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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. It 
presents a significant challenge in terms of accurate diagnosis, disease progression monitoring, and the 
development of effective treatments. This article addresses the role of neuroimaging as an advancing tool 
for diagnosis, monitoring progression, and treatment of AD. A comprehensive review of existing literature 
on the use of neuroimaging in AD was conducted using various databases. The different imaging techniques, 
such as magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and 
positron emission tomography (PET), were examined in terms of their ability to detect amyloid beta (Aβ) 
plaques and neurofibrillary tangles (NFTs), the hallmark pathological features of AD. Neuroimaging enables 
the visualization of Alzheimer-related biomarkers, such as Aβ plaques, tau protein tangles, neuro-
inflammation, and synaptic dysfunction, providing valuable insights into disease pathophysiology and 
progression. These imaging techniques assist in the early detection of AD, distinguishing it from other 
conditions and evaluating the effectiveness of treatments. This has the potential to significantly transform 
the way AD is managed clinically. By providing insights into the molecular changes that occur in the brain 
during the course of the disease, neuroimaging can facilitate early diagnosis, monitor disease progression, 
and inform treatment decisions. Furthermore, neuroimaging holds great potential for accelerating drug 
development by allowing researchers to assess the efficacy of novel therapies in real time. Overall, the 
integration of neuroimaging into the clinical management of AD has the potential to revolutionize the way 
we approach diagnosis, treatment, and research in AD.
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Graphical abstract.  Illustrates the diagnostic modalities, pathological mechanisms, and treatment approaches for AD. 
PET/MRI and other imaging techniques aid in diagnosing AD by detecting brain atrophy. The figure contrasts a healthy brain 
with an Alzheimer’s-affected brain, highlighting tau protein tangles and Aβ plaques as key pathological hallmarks. The 
progression from APP to amyloid fibrils and plaques contributes to neuronal damage. Treatment strategies include targeted 
therapies, radionuclides, and other pharmacological interventions, with disease monitoring playing a crucial role in managing 
AD. AD: Alzheimer’s disease; APP: amyloid precursor protein; CT: computed tomography; [11C]: 11-carbonated tracers; [18F]: 
18-florinated tracers; [123I]: 123-iodinated tracers; MRI: magnetic resonance imaging; PET: positron emission tomography; 
SPECT: single photon emission computed tomography; [99mTc]: technetium-99m tracers; Aβ: amyloid beta. Created in 
BioRender. Mulumba, J. (2025) https://BioRender.com/s89r048

Introduction
Definition and pathology of Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the building up of 
aberrant proteins, inflammation, and progressive loss of neurons and synapses in the brain. This 
progressive neurodegenerative disorder is marked by the slow degeneration of brain neuron cells, causing 
memory loss, cognitive decline, and changes in behavior [1–11].

The pathology of AD is characterized by the deposition of two main proteins: amyloid beta (Aβ) 
peptides and tau protein. Aβ peptides are produced when a larger protein known as amyloid precursor 
protein (APP) is cleaved by β-secretase and γ-secretase enzymes, giving rise to the formation of insoluble 
fibrils that aggregate into senile plaques, a hallmark of the pathology of AD [12–14]. Tau protein, on the 
other hand, is microtubule-associated protein that get hyperphosphorylated and forms neurofibrillary 
tangles (NFTs), which are another characteristic feature of AD [15]. The progression of AD pathology also 
begins with the deposition of Aβ peptides in the brain, followed by the formation of NFTs and synapse loss 
[16]. As the disease advances, the building up of these abnormal proteins leads to the activation of immune 
cells, such as microglia and astrocytes, which release pro-inflammatory cytokines and reactive oxygen 
species (ROS), causing further tissue damage and neuronal death [17, 18]. The loss of neurons and synapses 
leads to cognitive decline, memory impairment, and eventually dementia [19–21]. Furthermore, AD 
pathology also involves disrupting various cellular processes, including synaptic plasticity, mitochondrial 
function, and energy metabolism [20]. Mitochondrial dysfunction has been linked to AD by building up Aβ 

https://BioRender.com/s89r048
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peptides, which can impair adenosine triphosphate (ATP) production and increase ROS production [22–
24]. Additionally, alterations in gene expression and epigenetic modifications have been observed in AD 
brains, giving rise to changes in the regulation of gene transcription and protein synthesis [25, 26].

Aβ

Aβ is a protein fragment that plays an essential role in AD development. It consists of 39–43 amino acid-
long peptide that is generated through the proteolytic processing or sequential pathological cleavage of the 
APP by enzymes known as β-secretase and γ-secretase [27–29]. In healthy individuals, APP is also cleaved 
into a soluble form of Aβ40, which is less neurotoxic and aggregates more slowly. However, in AD, Aβ 
peptides, particularly Aβ42, aggregate into oligomers, fibrils, and plaques in the brain, disrupting neuronal 
function. These aggregates induce neurotoxicity by triggering oxidative stress, inflammation, and synaptic 
dysfunction, ultimately contributing to neurodegeneration and cognitive decline [30]. While Aβ40 is less 
prone to aggregation, it still contributes to the overall amyloid burden and may modulate the aggregation of 
Aβ42 [30]. The ratio of Aβ42 to Aβ40 in cerebrospinal fluid (CSF) has emerged as a potential biomarker for 
AD diagnosis and progression, with a lower ratio indicating a higher likelihood of AD pathology [31]. The 
amyloid cascade hypothesis suggests that Aβ accumulation is an early and central event in AD pathology, 
leading to tau protein hyperphosphorylation, NFTs, and neuronal death [32]. Aβ can bind to various 
receptors, including the receptor for advanced glycation end-products (RAGE), which can activate 
downstream signaling pathways that promote neuroinflammation and oxidative stress [33]. The 
aggregation of Aβ into insoluble fibrils is thought to be a significant step in the pathogenesis of AD [34]. The 
amyloid fibrils can deposit in the brain, forming characteristic amyloid plaques that are associated with 
neuronal degeneration and death [34–37]. The exact mechanisms by which Aβ aggregation leads to 
neurodegeneration are still not fully understood. Still, it is thought to involve the activation of various 
cellular stress pathways, including the unfolded protein response and the autophagy-lysosome pathway 
[14, 38].

In AD, Aβ has been identified as one of the primary pathological hallmarks of the disease. Mutations in 
genes encoding APP or the enzymes involved in its processing, such as β-secretase and γ-secretase, have 
been linked to early-onset familial AD (EOFAD), highlighting the critical role of Aβ in disease pathogenesis 
[39, 40]. Furthermore, Aβ has been shown to be elevated in the CSF of individuals with AD compared to 
healthy controls, providing a potential biomarker for diagnosing and monitoring disease progression [31, 
41].

Tau protein

The tau protein is one of the key players in the development of AD [42]. Tau is a microtubule-associated 
protein that is primarily found in the brain and plays an important role in maintaining the stability and 
organization of microtubules, which are essential for neuronal function and survival [43]. In healthy 
individuals, tau is normally phosphorylated at specific serine and threonine residues, which allows it to 
bind to microtubules and regulate their dynamics [44]. However, in AD, tau protein becomes abnormally 
hyperphosphorylated at multiple sites, leading to its aggregation into insoluble fibrils that can build up in 
the brain [45]. The abnormal tau protein aggregates, known as NFTs, are a hallmark pathological feature of 
AD and are thought to contribute to the disruption of normal brain function and neuronal degeneration 
[46]. Over and above that, NFTs are highly correlated with cognitive decline and dementia severity in AD 
patients [47, 48]. The aggregation of tau protein is thought to occur through a process called seeding, where 
misfolded tau protein interact with each other and recruit more native tau protein to form insoluble fibers 
[49]. Research has shown that mutations in the MAPT gene, which encodes the tau protein, can increase the 
risk of developing frontotemporal dementia (FTD), including frontotemporal lobar degeneration (FTLD) 
and progressive supranuclear palsy (PSP) [50]. Moreover, studies have identified specific genetic variants 
of the MAPT gene that are associated with an increased risk of AD and FTD [51].
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Inflammation

Neuroinflammation plays a vital role in the progression of AD, a chronic and neurodegenerative disorder 
characterized by the accumulation of Aβ plaques, NFTs, and synaptic loss. As proposed by Heneka et al. 
[52], “neuroinflammation is an integral component of AD pathophysiology, and its resolution is critical for 
effective therapy”. In AD, neuroinflammation is triggered by the deposition of Aβ peptides, which are 
generated from the proteolytic cleavage of APP. Aβ building up in the brain gives rise to the activation of 
microglia, the resident immune cells of the central nervous system (CNS), which then release pro-
inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1β), and IL-
6 [53–55]. These pro-inflammatory mediators activate astrocytes, another type of glial cell, leading to the 
production of ROS, nitric oxide (NO), and excitotoxic neurotransmitters, which further exacerbate 
neuroinflammation [56]. Moreover, activated microglia also produce reactive astrocytes, which can lead to 
an imbalance in glutamate homeostasis, resulting in excitotoxicity and neuronal death. Over and above that, 
neuroinflammation can lead to blood-brain barrier disruption, allowing toxic substances to enter the CNS 
and exacerbating neurodegeneration [57, 58]. Furthermore, neuroinflammation can also contribute to the 
formation of NFTs by promoting tau protein hyperphosphorylation and aggregation. Tau protein is a 
microtubule-associated protein that becomes abnormally phosphorylated and forms insoluble aggregates 
in the brains of individuals with AD. Activated microglia can release factors that promote tau protein 
phosphorylation and aggregation, leading to the building up of NFTs [13]. The aggregation of Aβ fibrils in 
(Figure 1) triggers a devastating chain reaction of neurodegeneration and, ultimately, cell death.

Figure 1. The formation of Aβ fibrils leads to a cascade of events that ultimately result in neuronal death. This process is 
initiated by the generation of ROS, neurotoxicity, and the release of pro-inflammatory cytokines. The accumulation of Aβ 
oligomers also triggers the activation of microglia, which release pro-inflammatory mediators, neurotoxins, and free radicals. 
However, microglia also play a crucial role in clearing Aβ peptides from the brain. The accumulation of Aβ peptides in neurons 
leads to oxidative stress, which promotes inflammatory processes and enhances the production of Aβ peptides through 
increased APP expression. This, in turn, MAPK and the NF-кB, leading to the production of pro-inflammatory cytokines. The 
increased expression of these cytokines promotes APP processing and disrupts the BBB, leading to an exacerbation of tau 
protein phosphorylation and the formation of NFTs. Ultimately, this cascade of events contributes to neuronal degeneration and 
death. Aβ: amyloid beta; APP: amyloid precursor protein; BBB: blood brain barrier; ROS: reactive oxygen species; MAPK: 
mitogen-activated protein kinase; p38 MAPK: p38 mitogen-activated protein kinase; NFTs: neurofibrillary tangles; NF-κB: 
nuclear factor kappa-light-chain-enhancer of activated B cells. Created with BioRender.com

https://www.biorender.com/
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Diagnostic methods of AD
Traditional diagnostic methods for AD

Diagnostic methods for AD typically involve a combination of several approaches, including 1) clinical 
evaluation, including medical history and physical examination [59]; 2) cognitive and neuropsychological 
assessments [59–61]; 3) neuroimaging studies using computed tomography (CT) or magnetic resonance 
imaging (MRI): used to obtain images of the brain to rule out other causes of dementia, such as tumors, 
strokes, or significant brain atrophy indicative of AD [59, 60, 62]; 4) biomarker analysis, such as Aβ and tau 
protein [63, 64]; 5) genetic testing [65]; 6) laboratory tests: blood tests to rule out other potential causes of 
memory loss, such as vitamin deficiencies, thyroid dysfunction, or infections [66].

A definitive diagnosis of AD during life remains challenging due to the need for specific biomarkers and 
clinical evaluations. Current methods combine neuroimaging techniques, CSF analysis, and 
neuropsychological assessments. Positron emission tomography (PET) scans using radiotracers can 
identify Aβ plaques in the brain, a hallmark of AD. CSF analysis for Aβ, tau protein, and phosphorylated tau 
protein also helps distinguish AD from other neurodegenerative disorders. Structural MRI can detect brain 
atrophy patterns typical of AD, particularly in the hippocampus and entorhinal cortex. Advanced 
neuropsychological testing assesses cognitive function and can identify the presence and progression of 
dementia. These methods significantly improve diagnostic accuracy [67–69].

Structural MRI

Structural MRI plays a very important role in the diagnosis and monitoring of AD. Structural MRI enables 
the visualization of brain structure and morphology, allowing for the detection of brain atrophy and volume 
changes, which are hallmarks of AD [70]. Some studies have consistently shown that AD patients exhibit 
significant atrophy in various brain regions, including the hippocampus, entorhinal cortex, and temporal 
lobe [71, 72]. As proposed by Nobis et al. [73], a meta-analysis of 16 studies found that the hippocampal 
volume was significantly reduced in AD patients compared to healthy controls. In addition to identifying 
atrophy, structural MRI can also help to differentiate between AD and other dementias. For instance, a 
study using voxel-based morphometry found that AD patients showed greater atrophy in the entorhinal 
cortex and posterior cingulate cortex compared to patients with FTD [74]. Furthermore, structural MRI can 
be used to monitor disease progression and track treatment response. A longitudinal study using MRI found 
that patients with AD exhibited significant cortical thinning over a 2-year period, which was correlated with 
cognitive decline [75]. Moreover, structural MRI can also aid in identifying biomarkers for AD. For example, 
a study using MRI-based cortical thickness measurements identified a set of biomarkers that could 
distinguish between AD patients and healthy controls with high accuracy [76]. On top of that, structural 
MRI can be used to identify individuals at risk of developing AD. A study using MRI-based hippocampal 
volume measurement found that individuals with mild cognitive impairment (MCI) had smaller 
hippocampal volumes than healthy controls, and these individuals were more likely to convert to AD over 
time [77].

Functional MRI

Functional MRI (fMRI) helps researchers understand brain connectivity and functional networks in AD 
patients [78, 79]. fMRI technology, which originated in the early 1990s, brought about a revolutionary 
change in the research of brain function by providing substantial improvements compared to alternative 
methods. One of its key advantages is its ability to visualize activity in all areas of the brain, including those 
that are not easily accessible near the surface. Unlike PET, fMRI does not require radiation or the use of a 
radioactive tracer. Instead, it uses a non-invasive process that measures changes in oxygen levels in the 
brain, known as blood-oxygen-level-dependent (BOLD) signals, which occur within a timeframe of just 
1–5 s. These signals are recorded over time by fMRI scanners, allowing researchers to use high-powered 
computing and statistical analyses to infer changes in neuronal activity with high spatial resolution in 
specific brain regions [80–84].

https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/alzheimers/art-20048075#:~:text=Laboratory%20tests,symptoms%20are%20rapidly%20getting%20worse.
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fMRI has emerged as a promising diagnostic tool for AD in recent years. fMRI measures changes in 
brain activity and structure, allowing researchers to identify patterns of alteration that may be specific to 
AD. One of the primary methods used in fMRI diagnosis of AD is functional connectivity analysis, which 
examines the synchronization of activity between different brain regions. As stated by Randy and Buckner 
et al. [85, 86], AD patients exhibit reduced functional connectivity between the default mode network 
(DMN), which is responsible for introspection and self-referential thinking, and other brain regions. This 
reduction in functional connectivity has been associated with the characteristic memory impairments and 
cognitive decline seen in AD patients. Another approach used in fMRI diagnosis is the analysis of task-based 
activation patterns. In this method, patients are asked to perform a specific cognitive task, such as memory 
recall or language processing, while their brain activity is measured using fMRI. As proposed by Palmer et 
al. [87], AD patients exhibit reduced activation in regions involved in these tasks, such as the prefrontal 
cortex and parietal lobe. In addition, AD patients often exhibit increased activation in regions involved in 
attentional control, such as the anterior cingulate cortex, which may reflect compensatory mechanisms to 
overcome cognitive deficits.

Proton magnetic resonance spectroscopy

Proton magnetic resonance spectroscopy (MRS) has emerged as a promising diagnostic tool for AD, offering 
insights into the biochemical changes that occur in the brains of affected individuals. One of the most 
significant advantages of MRS is its ability to non-invasively measure the levels of various metabolites, such 
as choline-containing compounds, creatine, and neurotransmitters, in specific brain regions [88, 89]. In AD, 
MRS has shown increased levels of choline-containing compounds, particularly phosphocholine, and 
glycerophosphocholine, in the temporal and frontal lobes [90]. This increase is thought to be due to the 
breakdown of cell membranes and the activation of cholinergic pathways in response to Aβ accumulation 
[91, 92]. Conversely, MRS has also demonstrated decreased levels of N-acetyl aspartate (NAA), a marker of 
neuronal integrity, in AD patients [93]. This reduction is consistent with the well-documented neuronal loss 
and degeneration characteristic of the disease.

Another area where MRS has shown promise is in the detection of cerebral glucose hypometabolism, a 
hallmark feature of AD. Studies have used MRS to measure cerebral lactate and glucose levels, finding that 
both are decreased in AD patients compared to healthy controls [94–96]. This reduction is thought to 
reflect impaired glucose metabolism and energy deficiency in affected brain regions. Furthermore, MRS has 
also been used to assess the brain’s response to therapeutic interventions. For example, Panza et al. [97], 
demonstrated that increased glutamate and glutamine levels in the hippocampus following treatment with 
an γ-secretase inhibitor, suggesting improved neurotransmission and synaptic plasticity.

In addition to its diagnostic potential, MRS can monitor disease progression and track treatment 
efficacy. Longitudinal studies have shown that MRS can detect changes in metabolite levels over time, 
allowing for early detection of disease progression and monitoring of treatment responses [88]. Overall, 
proton MRS offers a non-invasive and highly specific method for diagnosing and monitoring AD, providing 
valuable insights into the underlying biochemical mechanisms driving this complex disorder.

Molecular diagnostic methods for AD

Molecular diagnostic methods have revolutionized the field of AD diagnosis, enabling the detection of 
specific biomarkers in body fluids or tissues to accurately diagnose and monitor the progression of the 
disease. One such method is CSF analysis, which has been shown to be a reliable and non-invasive approach 
for detecting AD biomarkers [98]. The Aβ42 peptide, a hallmark of AD, is a common biomarker measured in 
CSF using enzyme-linked immunosorbent assay (ELISA) or mass spectrometry-based methods [99]. 
Elevated levels of Aβ42 in CSF have been consistently associated with AD pathology and cognitive decline, 
making it a valuable diagnostic tool in AD [100]. Another molecular diagnostic method is the measurement 
of tau protein, another key component of NFTs, a hallmark of AD pathology. Tau protein can be measured in 
CSF using ELISA or western blotting, and elevated levels have been linked to AD severity and progression 
[101]. Furthermore, the phosphorylated form of tau protein at specific residues (e.g., tau-181P) has been 
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shown to be a more specific biomarker for AD than total tau protein levels [102]. This specificity is vital for 
an accurate diagnosis, as other neurodegenerative disorders, such as FTD, can also exhibit elevated tau 
protein levels.

Imaging-based molecular diagnostic methods have also gained popularity in recent years. 
Neuroimaging modalities shown in Table 1 are useful in diagnosis and disease progression monitoring. PET 
imaging with amyloid-binding tracers, such as [18F]florbetapir or [18F]flutemetamol, can visualize amyloid 
plaques in the brain with high accuracy, providing a non-invasive means of diagnosing AD [103–105]. These 
tracers target specific epitopes on the Aβ peptide, allowing for the detection of early-stage amyloid 
deposition before symptoms emerge. In addition to these established methods, novel approaches are being 
explored to improve the accuracy and sensitivity of molecular diagnostics for AD. For example, liquid 
biopsy analysis has been proposed as a promising technique for detecting circulating biomarkers in blood 
samples [106]. This approach involves analyzing circulating cell-free DNA or RNA fragments for AD-related 
biomarkers, which could potentially replace traditional tissue-based diagnostics.

Molecular diagnostic methods have become essential tools for diagnosing and monitoring AD. The 
combination of CSF analysis for Aβ42 and tau protein, PET imaging with amyloid-binding tracers, and 
emerging technologies like liquid biopsy analysis offers a multifaceted approach to diagnosing AD with high 
accuracy and specificity. As our understanding of disease pathophysiology continues to evolve, these 
methods will likely play a very important role in early diagnosis and treatment strategies [107–110].

PET

PET allows visualization of AD from diverse perspectives by using radiolabeled agents involved in various 
pathophysiological processes [78, 111–113]. It helps to explore the patho-mechanisms of AD 
comprehensively and identify appropriate biomarkers for each phase of the disease [111]. PET scans can 
reveal information about brain metabolism, blood flow, and receptor-binding sites associated with AD. PET 
is a technique that can be used to identify the presence of Aβ in the brain. Specifically, it can detect the 
increasing buildup of fibrillar Aβ during the early stages of AD. However, once AD has progressed to the 
clinical stage, the levels of fibrillar Aβ tend to remain constant at high levels. There is a requirement for PET 
ligands to visually perceive smaller forms of Aβ, specifically oligomeric forms, within the brain. This is 
necessary to comprehend their interaction with synaptic activity and neurodegeneration [107, 114–118]. 
The PET imaging scan uses specific radioactive tracers that bind to these proteins: [18F]-labeled 
radiopharmaceuticals (i.e., [18F]florbetapir, [18F]florbetaben, and [18F]flutemetamol), 11-carborn-pittsburgh 
compound B ([11C]PiB) for Aβ, [18F]flortaucipir for tau protein, and many others [115, 116, 119–121]. PET 
is considered the benchmark in clinical neuroimaging due to its exceptional sensitivity, which is necessary 
for effectively penetrating deep tissues and visualizing the majority of interactions between physiological 
targets and ligands [122]. It has become the fastest-growing clinical neuroimaging tool and is currently one 
of the tools used in the diagnosis of AD.

In AD, PET radiopharmaceuticals have revolutionized the diagnosis and monitoring of the condition. 
One such example is [18F]florbetapir (Amyvid), which is an Aβ-targeting radiotracer used to visualize beta-
amyloid plaques in the brain. This allows for the detection of early signs of AD, even before symptoms 
appear, and can aid in diagnosing MCI and distinguishing it from other dementias. Another example is 
[18F]florbetaben (Neuraceq), which is used to measure brain amyloid burden and help diagnose AD, as well 
as track its progression over time. Some studies have shown that PET imaging with these 
radiopharmaceuticals can predict conversion from MCI to AD with high accuracy, making them valuable 
tools for researchers and clinicians developing new treatments for AD [123]. The information in (Table 1) 
helps clinicians to select the best tracer depending on their characteristics.



Explor Neurosci. 2025;4:100675 | https://doi.org/10.37349/en.2025.100675 Page 8

Table 1. PET radiopharmaceuticals and their clinical uses

Tracer Half-life Target MOA Clinical uses References

[18F]FDG 109.8 
min

Glucose 
metabolism

Measures of brain glucose 
metabolism and 
hypometabolism in AD

Assessment of brain glucose 
metabolism, monitoring disease 
progression, and evaluating 
response to treatment

[124]

[11C]PiB 20.4 
min

Aβ plaques It binds to Aβ plaques and 
measures the amyloid 
burden in the brain

Assessment of amyloid burden, 
diagnosis of AD, and monitoring of 
disease progression

[125, 126]

[18F]AV-1451 
(T807)

109.8 
min

Tau protein Targets tau protein 
aggregation and 
phosphorylation in AD

Assessment of tau pathology, 
diagnosis of AD, and monitoring of 
disease progression

[127–129]

[18F]THK-5351 
(T807)

109.8 
min

Aβ plaques 
and NFTs

It binds to both Aβ plaques 
and NFTs in the brain

Assessment of tau pathology, 
diagnosis of AD, and monitoring of 
disease progression

[130]

[18F]BF-227 
(florbetaben)

109.8 
min

Aβ plaques It binds to Aβ plaques and 
measures the amyloid 
burden in the brain

Assessment of amyloid burden, 
diagnosis of AD, and monitoring 
disease progression

[131]

[18F]Flutemetamol 109.8 
min

Aβ plaques It binds to Aβ plaques and 
measures the amyloid 
burden in the brain

Assessment of amyloid burden, 
diagnosis of AD, and monitoring 
disease progression

[132, 133]

[11C]PBB3 20.4 
min

Aβ plaques 
and NFTs

It binds to both Aβ plaques 
and NFTs in the brain

Assessment of amyloid burden, 
diagnosis of AD, and monitoring 
disease progression

[134]

Aβ: amyloid beta; AD: Alzheimer’s disease; [18F]BF-227: 2-(4-(4-(2-[18F]fluoroethyl)thiazol-2-yl)phenoxy)-N-(4-
(trifluoromethyl)phenyl)acetamide; [18F]FDG: 18F-fluorodeoxyglucose; [18F]AV-1451: fluorine-18 T807 (flortaucipir); MOA: 
mechanism of action; NFTs: neurofibrillary tangles; [11C]PBB3: pyridinyl-butadienyl-benzothiazole-3; [11C]PiB: 11-carborn-
pit tsburgh compound B; THK-5351: N-(1-(2-(dimethylamino)ethyl)-2-(4-(methylthio)phenyl)-2-oxoethyl)-3-
fluorobenzeneacetamide; PET: positron emission tomography

Single photon emission computed tomography

Single photon emission computed tomography (SPECT) is another functional imaging technique that 
provides insight into regional changes in the brain blood flow, metabolism, and receptor binding sites 
related to AD. SPECT imaging has been widely used in the diagnosis of AD due to its ability to visualize 
changes in brain function and perfusion. Studies have shown that SPECT imaging can help differentiate AD 
from other dementias, such as FTD, by identifying characteristic patterns of regional cerebral blood flow 
(rCBF) and metabolism [96]. Specifically, SPECT imaging using agents such as technetium-99m-
hexamethylpropyleneamine oxime (99mTc-HMPAO) or iodine-123 labeled 2-iodo-3-(N,N-dimethylamino) 
propylamine (123I-IMP) can detect reduced rCBF in the posterior regions of the brain, particularly the 
posterior cingulate cortex, which is a hallmark feature of AD [135]. In addition to that, SPECT imaging can 
also identify other changes in brain function, such as increased activity in the prefrontal cortex, which is 
associated with executive dysfunction in AD patients [136]. Furthermore, as proposed by Silverman et al. 
[137], SPECT imaging can be used to monitor disease progression and response to treatment, making it a 
valuable tool for diagnosing and managing AD. Overall, SPECT imaging has been recognized as a useful 
diagnostic tool for AD by organizations such as the Alzheimer’s Association and the European Association of 
Nuclear Medicine [138]. The SPECT radiotracers and their details (Table 2) help clinicians decide the best 
tracer to use depending on their characteristics.

Table 2. SPECT radioactive pharmaceuticals and their clinical uses

Tracers Half-life Target MOA Clinical use References

123I-IMP 13.3 h rCBF Lipophilic tracer crosses BBB, 
binds to brain tissue in proportion 
to perfusion

Diagnosis of dementia, including 
AD

[139, 140]

99mTc-
HMPAO

6.7 h rCBF Lipophilic tracer crosses the 
BBB, gets trapped in neurons, 
and reflects cerebral perfusion

Diagnosis and evaluation of AD, 
monitoring disease progression, 
and treatment response

[141]

Evaluating cerebral perfusion, 
distinguishing AD from other 

99mTc-ECD 6 h rCBF Bind to brain tissue, reflecting 
rCBF

[142–144]
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Table 2. SPECT radioactive pharmaceuticals and their clinical uses (continued)

Tracers Half-life Target MOA Clinical use References

dementias
123I-AV-45 110 

min
Aβ plaques Binds to Aβ aggregates in the 

brain
Used to assess the presence of Aβ 
in AD

[68]

123I-PiB 13.3 h Aβ plaques, 
tau protein

Amyloid-binding, PET-SPECT 
hybrid

Diagnosis of AD, differentiating AD 
from other dementias

[125, 145]

Benzathine 
(99mTc-Tc-BZ)

6.3 h Aβ plaques, 
BBB 
disruption

BBB disruption, SPECT-imaging 
of brain function and perfusion

Diagnosis of AD, monitoring 
disease progression, and 
treatment response

[146]

123I-IMP: iodine-123 labeled 2-iodo-3-(N ,N-dimethylamino) propylamine; 99mTc-HMPAO: technetium-99m 
hexamethylpropyleneamine oxime; 99mTc-ECD: technetium-99m ethyl cysteinate dimer; 123I-AV-45: iodine-123 amyvid 
(florbetapir); 123I-PiB: iodine-123 pittsburgh compound B; rCBF: regional cerebral blood flow; Aβ: amyloid beta; BBB: blood 
brain barrier; SPECT: single photon emission computed tomography; PET: positron emission tomography; AD: Alzheimer’s 
disease; MOA: mechanism of action

Selection of radiopharmaceutical tracers
The selection of radiopharmaceutical tracers for neuroimaging in AD is a vital step in diagnosing and 
monitoring the progression of the disease. In AD, the goal is to identify the accumulation of Aβ plaques, 
NFTs, and cerebral amyloid angiopathy in the brain [147]. One of the most commonly used 
radiopharmaceutical tracers for AD imaging is [18F]florbetapir (Amyvid), which binds specifically to Aβ 
plaques in the brain. [18F]Florbetapir has been shown to be highly sensitive and specific for detecting AD 
pathology, with a sensitivity of 93% and a specificity of 92% compared to autopsy-based diagnoses [103]. 
Another widely used radiopharmaceutical tracer is [11C]PiB, which selectively binds to Aβ aggregates, a 
hallmark of AD. [11C]PiB has been shown to be highly effective in distinguishing between AD and other 
dementias, such as FTLD and Lewy body dementia (LBD) [148]. In addition to [18F]florbetapir and [11C]PiB, 
other radiopharmaceutical tracers have been developed for AD imaging. For example, [18F]florbetaben 
(Neuraceq) is a newer Aβ-binding radiopharmaceutical that has been shown to have high sensitivity and 
specificity for AD diagnosis [149]. Clinical trials on [18F]florbetaben (Neuraceq) have shown to be highly 
effective in detecting early-stage AD and differentiating it from other dementias [131, 150].

The selection of radiotracers for AD is influenced by several factors, including [151]: 1) target 
specificity [151]; 2) availability of radiotracers in the market, and their regulatory approval for clinical use 
[152]; 3) the choice of imaging modality, such as PET or SPECT [152, 153]; 4) the pharmacokinetics of a 
radiotracer; 5) patient factors, such as medical history, comorbidities, and contraindications [152]; 6) the 
level of research and clinical evidence supporting the use of a particular radiotracer for AD imaging [147, 
152].

Aβ

The Aβ imaging radiotracers approved by the Food and Drug Administration (FDA) for AD, along with their 
merits, include: [18F]florbetapir (Amyvid) is a PET imaging agent that targets the aggregation of Aβ in the 
brain. It was approved by the FDA in 2012 for the detection of Aβ plaques in patients with AD and other 
cerebral amyloidosis. [18F]Florbetapir binds to Aβ in the brain, allowing for visualization of these deposits 
on PET imaging. Merits include: 1) high sensitivity of about 93% and specificity of about 92% for detecting 
Aβ plaques in AD; 2) can be used to diagnose AD at an early stage; 3) may help identify individuals at risk of 
developing AD; 4) can be used to monitor disease progression and treatment response [132].

[18F]Florbetaben (Neuraceq) is another PET imaging agent that targets Aβ plaques in the brain. It was 
approved by the FDA in 2014 as a diagnostic aid to estimate the presence or absence of Aβ plaque 
deposition in the brain. Its merits are similar to those of [18F]florbetapir, and these include: 1) 
[18F]florbetaben has a high sensitivity of about 85% and a specificity of about 91% for detecting Aβ plaques; 
2) it can be used to diagnose AD at an early stage; 3) it may help identify individuals at risk of developing 
AD; 4) it has a longer half-life than [18F]florbetapir, which may make it more convenient for patients [131, 
132].
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[18F]Flutemetamid (Vizamyl) is a PET imaging agent that targets Aβ plaques in the brain. It was 
approved by the FDA in 2018 as a diagnostic aid to estimate the presence or absence of Aβ plaque 
deposition in the brain. Merits are: 1) has a high sensitivity of about 92.6% and specificity of about 96% for 
detecting Aβ plaques in AD; 2) can be used to diagnose AD at an early stage; 3) may help identify 
individuals at risk of developing AD; 4) it has a shorter half-life than other Aβ imaging agents, which may 
make it more suitable for patients with kidney or liver impairment [132]. All three FDA-approved Aβ 
imaging radiotracers have high sensitivity and specificity for detecting Aβ plaques in the brain, making 
them useful diagnostic tools for AD. While they share similar merits, each has unique characteristics that 
may make it more suitable for certain patients or clinical scenarios.

Imaging Aβ tracers, in Table 1, are the most commonly used radiotracers that have been approved by 
the FDA for PET imaging of Aβ plaques in clinical settings. Other radiotracers, such as [11C]PiB and 
[18F]NAV4694 (AZD4694), are used for research purposes other than clinical use. Figure 2 shows some of 
the Aβ tracers for AD [4, 120, 147, 154, 155].

Figure 2. PET radiotracer structures for Aβ imaging. PET: positron emission tomography; Aβ: amyloid beta

Some limitations exist when comparing [11C]PiB to [18F] tracers like: 1) shorter half-life and on-site 
production requirement: [11C]PiB has a half-life of 20.3 min, requiring on-site production at a cyclotron, 
whereas [18F] tracers such as [18F]florbetapir have a longer half-life (109.7 min) and can be produced at a 
centralized facility [156, 157]. 2) The short half-life of [11C]PiB necessitates regular transportation from a 
nearby cyclotron or on-site production, which can be logistically challenging and expensive [158]. On the 
other hand, the transportation of [18F] tracers, such as [18F]florbetapir, is easier and more accessible [159]. 
3) Due to the complexity of production and distribution, the cost of [11C]PiB is generally higher than that of 
[18F] tracers [160]. 4) Some studies have shown that [11C]PiB may have lower image quality in certain brain 
regions, such as the cerebellum, compared to [18F] tracers due to its shorter half-life and higher radiation 
dosing requirements, leading to lower image quality in certain regions [125]. 5) The higher radiation dose 
required for [11C]PiB imaging may result in higher patient radiation exposure compared to [18F] tracers, 
which could be a concern for long-term imaging studies or repeated scans [161]. 6) Commercial software 
for analyzing [11C]PiB images is less widespread than for [18F] tracers, which may limit the availability of 
accurate image analysis tools, leading to a limited availability of commercial software for image analysis 
[162]. 7) While [11C]PiB, [18F]florbetapir, [18F]flutemetamol, and [18F]florbetaben tracers are approved by 
regulatory agencies for research use, only few [18F] tracers are FDA-approved for clinical use, which may 
impact their adoption in clinical settings for the clinical diagnosis and differential diagnosis of AD. [18F]
florbetapir, [18F]florbetaben, and [18F]flutemetamol have favorable binding and imaging properties [157]. 
Another promising tracer, [18F]NAV4694, is currently in clinical trials [147]. The longer half-life of these 18F
-labeled tracers, approximately 109.7 min, allows for wider distribution and use in clinical settings. They 
are expected to produce less noisy images and provide more precise quantification of Aβ accumulation in 
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the early stages of the disease due to increased radioactivity counts during the scan. Additionally, the 
imaging protocols for each tracer differ in terms of scanning window, visual interpretation, and quantitative 
analysis of the images [4, 120, 147, 155, 163].

Tau protein

The tau protein tracers are used to visualize the accumulation of tau protein, a hallmark of AD, in the brain. 
Some of the tau protein tracers used include: 1) [18F]Flortaucipir, which was approved in 2018, is a 
radiolabeled ligand that binds to tau protein aggregates in the brain, allowing for visualization of tau 
pathology. It is used to help diagnose AD and monitor treatment responses in patients with MCI, or AD. The 
FDA approved [18F]flortaucipir based on the results of the fluorine-18 T807 (flortaucipir) ([18F]AV-1451) 
phase III clinical trial, which showed that the tracer was effective in detecting tau pathology in patients with 
AD and distinguished it from normal aging and other neurodegenerative disorders [164]. 2) [11C]PiB is also 
a tau protein-specific PET agent that was developed by Avid Radiopharmaceuticals and received FDA 
orphan drug designation for AD. While not yet approved for commercial use, it has been used in clinical 
trials to evaluate its efficacy in detecting tau protein pathology.

[11C]PiB is primarily designed to bind to Aβ plaques, a hallmark of AD pathology, rather than tau 
protein. However, some studies have reported that [11C]PiB can also bind to tau protein, although to a 
lesser degree than Aβ [159, 165]. [11C]PiB binds to soluble and insoluble tau protein with a higher affinity 
for tau tangles and NFTs [166]. The mechanism of action behind PiB’s binding to the tau protein is not fully 
understood, but it is believed to involve the same mechanism as its binding to Aβ, which involves the 
molecule’s ability to form hydrogen bonds and pi-cation interactions with the target protein [167, 168]. 
Despite [11C]PiB’s ability to bind to tau protein, other tau-binding tracers, such as [18F]-T807 and [35S]-
BTA-1, have been developed as potential diagnostic tools for AD, offering more specific binding to tau 
protein pathology [69, 169, 170].

To identify and visualize brain damage caused by the accumulation of tau protein in AD and other types 
of dementia, scientists have designed tau protein tracers for trails including MK-6240 and pyridinyl-
butadienyl-benzothiazole-3 ([11C]PBB3), as shown in Figure 3. These radiotracers are specifically designed 
to bind to tau protein tangles in the brain, allowing for accurate imaging and quantification of tau protein 
pathology [4, 171]. The [11C]PP3 radiotracer, for example, has a high affinity for tau protein and is suitable 
for imaging tau protein-related disorders [147]. The newer and second-generation selective tau protein 
tracers are currently being developed, including [18F]MK6240, [18F]RO-948, [18F]GTP1, [18F]JNJ-311, 
[18F]P12620, and [18F]JNJ-067, as shown in (Figure 3). These newer tracers are being designed to improve 
their in vivo characteristics, enabling more effective imaging and the diagnosis of tau protein-related 
diseases [147].

Tau protein tracers have several merits, including 1) improved diagnostic accuracy by helping to 
diagnose AD with higher accuracy than conventional imaging methods, such as MRI and CT scans; 2) earlier 
detection: detecting AD-related changes in the brain years before symptoms appear, allowing for earlier 
intervention and potentially improving treatment outcomes; 3) monitoring disease progression: tracking 
disease progression and monitoring the response to treatment, enabling more effective management of AD 
patients [119, 147, 154, 163, 171–173].

Inflammation

The inflammation tracers approved by the FDA for use in AD are radiolabeled ligands that bind to specific 
biomarkers of inflammation, allowing for imaging of the brain’s inflammatory activity. Among others, the 
most commonly used inflammation tracers include [11C]PK11195 and [18F]DPA-713. [11C]PK11195 tracer 
binds to the translocator protein (TSPO) on activated microglia, a type of immune cell in the brain that 
plays a vital role in inflammation. [11C]PK11195 has been approved by the FDA for use in diagnosing AD 
and has been shown to be sensitive to changes in brain inflammation over time [109]. [18F]DPA-713 tracer 
also binds to TSPO and has been shown to be more sensitive than [11C]PK11195 in detecting inflammation 
in the brains of AD patients [174]. [18F]DPA-713 has been approved by the FDA for use in clinical trials and 
is currently being evaluated for its potential as a diagnostic tool for AD.
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Figure 3. PET radiotracer structures for tau imaging. PET: positron emission tomography

Some of the merits of these tracers include: 1) high sensitivity and specificity for detecting 
inflammation in the brain [109, 174]; 2) the ability to quantify changes in brain inflammation over time, 
allowing for monitoring of disease progression [109]; 3) the potential to aid in the diagnosis and 
monitoring of treatment responses in AD [174]; 4) they are non-invasive and relatively safe, as they are 
administered as radiotracers and do not require tissue sampling [109].

These radiotracers allow for the precise targeting and visualization of specific molecular pathways 
involved in AD, providing valuable diagnostic information for both clinicians and patients [163]. [11

C]PK11195 was the first successfully developed TSPO radiotracer for PET imaging in humans [147]. Several 
second-generation TSPO radioligands were developed and tested, including [11C]PBR28, [18F]DPA714, 
[18F]FEPPA, [11C]DAA1106, [18F]FEMPA, and [18F]FEDAA1106, as shown in Figure 4 [147]. While these 
radioligands are generally more sensitive than [11C]PK11195, research has revealed that their brain uptake 
is influenced by the TSPO gene rs6971 polymorphism. This means that individual subjects must be 
phenotyped to ensure accurate imaging results based on their TSPO affinity status. The third generation 
and most recent is [11C]ER176, which is being developed and evaluated is also shown in (Figure 4) [4, 109, 
147, 163, 173, 175].

Application of neuroimaging
Diagnostic application of neuroimaging in AD

For over a decade, researchers have been trying hard to find out the diagnostic tools for AD. Currently, AD 
diagnosis is primarily based on neuropsychological testing. Clinically diagnosing AD requires neuroimaging 
[78] and monitoring accepted biomarkers, such as the accumulation of Aβ peptides as well as total and 
hyperphosphorylated tau protein in CSF [118, 132, 176–178].

Neuroimaging plays a vital role in the diagnosis of AD, a progressive neurological disorder 
characterized by cognitive decline, memory impairment, and brain atrophy. The primary neuroimaging 
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Figure 4. PET radiotracer structures for TSPO imaging. PET: positron emission tomography; TSPO: translocator protein

modalities used in the diagnosis of AD include MRI and PET scans [179]. MRI provides structural 
information about the brain, allowing for the detection of atrophy, particularly in the hippocampus and 
entorhinal cortex, which are regions commonly affected in AD. On the other hand, PET scans utilize 
radiotracers to visualize regional brain glucose metabolism, Aβ deposition, and tau protein, which are 
hallmark features of AD [125]. Among others, [11C]PiB, [18F]florbetapir, [18F]florbetaben, [18F]flortaucipir, 
and 18F-fluorodeoxyglucose ([18F]FDG), are the most commonly used PET tracers, which bind to Aβ 
plaques, fibrillary tau protein aggregates, and also utilization of glucose metabolism in the brain by 
[18F]FDG, to visualize and identify the biomarkers [126]. These imaging biomarkers can help differentiate 
AD from other dementias, such as FTD, and provide an objective measure of disease progression [180]. 
Furthermore, neuroimaging can aid in monitoring treatment responses and identifying potential 
therapeutic targets. For instance, amyloid-targeted therapies such as monoclonal antibodies may reduce Aβ 
load as measured by PET scans, indicating treatment efficacy [181]. Research findings indicate that damage 
to the neurons in the hippocampus is observed as a reduction in the volume of the hippocampus. 
Volumetric MRI images of the hippocampus atrophy are a commonly used approach to evaluate AD 
pathology. MRI has proven to be a highly effective method for evaluating the size of the hippocampus. It can 
accurately estimate the volume of the hippocampus, which is strongly associated with the number of 
neurons present. This indicates that volumetric MRI measures are anatomically reliable. Furthermore, a 
separate study discovered that decreases in the size of the hippocampus are initial signs of AD pathology, 
which can be measured using MRI [182]. MRI can be used to study the pathogenesis of the disease as well 
as the progress of the disease [182, 183].

Side effects of imaging compounds in AD patients

While PET and SPECT imaging agents are generally well-tolerated, some compounds, including 1) amyloid 
PET imaging agents such as [11C]PiB, [18F]florbetapir, [18F]florbetaben, and [18F]flutemetamol, may cause 
allergic reactions: hypersensitivity reactions are rare but possible [184]. Headache, nausea, and dizziness: 
As stated by Ossenkoppele et al. [185], are common mild side effects post-injection. Radiation exposure: As 
proposed by Klunk et al. [186], though are low, repeated PET scans increase cumulative radiation exposure. 
In addition, contrast agents used in MRI-based neuroimaging may induce nephrogenic systemic fibrosis 
(NSF) in patients with kidney dysfunction [187]. 2) Tau PET imaging agents, such as [18F]AV-1451 
(flortaucipir) and [18F]PI-2620, may have some side effects like injection-site reactions. As stated by 
Marquié et al. [188], mild pain, redness, or swelling at the administration site are observed. Nausea and 
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fatigue: As proposed by Schöll et al. [170], transient symptoms observed in clinical trials. Off-target binding: 
As stated by Chien et al. [189], certain tau protein tracers bind to non-target regions, leading to diagnostic 
challenges and unnecessary follow-ups. 3) SPECT imaging agents, such as [123I]ioflupane (DaTscan), 
[99mTc]HMPAO, and [99mTc]ECD, as stated by Booij and Knol [190], may have some adverse effects like 
thyroid exposure: iodine-based tracers may require thyroid blocking to reduce uptake; metallic taste: 
reported in some patients after injection [191]; mild changes in blood pressure: rare but documented in 
some individuals [192]. Mild side effects such as headaches, dizziness, nausea, and mild allergic reactions 
may be observed. As proposed by Barthel and Sabri [193], radiopharmaceuticals expose patients to ionizing 
radiation, which, though low, poses cumulative risks with repeated imaging. Additionally, contrast agents 
used in MRI-based neuroimaging may induce NSF in patients with kidney dysfunction [187]. 4) Gadolinium-
based contrast agents (GBCAs; MRI imaging): While not specific to AD, GBCAs used in MRI to detect brain 
atrophy or vascular abnormalities have potential risks: NSF, which is a concern in patients with kidney 
impairment [194]. Gadolinium retention: As stated by McDonald et al. [195], trace amounts can accumulate 
in the brain and other organs, though clinical significance remains unclear. 5) Long-term safety 
considerations: As proposed by Mattsson et al. [196], cumulative exposure risks: repeated imaging can 
contribute to radiation dose accumulation, raising concerns about long-term safety. Psychological impact: 
false positives or uncertain imaging findings may cause anxiety and unnecessary interventions [197].

Prevention of AD over-diagnosis

Over-diagnosis of AD can occur due to misinterpretation of amyloid imaging, comorbid conditions, and age-
related cognitive decline. Strategies to prevent over-diagnosis include: 1) integrating multimodal 
biomarkers (such as tau PET, CSF analysis, and neuropsychological tests) instead of relying solely on 
amyloid imaging [198]; 2) biomarker validation: As stated by Hansson [199], the use of validated 
biomarkers, such as amyloid PET imaging, CSF tau protein and Aβ levels, and blood-based biomarkers, 
enhances diagnostic accuracy and reduces false-positive diagnoses; 3) following updated clinical guidelines 
(e.g., NIA-AA criteria) to distinguish AD from MCI and normal aging [200]; 4) educating clinicians about the 
limitations of amyloid PET, as amyloid deposition alone does not confirm symptomatic AD [201, 202]; 5) 
cognitive testing standardization: As proposed by Sperling et al. [203], comprehensive neuropsychological 
assessments should be standardized to minimize false positives due to age-related cognitive decline or 
reversible conditions such as depression or medication side effects; 6) avoiding over-reliance on imaging: 
As stated by Dubois et al. [201], while neuroimaging (e.g., MRI, PET) is valuable, it should be interpreted 
alongside clinical symptoms and other biomarkers to avoid misdiagnosis due to incidental amyloid 
deposition, which can occur in cognitively normal elderly individuals; 7) differential diagnosis 
consideration: As proposed by McKhann et al. [204], clinicians should rule out alternative causes of 
cognitive impairment, such as vascular dementia, LBD, metabolic disorders, or psychiatric conditions, to 
prevent misclassification as AD; 8) ethical and clinical considerations: As stated by Karlawish [205], 
physicians should communicate diagnostic uncertainty and avoid premature labeling of patients, which can 
have psychological and social consequences [205, 206].

Disease progression monitoring

Neuroimaging techniques, such as MRI, PET, and MRS, have been extensively used to assess the progression 
of AD by providing valuable information on brain structure, function, and biochemistry [207]. MRI is 
particularly useful for monitoring structural changes in the brain, including cortical thinning and 
hippocampal atrophy, which are characteristic features of AD [208]. Studies have shown that MRI can 
detect changes in brain structure up to 10 years before clinical symptoms appear, making it a valuable tool 
for early diagnosis and monitoring disease progression [209]. PET imaging with amyloid ligands, such as 
[11C]PiB, can quantify Aβ deposition in the brain, a hallmark of AD pathology [209]. This technique has been 
used to track disease progression by monitoring the accumulation of Aβ plaques in the brain over time 
[210]. Additionally, PET imaging with [18F]-FDG can assess glucose metabolism in the brain, which is 
decreased in AD patients. This technique has been used to monitor changes in brain glucose metabolism 
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during disease progression [95]. MRS is another neuroimaging modality that has been used to monitor 
disease progression in AD. MRS can measure changes in brain metabolites, such as NAA, which is a marker 
of neuronal integrity. As proposed by Graff-Radford and Kantarci [88], it was shown that NAA levels 
decrease in AD patients, and this decrease can be used as a biomarker of disease progression. The 
combination of these neuroimaging techniques has been shown to provide a comprehensive understanding 
of disease progression in AD. For example, a study used MRI to monitor cortical thinning, PET with [11C]PiB 
to track Aβ deposition, and MRS to measure changes in brain metabolites. The researcher found that these 
techniques were able to accurately predict disease progression over a period of 3 years [182]. 
Neuroimaging techniques such as MRI, PET, and MRS provide valuable information on brain structure, 
function, and biochemistry, allowing researchers and clinicians to track changes in the brain over time. 
These changes can be used to diagnose and monitor disease progression, making it possible to develop 
effective treatment strategies and improve patient outcomes [211].

Evaluation of drug efficacy

Effective evaluation of drug efficacy provides important information for drug development and treatment 
plan selection. Efficacy indicators should reflect drug effectiveness, with high repeatability and feasibility. 
The key steps involved in evaluating drug efficacy for AD using imaging techniques [212] include 1) define 
the target; 2) select a radiotracer [84, 212]; 3) baseline imaging; 4) assess drug intervention; 5) quantify 
imaging data; 6) correlate imaging findings with clinical outcomes; 7) conduct multi-center trials. Multi-
center trials can enhance the robustness and generalizability of the findings, supporting the potential use of 
neuroimaging as a technique for drug efficacy in AD [182, 213].

Clinical trials involving anti-amyloid monoclonal antibodies such as aducanumab, lecanemab, and 
donanemab showed that anti-amyloid monoclonal antibodies remove or prevent the formation of Aβ 
plaques to slow or halt disease progression [214]. Each of these anti-amyloid monoclonal antibodies has 
undergone clinical trials with neuroimaging assessments. As stated by Budd Haeberlein et al. [215], 
aducanumab was tested in patients with early AD in the EMERGE study, where MRI and FDG-PET were 
used to assess changes in brain volume and glucose metabolism. The study showed significant reductions in 
amyloid burden on amyloid PET scans, as well as improvements in cognition and function [215]. Similarly, 
lecanemab was evaluated in patients with MCI or mild AD in the CLARITY AD study, where MRI and 
amyloid PET were used to assess changes in brain volume and amyloid burden. The study demonstrated 
significant reductions in amyloid burden on amyloid PET scans and a slowing of cognitive decline [216]. 
Donanemab is a humanized monoclonal antibody that targets soluble Aβ oligomers, a hallmark of AD. In 
clinical trials, donanemab has been shown to reduce the levels of Aβ in the CSF and plasma of patients with 
mild MCI or early-stage AD [217, 218]. The phase 2b study of donanemab, known as the A4 trial, involved 
540 patients with MCI or early-stage AD and demonstrated that treatment with donanemab significantly 
reduced CSF Aβ levels by up to 80% compared to placebo [219]. Additionally, the study found that patients 
treated with donanemab showed slower cognitive decline and improved cognitive function compared to 
placebo-treated patients [217, 219]. The results of the A4 trial suggest that targeting Aβ oligomers with 
donanemab may be a promising therapeutic approach for early-stage AD [220, 221].

Conclusions
Neuroimaging plays a crucial role in the diagnosis, monitoring of disease progression, research, and 
personalized treatment of AD. By enabling the visualization of specific molecular targets in the brain, such 
as amyloid plaques and tau protein tangles, neuroimaging techniques provide valuable insights into the 
underlying pathology of AD and aid in accurate diagnosis and disease monitoring. Furthermore, 
neuroimaging also serves as a useful tool for research purposes, facilitating the development of new 
therapeutic strategies and drug targets for AD.

Looking forward, the continued advancement of neuroimaging technologies holds great promise for 
improving our understanding of AD and ultimately finding more effective treatments. Further research in 
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this field will likely lead to the development of novel imaging agents that target different aspects of 
Alzheimer’s pathology and enable an earlier and more accurate diagnosis. Additionally, the integration of 
neuroimaging into clinical trials and personalized medicine approaches has the potential to revolutionize 
the way we treat and manage AD in the future. Overall, neuroimaging is a valuable tool that will continue to 
play a crucial role in the fight against AD.
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