
Explor Neurosci. 2025;4:100672 | https://doi.org/10.37349/en.2025.100672 Page 1

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution 
and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Exploration of Neuroscience

Open Access Review

Anti-amyloid β hydrophobic peptides in Alzheimer’s disease: 
biomarkers and therapeutic potential
Carlos Gutierrez-Merino*

Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain

*Correspondence: Carlos Gutierrez-Merino, Instituto de Biomarcadores de Patologías Moleculares, Universidad de 
Extremadura, 06006 Badajoz, Spain. biocgm@gmail.com
Academic Editor: Ryszard Pluta, Medical University of Lublin, Poland
Received: December 19, 2024  Accepted: February 10, 2025  Published: February 24, 2025

Cite this article: Gutierrez-Merino C. Anti-amyloid β hydrophobic peptides in Alzheimer’s disease: biomarkers and 
therapeutic potential. Explor Neurosci. 2025;4:100672. https://doi.org/10.37349/en.2025.100672

Abstract
Intracellular amyloid β oligomers (AβOs) have been linked to Alzheimer’s disease (AD) pathogenesis and to 
the neuronal damage in this neurodegenerative disease. Calmodulin, which binds AβO with very high 
affinity, plays a pivotal role in Aβ-induced neurotoxicity and has been used as a model template protein for 
the design of AβO-antagonist peptides. The hydrophobic amino acid residues of the COOH-terminus domain 
of Aβ play a leading role in its interaction with the intracellular proteins that bind AβO with high affinity. 
This review focuses on Aβ-antagonist hydrophobic peptides that bind to the COOH-terminus of Aβ and their 
endogenous production in the brain, highlighting the role of the proteasome as a major source of this type 
of peptides. It is emphasized that the level of these hydrophobic endogenous neuropeptides undergoes 
significant changes in the brain of AD patients relative to age-matched healthy individuals. It is concluded 
that these neuropeptides may become helpful biomarkers for the evaluation of the risk of the onset of 
sporadic AD and/or for the prognosis of AD. In addition, Aβ-antagonist hydrophobic peptides that bind to 
the COOH-terminus of Aβ seem a priori good candidates for the development of novel AD therapies, which 
could be used in combination with other drug-based therapies. Future perspectives and limitations for their 
use in the clinical management of AD are briefly discussed.
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Introduction
The 2022 world Alzheimer’s report [1] pointed out the importance of early detection and diagnosis of 
Alzheimer’s disease (AD), as nearly 75% of individuals with dementia are not diagnosed globally. The 
histopathological hallmarks of AD are the extracellular amyloid β (Aβ) plaques and intracellular 
neurofibrillary tangles [2]. Aβ monomers aggregate to form low molecular weight oligomers (dimers, 
trimers, tetramers, and pentamers), mid-range molecular weight oligomers (hexamers, nonamers, and 
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dodecamers), protofibrils, and fibrils [3]. Of special relevance for the main aims of this work is that the 
hydrophobic C-terminal of the Aβ plays a critical role in triggering the transformation from α-helical to β-
sheet structure present in high-order aggregation states of Aβ found in AD [4]. Guo et al. [5] reported that 
Aβ and tau form soluble complexes that may promote self-aggregation of both into the insoluble forms 
observed in AD, and that middle and C-terminal Aβ regions provide the Aβ amino acid residues more 
strongly binding to tau, namely, peptide sequences Aβ(11–16), Aβ(27–32), and Aβ(37–42). Therefore, 
Aβ:tau complexes can be formed when intracellular free Aβ monomers/oligomers reach concentrations in 
the saturation range for the formation of these complexes. Moreover, Guo et al. [5] hypothesized that in AD 
the intracellular binding of soluble Aβ to soluble no phosphorylated tau promotes tau phosphorylation and 
Aβ nucleation, and proposed that blocking the sites where Aβ initially binds to tau might arrest the 
simultaneous formation of plaques and neurofibrillary tangles in AD. Other molecular mechanisms linking 
Aβ and tau pathology are reviewed in [6]. Also, it should be noted that the release of intracellular Aβ to the 
extracellular medium caused by the neuronal damage elicited by the toxic intracellular Aβ oligomers 
(AβOs) and neurofibrillary tangles is likely to potentiate Aβ plaque formation.

The neurotoxic Aβ peptide Aβ(1–42), which is found in higher concentrations in the brain of AD 
patients and associated with Aβ plaques [7, 8], is produced from the amyloid precursor protein (APP) by 
the so-called Amyloidogenic Pathway through the sequential activity of β-site APP cleaving enzyme 1 
(BACE1) and γ-secretase [9]. Indeed, an enhanced activity of BACE1 and a shift towards the amyloidogenic 
pathway of APP processing has been reported to be linked to several factors known to foster the 
neurodegeneration in AD-affected brains, like iron dyshomeostasis [10–12], brain oxidative stress [13–15], 
hypercholesterolemia [16–18], and brain hypoxia [19]. Furthermore, Aβ plaques and neurofibrillary tangles 
contain high concentrations of iron and Fe2+ and Fe3+ interactions with APP and Aβ speed up Aβ 
aggregation into fibrillar forms [12, 14, 20]. Nevertheless, nearly all BACE1 inhibitors used as candidate 
therapeutic agents in AD have failed in later phases of clinical trials, due to safety and/or efficacy issues, 
and others were discontinued early in favor of second-generation small-molecule candidates [21]. Thus, 
exploration of alternate approaches to reducing Aβ toxicity seems a timely issue. Indeed, it has been noted 
recently that phytochemicals like indole-3 carbinol and diindolylmethane that inhibit Aβ-induced 
neurotoxicity, Aβ self-aggregation, and acetylcholinesterase enzyme activity show anti-AD effects [22]. 
Another novel potential therapeutic target for AD is the attenuation of signaling pathways leading to Aβ 
overproduction, such as the WNT-β catenin signaling [23]. As reviewed in [23], the dickkopf WNT signaling 
pathway inhibitor 1 (DKK1), which promotes Aβ production and synapse degradation through 
downregulating WNT-β catenin signaling, colocalizes in neurofibrillary tangles and dystrophic neurites in 
post-mortem AD brains.

The shortest Aβ(1–42)-derived peptide that retains the toxicity of the full-length peptide is Aβ(25–35) 
[24], and this experimental observation is of relevance for the identification of peptides that can antagonize 
the actions of neurotoxic Aβ peptides. Cumulative experimental evidence shows that intracellular AβOs are 
linked to AD pathogenesis and are the cause of neuronal damage [25–27]. Indeed, the metabolic and 
neurotoxic effects of Aβ(1–42) have been linked with neuronal uptake of AβO and the subsequent 
intracellular rise of their concentration [26–28]. Furthermore, it has been proposed that amyloid plaques 
can be considered reservoirs of Aβ neurotoxic species [29]. As anti-Aβ antibodies are expected to trap only 
extracellular Aβ, this could, at least in part, account for the limited and partial protection reported for 
aducanumab treatment in AD [30]. It has been shown that binding of extracellular Aβ(1–42) to lipid rafts of 
the plasma membrane elicits its oligomerization (to dimers or trimers) and uptake by the neuronal cells in 
culture, reviewed in [31]. It is to be recalled here that (i) the apolipoprotein E4 (apoE4) allele is a major 
genetic risk factor for late-onset AD [32], (ii) apoE binds with high affinity extracellular Aβ(1–42) oligomers 
and the complex apoE:Aβ(1–42) has been reported to strongly co-localize with lipid rafts [33], and (iii) 
apoE4 exacerbates the intraneuronal accumulation of Aβ and plaque deposition in the brain parenchyma 
[34, 35]. Of note, α7 nicotinic cholinergic receptor and receptor for advanced glycation end products 
(RAGE) are other proteins that have been proposed to play a role in neuronal Aβ uptake through binding 
with high affinity extracellular AβO [31].
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Briefly, in the brain undergoing degeneration in AD, AβO is produced by neurons and, also, by reactive 
neurotoxic astrocytes [36, 37]. Thus, AβO dynamics between extracellular and intracellular spaces, i.e., the 
balance between neuronal uptake and secretion, plays a relevant role in AβO neurotoxicity. Only a few 
hours of incubation with 2 micromolar of Aβ(1–42) oligomers is needed to allow for a significant 
internalization of Aβ(1–42) in primary cultures of cerebellar granule neurons and in the HT-22 neuronal 
cell line [38, 39]. Internalized Aβ(1–40) and Aβ(1–42) peptides display a widespread intracellular 
distribution up to the perinuclear region in cerebellar granule neurons [38], in HT-22 cells [39], in 
differentiated PC12 cells and in rat primary hippocampal neurons [40], and in the neuroblastoma cell line 
SH-SY5Y [41].

Thus, intracellular proteins that bind AβO with high affinity play a major role in Aβ-induced 
neurotoxicity, and antagonists of their interactions with AβO are expected to provide neuroprotection 
against Aβ-induced brain neurodegeneration. In the next section of this review, it is highlighted that the 
interaction of AβO with calmodulin (CaM), one of the intracellular proteins displaying higher affinity to AβO 
(if not the highest), can play a pivotal role in Aβ-induced neurotoxicity. The following section points out that 
highly hydrophobic peptides binding to the COOH-terminus of Aβ(1–42) inhibit the formation of 
Aβ(1–42):CaM complexes, and, also, the aggregation and neurotoxicity of Aβ. These are called Aβ-
antagonist hydrophobic neuropeptides. The brain endogenous neuropeptides of this type that have been 
reported to suffer significant variations in AD are analyzed next. Future perspectives on the AD therapeutic 
potential of Aβ-antagonist hydrophobic neuropeptides are briefly dealt with in the final section of this 
review.

CaM and CaM binding proteins are major intracellular targets for 
intracellular AβO
Patients with symptoms ranging from mild cognitive impairment to early mild AD suffer a progressive loss 
of functional synapses in hippocampal and cortical brain regions [42–44]. Neurotransmitter secretion, 
synaptic plasticity, neurite growth and sprouting, and signaling pathways that mediate the metabolic 
neuronal responses to many relevant extracellular stimuli are strongly dependent on cytosolic calcium 
concentration [45, 46]. In addition, mitochondrial Ca2+ signaling is altered in familial AD due to mutations in 
the presenilins [47], and this has been proposed to cause mitochondria dysfunction [48]. Furthermore, it 
has been shown that mutations in presenilins and APP can produce a substantial increase in the 
endoplasmic reticulum-mitochondria connectivity through upregulation of the mitochondria-associated 
endoplasmic reticulum membrane functions, a common feature in both familial and sporadic AD [49, 50]. 
Indeed, a sustained increase in mitochondrial Ca2+ concentration impairs ATP production, increases 
reactive oxygen species production, and the opening of the mitochondrial permeability transition pore [51].

Many studies have shown that the activity of systems playing key roles in the control of neuronal 
intracellular calcium homeostasis and signaling are altered by AβO, reviewed in [52]. It is worth noting here 
that CaM binding proteins (CaMBPs) are major targets for intracellular AβO, as schematically shown in 
Figure 1, see also [53]. It is to be highlighted that at normal neuronal resting cytosolic calcium 
concentrations, i.e., ≤ 100 nM, CaM is mainly in the apo-CaM conformation [46]. Therefore, a dysregulation 
of intracellular calcium homeostasis that raises the cytosolic calcium concentration shifts the apo-CaM/Ca2+

-CaM equilibrium towards the Ca2+-CaM conformation, which is the CaM conformation that binds to most 
CaMBPs. This bears a special relevance because, due to the high reactivity and short lifetime of reactive 
oxygen species produced by iron-Aβ redox cycling [14, 20], its relative proximity to the iron-Aβ source will 
determine the extent of oxidative modifications of these calcium transport systems.

In addition, as briefly explained below, AβO induces a harmful feedback loop that fosters Aβ 
production. In vitro experiments have shown that BACE1 is stimulated around 2.5-fold by Ca2+-CaM [53, 
54]. Moreover, Giliberto et al. [55] showed that the treatment of neuronal and neuroblastoma cells with 1 
μM soluble Aβ(1–42) increased BACE1 transcription and that this was reverted by an anti-Aβ(1–42) 
antibody. It has been suggested that this could be due to Aβ-induced oxidative stress because this increase 
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Figure 1. Neuronal intracellular calcium signaling systems whose activity has been shown to be modulated by AβO. 
See [39, 52] for detailed references of each calcium signaling system modulation by AβO. The encircled + and ─ mean 
stimulation and inhibition, respectively. The ↑ and ↓ mean increase and decrease, respectively. AβO: amyloid β oligomer; CaMK: 
calmodulin-dependent kinase; LTCC: L-type calcium channels; LTP: long-term potentiation; NMDAR: N-methyl D-aspartate 
receptor; PMCA: plasma membrane Ca2+-ATPases; RYR: ryanodine receptor; STIM1: stromal interaction molecule-1

in BACE1 transcription was shown to be mediated by the activity of nuclear factor kappa light-chain 
enhancer of activated B cells (NFκB) [56].

Only a few intracellular proteins expressed in neurons are known to bind Aβ peptides with nanomolar 
dissociation constants. These are cellular prion protein [57], glycogen synthase kinase 3α [58], tau [5], 
stromal interaction molecule-1 (STIM1) [39], and the EF-hand calcium binding proteins CaM [59], and 
calbindin-D28k [60]. The nanomolar dissociation constant of the CaM:Aβ(1–42) complex [in Aβ(1–42) 
monomer concentration] reported by Corbacho et al. [59] from fluorescence studies, has been confirmed by 
Kim et al. [61] using titration microcalorimetry. As these dissociation constants were obtained using 
solutions of AβO (dimers/trimers), the CaM:Aβ(1–42) oligomers dissociation constant is < 1 nM AβO [59], 
implying that CaM is the intracellular protein with the highest affinity for AβO reported until now. This 
bears a special relevance, because the expression level of CaM in neurons (in the micromolar range) is 
several orders of magnitude higher than that of the other protein targets displaying a high affinity for 
Aβ(1–42), with the exception of calbindin-D28k in brain regions more prone to neurodegeneration in AD, 
namely, pyramidal neurons of hippocampus and in cortical neurons of the central nervous system. 
Moreover, extensive co-localization of internalized Aβ(1–42) and CaM in cerebellar granule neurons, and, 
also, co-immunoprecipitation of CaM with Aβ(1–42) in cell lysates strongly suggested that CaM is a major 
intracellular sink for Aβ(1–42) [38]. On these grounds, we have proposed that CaM and calbindin-D28k 
help to maintain the intracellular free neurotoxic Aβ concentrations in the low nanomolar range, i.e., serve 
as Aβ-trap or Aβ-buffer system [38, 52, 60].
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Highly hydrophobic peptides that bind to the COOH-terminus of Aβ(1–42) 
inhibit the formation of Aβ(1–42):CaM and of Aβ(1–42):calbindin-D28k 
complexes, and, also, the aggregation and neurotoxicity of Aβ
The rational design of peptides to antagonize the interaction of AβO with target proteins in the neurons 
requires the knowledge of the three-dimensional structure of the target proteins with resolution at the 
atomic level, and, also, the amino acid residues of AβO more relevant for the formation of the complex 
between AβO and the target protein. Due to this, soluble target proteins become the first choice for this 
task, since the three-dimensional structures of only a few membrane-inserted proteins have been resolved 
at an atomic level, and their conformations can be significantly affected by their interaction with vicinal 
lipids in the native cell membrane. In addition, the smaller the protein size the better to minimize the 
possibility of the presence of alternate binding sites with different affinity for AβO. CaM, a small size soluble 
target protein with high affinity for AβO, fulfills these basic criteria.

In addition, CaM seems a good model protein template for the search for peptides that can antagonize 
Aβ(1–42) neurotoxicity because the two most recognized neuropathological hallmarks of AD, i.e., Aβ and 
tau, bind CaM with high affinity. Moreover, the activities of CaM-dependent kinase II (CaMKII), cyclin-
dependent kinase 5, and glycogen synthase kinase 3α (protein kinases that contribute to tau 
hyperphosphorylation in AD) are modulated by CaM [52].

Salazar et al. [60] concluded that hydrophobic interactions drive the formation of the Aβ(1–42):CaM 
complex. Extensive docking analysis was performed in Salazar et al. [60] using the three-dimensional 
structure of CaM saturated by Ca2+ [Protein Data Bank file identification code (PDB ID): 1CLL] because 
Corbacho et al. [59] previously showed that the Ca2+-CaM conformation displays more than 10-fold higher 
affinity for AβO than apo-CaM. Since hydrophobic domains of CaM are more exposed in the Ca2+-CaM 
conformation than in the apo-CaM conformation, the latter result gives experimental support to their 
critical role in the complexation between CaM and Aβ(1–42). Hydrophobic amino acids of the COOH-
terminus domain of Aβ, i.e., 24–42 amino acid residues of Aβ were identified as those more strongly 
interacting with CaM using interface analysis of the more probable structures generated by docking for the 
Aβ(1–42):CaM complex [60]. Using multi-tilt nanoparticle-aided cryo-electron microscopy sampling, Kim et 
al. [61] have reported that the complexation with Aβ(1–42) elicits structural changes in Ca2+-CaM, which is 
shifted to a structure intermediate between the classical Ca2+-CaM and apo-CaM conformations. This 
provides a rational basis to explain, at least in part, the modulation of CaMBPs by Aβ(1–42), a point that 
needs further experimental studies to be demonstrated. Another point that merits a brief comment is the 
presence of several methionines of CaM among the more strongly interacting amino acid residues with 
Aβ(1–42) in the interface domain of the Aβ(1–42):CaM complex, for example, Met71, Met51, Met36, and 
Met72 [60]. This location makes these methionines highly prone to oxidation, as the redox cycling of iron 
bound to Aβ is a source of reactive oxygen species [14, 20]. Oxidation of CaM’s methionines has been shown 
to impair the activity of CaMBPs [62]. However, to the best of my knowledge, the extent of the oxidation of 
CaM’s methionines in the AβO-induced dysregulation of CaMBPs remains to be experimentally studied.

Fradinger et al. [63] have shown that COOH-terminus peptides of Aβ(1–42) assemble into Aβ(1–42) 
oligomers, disrupt oligomer formation, and protect neurons against Aβ(1–42)-induced neurotoxicity. These 
and other investigators have concluded that the COOH-terminus plays a major role in the formation of 
Aβ(1–42) oligomers [63, 64]. Also, Fradinger et al. [63] showed that Aβ(31–42) is the most potent inhibitor 
of Aβ(1–42)-induced neurotoxicity. Other results that highlight the relevance of the hydrophobic amino 
acid residues close to the COOH-terminus domain in the neurotoxicity of Aβ peptides are that 1 μM of 
Aβ(25–35) has the same early neurotrophic and late neurotoxic activities as 1 μM of Aβ(1–40), while up to 
20 μM Aβ(1–16) and Aβ(17–28) did not show trophic or toxic activity [65]. Moreover, Andreetto et al. [66] 
concluded from the results obtained using membrane-bound peptide arrays and fluorescence titration 
assays that the amino acid residues 27–32 and 35–40 of Aβ(1–40) are part of the interacting domain 
leading to Aβ(1–40):Aβ(1–40) self-association. As the neurofibrillary tangles are a well-established 
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histopathological hallmark of AD, it is to be recalled here that the Aβ COOH-terminus binds to multiple tau 
domains and subsequently forms soluble Aβ-tau complexes in vitro [5].

Noteworthy, the hydrophobic peptide VFAFAMAFML (amidated-C-terminus amino acid), designed to 
bind to the Aβ(1–42) amino acid residues of the COOH-terminus domain strongly interacting with CaM [60], 
is a potent inhibitor of the formation of Aβ(1–42):CaM and of Aβ(1–42):calbindin-D28k complexes. Of value 
for its potential therapeutic use is that the incubation of HT-22 cells in culture for 24 h with up to 1 
micromolar concentration of VFAFAMAFML does not have any significant effect on cell viability, while sub-
micromolar concentrations of this peptide efficiently antagonizes Aβ(1–42) complexation with CaM and 
calbindin-D28k [60]. Many alternate sequences of highly hydrophobic amino acids share similar 
hydrophobicity plots and, also, fit the geometrical constraints of the 3D structure of the 29–42 segment of 
Aβ(1–42) [67]. However, it must be noted that highly hydrophobic sequences of 8–10 amino acids are 
buried within the inner core of proteins. Therefore, these will be accessible to intracellular Aβ only after an 
extensive intracellular protein degradation up to peptides of 8–10 amino acid residues. Only the ubiquitin-
proteasome system, an intracellular system that functions to maintain intracellular proteostasis, fulfills 
these requirements. Indeed, most of the antigenic peptides of 8–10 amino acids presented by the major 
histocompatibility complex (MHC) class I molecules are produced by the proteasome [68, 69], and many of 
them display a hydrophobicity quite like the above mentioned Aβ(1–42) antagonist peptide.

Finally, it is worth noting here that peptides able to antagonize the binding of extracellular Aβ(1–42) 
and Aβ(1–40) to proteins involved in their uptake by neurons, like apoE and RAGE, have been shown to 
ameliorate Aβ peptide-mediated neuronal disorder [70–73].

Aβ-antagonist hydrophobic neuropeptides
The endogenous neuropeptides that can afford neuroprotection against the toxic actions of Aβ on neurons 
through binding to Aβ hydrophobic domains are called here Aβ-antagonist hydrophobic neuropeptides, as 
in [67]. As will be briefly analyzed in this section, many studies have reported the occurrence of significant 
alterations in the levels of these types of neuropeptides and/or of their receptors in the brain of AD patients 
in relation to healthy brains of age-matched individuals.

It must be noted that the proteasome activity in the AD brain is lower than in age-matched healthy 
brains [74, 75]. Therefore, the production of hydrophobic peptides of 8–10 amino acid residues declines in 
the AD brain. As these peptides are endogenous Aβ-antagonists, it follows that the AD brain is more prone 
than a healthy brain to Aβ-induced neurodegeneration. In addition, the proteasome is the major source of 
hydrophobic antigenic peptides needed to maintain the normal activity of MHC class I molecules [76], and 
since Aβ(1–42) is not a good substrate for cytosolic endopeptidases it may serve as a “chaperone” for these 
antigenic peptides [68]. Thus, this “chaperone-like” role of Aβ(1–42) may impair the functional activity of 
MHC class I molecules in the AD brain, a hypothesis that, due to its potential relevance, deserves to be 
experimentally assessed.

Substance P [77, 78], islet amyloid polypeptide (IAPP) [79, 80], somatostatin [81, 82], chromogranin A 
and B-derived peptides [83, 84] and cocaine- and amphetamine-regulated transcript encoded peptides [85] 
are other Aβ-antagonist hydrophobic neuropeptides that have been reported to co-localize with Aβ plaques 
in brain areas of AD patients.

Substance P was one of the firstly identified Aβ-antagonist hydrophobic neuropeptides. Yankner et al. 
[65] noticed that there is a high homology between the amino acid sequences of tachykinin peptides and 
that of Aβ(25–35), and reported that sub-micromolar concentrations of substance P, a tachykinin 
neuropeptide, inhibit the neurotoxic effects of Aβ(1–40) in hippocampal neurons. The findings that 
substance P level decreases in cortex, hippocampus, and dentate gyrus of AD patients [86, 87], lend further 
support to a protective role of substance P against Aβ neurotoxic effects in vivo.

The interaction of intrinsically disordered IAPP with Aβ(1–42) and Aβ(1–40) has been extensively 
studied, and the amino acid residues of Aβ involved in the formation of the complex Aβ:IAPP have been 
identified, see [66, 88, 89]. Andreetto et al. [66] concluded that Aβ(29–40) and Aβ(25–35) are the amino 



Explor Neurosci. 2025;4:100672 | https://doi.org/10.37349/en.2025.100672 Page 7

acid residues of Aβ peptides acting as the stronger ligands for IAPP. As IAPP is associated with type 2 
diabetes, this interaction bears a special biomedical relevance, because epidemiological and 
pathophysiological evidence point out that the AD and type 2 diabetes are linked diseases [79, 80].

Somatostatin, a small cyclic neuropeptide, is an Aβ-antagonist hydrophobic peptide selectively 
enriched in human frontal lobes [81, 82]. The levels of somatostatin in the cerebral cortex decline during 
aging and this decline is more pronounced in AD [90]. In addition, it has been proposed that this decline in 
somatostatin levels could produce a reduced clearance of Aβ, because somatostatin has been shown to 
induce the release of Aβ degrading enzymes [91]. Regarding chromogranin A and B-derived peptides, it 
should be noted that their levels in the cerebrospinal fluid of AD patients have been reported to be altered 
relative to those found in age-matched controls [92].

Finally, the mitochondrial-derived peptide humanin merits a brief comment, because mitochondrial 
dysfunction has been associated with AD-induced brain neurodegeneration, see, e.g., [93]. Humanin seems 
to be a good candidate for Aβ-antagonist hydrophobic neuropeptide, because it has been reported that 
humanin interacts with Aβ oligomers and counteracts Aβ in vivo toxicity [94].

It must be noted that the relative efficiency of the hydrophobic neuropeptide listed above as Aβ-
antagonists in early or late stages of AD depends on their dissociation constants from Aβ monomers or 
oligomers, which is not known at present for all of them. Also, the identification of the amino acid residues 
of Aβ in the interacting domain with many of these neuropeptides is still poorly defined.

Future perspectives on the AD therapeutic potential of Aβ-antagonist 
hydrophobic neuropeptides
During last few years, global neuropeptidome analyses have pointed out that there are significant 
variations in the levels of brain neuropeptides between AD patients and age-matched individuals. 
Interindividual variation in the level of hydrophobic endogenous neuropeptides that bind to the COOH-
terminus of Aβ monomers/oligomers is likely to affect the onset of sporadic AD, and, also, the rate of brain 
damage progression in this disease. Therefore, these endogenous brain neuropeptides may become helpful 
biomarkers in the evaluation of the risk of the onset of sporadic AD and/or for the prognosis of AD.

In addition, several Aβ-antagonist hydrophobic peptides that bind to the COOH-terminus of Aβ seem, a 
priori, candidates to become targets for the development of novel therapies against Aβ-induced 
neurodegenerative diseases. It is important to recall here that the amino acid residues 24–42 of the COOH-
terminus domain of Aβ(1–42) play the leading role in the interaction of Aβ(1–42) with the intracellular 
proteins displaying high affinity for AβO analyzed in this review. As briefly commented in the Introduction, 
extracellular AβO internalization plays a critical role in Aβ neurotoxicity. Three proteins that bind 
extracellular AβO with high affinity have been proposed to play an active role in the internalization of 
extracellular Aβ, namely, apoE4, α7 nicotinic acetylcholine receptor, and RAGE [31]. Interestingly, the 
interacting domain of Aβ(1–42) with these proteins comprises amino acid residues 12–28 for apoE4 [95, 
96] and α7 nicotinic acetylcholine receptor [97], and 17–23 for RAGE [98]. Therefore, it can be foreseen 
that peptides binding to amino acid residues 12–28 may act synergically with those binding to the 24–42 
COOH-terminus of Aβ(1–42) to antagonize Aβ neurotoxicity interfering with Aβ internalization and 
intracellular Aβ-induced toxic actions, respectively.

Although the efficient delivery of peptides into the brain is still a cumbersome technical issue under 
active research, recently developed nanocarrier particles show promising advances for the transport across 
the blood-brain barrier of short peptides directed to brain structures, reviewed in [99]. In addition, 
considering that AD is a multifactorial disease, a priori, Aβ-antagonist hydrophobic peptide-based therapy 
could be used in combination with other currently used therapies.
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Conclusions
This review is focused on hydrophobic peptides that have been shown to be antagonists of neurotoxic Aβ 
forms based on studies performed in vitro, ex-vivo with cellular cultures, and in vivo with animal models of 
AD. Two major conclusions can be reached from these studies: (1) measurements of the brain levels of 
hydrophobic endogenous neuropeptides that bind to the COOH-terminus domain of Aβ 
monomers/oligomers may serve as a complementary tool for the prognosis of the onset and course of AD; 
(2) Aβ-antagonist hydrophobic peptides that bind to the COOH-terminus domain of Aβ provide insights for 
the development of novel drugs of use in therapeutic treatments against Aβ-induced neurodegenerative 
diseases. Although these conclusions open new perspectives for the clinical management of AD, further 
studies are needed to overcome the current limitations for the translational application of these findings. 
The protection against the loss of the proteasome activity in AD brain, which plays a major role in the 
production of this type of hydrophobic peptides in the brain, is yet a challenging scientific issue and 
pharmacological treatments to stimulate the brain proteasome activity are yet to be established. In 
addition, despite that studies performed with brains of AD patients show that several endogenous 
hydrophobic neuropeptides co-localize with Aβ plaques, it must be noted that specific radiochemical 
tracers will be needed for the use of neuroimaging tools to monitor regional brain changes of these 
endogenous neuropeptides during AD progression at the early stages of the disease. Finally, for synthetic 
peptides, further experimental studies with synthetic peptides in animal models of AD are needed before 
their use in clinical trials, like development of nanoparticles for their efficient transport across the blood-
brain barrier, pharmacological, toxicological, and pharmacokinetic studies.
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