline (PBS) at a 
concentration of 1 × 106 cells/mL were mixed with luminol (0.4 M dissolved in DMSO) in the presence or 
absence of RSV (10 μM, 3,4’,5-tri-hidroxi-trans-estilbeno, 5-[(1E)-2-(4-hidroxifenil)etenil]-1,3-benzenodiol, 
3,5,4’-trihidroxiestil-beno, cat. #5010 Merck KGaA) and opsonized particles [13.6 mg/mL zymosan-C3b 
suspension, zymosan recovered using C3b fragments (opsonized particles) (ZyC3b), zymosan-A from 
saccharomyces cerevisiae, cat. #Z4250 Merck KGaA]. Sequential reactions were conducted over 30 min and 
monitored using a Turner BioSystems (Promega, Madison, WI, USA) model 20/20n luminometer [56–59].

Cytokine detection in PBMNC supernatant

Aliquots (100 µL) containing a suspension of PBMNCs in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS) at a concentration of 1 × 106 cells/mL from both patients 
and controls were distributed in triplicate in the presence or absence of RSV (10 μM) among the wells of 
96-well flat-bottomed culture plates (Corning Inc., New York, USA). The plates were incubated for 72 h at 
37℃ under 5% CO2. Following incubation, PBMNC culture supernatants were collected, and the 
concentrations of interleukin (IL)-10, IL-1β, IL-6, and high mobility group box 1 (HMGB1) were determined 
using enzyme-linked immunosorbent assay (ELISA) kits. IL-10, IL-1β, and IL-6 were obtained from 
BioLegend, Inc., San Diego, USA. The HMGB1 cells were obtained from FineTest (Wuhan Fine Biotech Co., 
China).

Statistical analysis

Statistical analyses were performed using GraphPad Prism version 5 (GraphPad Software, Inc.). Data are 
presented as the mean ± standard error (SE) or median (minimum-maximum) as appropriate. An unpaired 
student’s t-test or the Whitney U-test was used to compare samples. In certain cases, the χ2 test was used. P 
 <  0.05 was considered significant.

Results
Table 1 shows a detailed profile of the study population. This study included 22 healthy individuals (control 
group), with a mean age of 38.4 ± 14 years, and 24 MS subjects, with a mean age of mean age 35.5 ± 
10 years and disease duration of 15.9 ± 12.5 years, were included in this study. There were no significant 
differences in age or sex between the two groups. According to the International Advisory Committee on 
Clinical Trials of MS 20 with MS were diagnosed with a relapsing-remitting course, and 4 with primary 
progressive [60, 61]. According to the EDSS scale, 17 MS patients with no-minimal disability were classified 
in the EDSS 0–2.5, 4 patients in the EDSS 3–5, with moderate disability, and 3 patients in the EDSS 5.5–10, 
with severe disability.

RSV inhibited ROS production in resting and phagocytosis-stimulated granulocytes

Figure 1 presents the oxidative response in non- and stimulated granulocytes across the studied groups, 
values expressed as the mean ± SE. The findings indicate comparable levels of ROS in resting granulocytes 
from patients with MS (198.4 ± 19) and controls (187.1 ± 19). However, upon stimulation with opsonized 
particles, ROS generation was significantly higher (P < 0.05) in granulocytes from patients with MS (883.6 ± 
109.4) than those from healthy individuals (420.8 ± 30.1). Additionally, the addition of RSV inhibited ROS 
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generation in both resting cells (controls: 84.1 ± 5.4, MS: 85 ± 3.3) and phagocytosis-stimulated 
granulocytes (controls: 111.9 ± 113.2, MS: 159.3 ± 22.3) from both groups. These findings demonstrate that 
RSV effectively suppresses ROS production in granulocytes when exposed to opsonized particles, indicating 
inhibition during phagocytosis.

Figure 1. The effect of RSV (10 μM) on ROS production during phagocytosis of opsonized ZyC3b particles in granulocytes 
obtained from multiple sclerosis patients and control group. Values expressed in mean ± standard error; student’s t-test; n = 12 
for each group. G: granulocytes; PBS: phosphate-buffered saline; ROS: reactive oxygen species; RSV: resveratrol; ZyC3b: 
zymosan recovered using C3b fragments (opsonized particles)

Cytokine levels in the absence and presence of RSV

To investigate whether the observed RSV-mediated downregulation of ROS production in granulocytes 
from patients with MS was associated with modulation of anti- or pro-inflammatory cytokines production, 
supernatants from PBMNC cultures treated with or without RSV were analyzed for IL-10, IL-1β, IL-6, and 
HMGB1 levels. As shown in Figure 2, PBMNCs from patients with MS exhibited a significantly higher (P < 
0.05) IL-10 secretion (162.3 ± 13.2 pg/mL) compared with those from the control group (71 ± 9.5 pg/mL) 
(Figure 2A). Although IL-6 levels were not significantly different between the two study groups, the 
presence of RSV led to a significant inhibition (49%) of IL-6 secretion in PBMNCs from the control group. In 
contrast, no alteration was observed in patients with MS (Figure 2C). The levels of IL-1β and HMGB1 in 
PBMNCs from both groups showed no significant differences and were not modulated by the presence of 
RSV (Figure 2B and D).

Discussion
This study examined the potential immunomodulatory effects of RSV on leukocytes from patients with MS. 
Our results demonstrated that RSV inhibited inflammation-associated ROS production in unstimulated and 
stimulated granulocytes from patients with MS and healthy controls (Figure 1). RSV did not affect cytokine 
secretion in cells from patients with MS; however, this antioxidant decreased IL-6 levels in mononuclear 
cells from the control group (Figure 2). Furthermore, our results showed high levels of IL-10 secreted by 
cells from patients with MS (Figure 2A).

The pathophysiology of MS remains unclear; nonetheless, neuroinflammation is a hallmark of the 
disease, characterized by the influx of leukocytes into the CNS and the loss of BBB integrity [11, 52, 53]. 
Immune cells in the CNS are a major source of ROS production and secretion of pro-inflammatory 
cytokines, leading to demyelination, neuronal damage, and functional disabilities [25–35]. Antioxidant 
therapy may be a good option for controlling the inflammatory processes in neurodegenerative pathologies 
[62–68].
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Figure 2. The modulation by RSV (10 μM) of cytokine production in PBMNC from multiple sclerosis patients and controls. (A) 
Levels of IL-10; (B) levels of IL-1β; (C) levels of IL-6; (D) levels of HMGB1. Values expressed in mean ± standard error; n = 12 
for each group. In panels B and D, no significant differences were observed in any of the analyses. DMEM: Dulbecco’s modified 
Eagle’s medium; HMGB1: high mobility group box 1; PBMNC: peripheral blood mononuclear cell; RSV: resveratrol

An oral pharmaceutical formulation of RSV, SRT501, prevented neuronal damage and associated long-
term neurological dysfunction in a mouse model of MS [40, 69]. The neuroprotective effects of RSV are 
associated with sirtuin 1 (SIRT1), an NAD-dependent deacetylase that regulates various cellular functions, 
including energy metabolism and cellular stress responses [70]. Reduced SIRT1 levels have been observed 
in several chronic inflammatory diseases, such as arterial inflammation, obesity, and Alzheimer’s disease 
[71]. Additionally, low levels of SIRT1 contribute to the upregulation of IL-1β levels in chronic inflammation 
and aging microglia of experimental models [72]. RSV’s neuroprotective effects of RSV may be linked to its 
ability to ameliorate oxidative stress, inflammation, and mitochondrial dysfunction [38]. Oxidative stress is 
pivotal in neurodegenerative diseases such as MS, causing demyelination, neuronal damage, and BBB 
disruption [73–79]. ROS, primarily produced by NOX isoforms in response to growth factors or cytokines, 
exacerbates these conditions [80, 81]. In parallel with previous studies implicating the antioxidant action of 
RSV through its inhibitory effects on NOX activity, our experiments also indicated that RSV significantly 
attenuated ROS production in non-stimulated and stimulated granulocytes from patients with MS and 
controls (Figure 1). In aortic smooth muscle cells (SMCs), RSV stimulates the expression of antioxidant 
genes and acts as a ROS scavenger [82–84].

RSV has also been identified as a negative regulator of NF-κB signaling by improving oxidative stress, 
given that NF-κB can be activated by a wide variety of signals, including oxidative stress [85]. Although our 
results indicated that RSV downregulated ROS production in cells from patients with MS and controls, 
peripheral immune cells from patients with MS remained unaltered upon RSV treatment (Figure 2). This 
could be because i) in this study, the molecular mechanisms of MS influence the activity of these 
antioxidants, or ii) assessment of the cytokine profile in these cells is not possible since it is common to 
observe the inflammatory response in loco in the CNS [86–88]. Only IL-6 levels were affected by RSV in 
mononuclear cells of the control group (Figure 2C). Studies have reported that RSV alters cytokine 
production either positively or negatively. Upon RSV treatment, the secretion of anti-inflammatory 
interleukins, IL-4 and IL-10 was enhanced, and that of nitric oxide, interferon-γ, tumor necrosis factor 
(TNF)-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and C reactive protein was suppressed 
[89–92]. The expression of anti- and pro-inflammatory genes in the brains of experimental autoimmune 
encephalomyelitis (EAE) mice, an MS model, was also observed in a dose-dependent RSV model. The gene 
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expression of arginase 1 and IL-10 was upregulated, whereas that of iNOS and IL-1β was downregulated in 
EAE mice after RSV treatment [93]. In contrast, RSV treatment has been reported to increase the expression 
of IL-17 in murine EAE and significantly exacerbate demyelination and inflammation without 
neuroprotection in the CNS in autoimmune and viral models of MS [94].

Interestingly, IL-10 secretion was significantly higher in cells from the MS group than in the control 
group (Figure 2A). IL-10 is important in protection against neuroinflammation due to its anti-inflammatory 
and immunosuppressive effects [95, 96]. Several studies have demonstrated that IL-10 deficiency is a more 
severe form of neuroinflammatory pathology [97–100]. Our results suggest that high IL-10 levels modulate 
the immune response in patients with MS and may be important for the intermittence of the disease.

This study had some limitations, including the evaluation of the effects of RSV on other signaling 
pathways, such as mitochondrial function and LPS-induced secretion of cytokines (in vitro conditions of 
neuroinflammatory injury).

Overall, our results indicate that RSV downregulates ROS production in non-stimulated and stimulated 
granulocytes; however, it is not effective in modulating the production of anti- or pro-inflammatory 
cytokines in the peripheral immune cells of patients with MS. Controlling ROS production is a key target for 
the inflammatory process, in which oxidative stress precedes the inflammatory response [101]. These 
findings highlight the potential utility of RSV as a complementary therapeutic option for patients with MS.

In conclusion, owing to its anti-inflammatory and antioxidant actions, we suggest that RSV can be 
considered an adjunctive therapy for MS. Further investigations are necessary to elucidate the precise 
activity of RSV in modulating inflammatory processes.
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