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Abstract
Purinergic signaling, mediated by ATP and adenosine receptors, plays a crucial role in cellular 
communication and homeostasis within the central nervous system (CNS), particularly by regulating 
synaptic activity, glial cell functions, and neuroplasticity. Glial cells, including astrocytes and microglia, 
contribute to both short-term processes, such as neurotransmission and neuroinflammation, and long-term 
functions, including synaptic remodeling, tissue repair, and behavioral adaptation. Dysregulation of 
purinergic signaling in these cells has been implicated in the pathogenesis of various neurodegenerative 
and neuropsychiatric disorders. This article explores the evolving concept of the synapse, highlighting the 
active role of glial cells in synaptic modulation and emphasizing the significance of purinergic signaling in 
synaptic function and responses to conditions such as injury and neurotoxicity. Specifically, it examines the 
roles of ATP and adenosine receptors—such as P2X4, P2X7, P2Y1, and P2Y12—in mediating key astrocytic 
and microglial functions, including neuroinflammation, phagocytosis, synaptic plasticity, and neuronal 
damage. Furthermore, the article discusses the involvement of purinergic receptors in neurological 
disorders such as epilepsy, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, ischemic stroke, 
Rett syndrome, and autism spectrum disorder, as well as potential therapeutic strategies targeting these 
receptors to mitigate inflammation, promote tissue repair, and improve clinical outcomes.
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Introduction
Purinergic signaling, mediated by ATP and adenosine through their respective receptors, plays a central 
role in regulating diverse physiological processes across various cell types [1, 2]. Initially recognized for its 
involvement in energy metabolism, ATP has emerged as a crucial signaling molecule in the central nervous 
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system (CNS), influencing a wide range of functions, from neurotransmission to inflammation [3, 4]. The 
discovery of purinergic receptors has significantly advanced our understanding of how nucleotides and 
nucleosides facilitate cellular communication. These receptors modulate essential processes such as 
neurotransmitter release, synaptic plasticity, and cell proliferation [5, 6].

In CNS, purinergic signaling is vital for communication between neurons and glial cells. ATP, acting 
through P2 receptors, regulates excitatory neurotransmission and modulates glial cell functions, including 
the responses of astrocytes and microglia to injury or disease [5, 7, 8]. Conversely, adenosine, acting 
through P1 receptors, exerts neuromodulatory effects by influencing neurotransmitter release and 
promoting neuroprotective responses under stress. These dual roles underscore the complexity of 
purinergic signaling, where disruptions in neuronal-glial communication and inflammatory responses 
contribute to the pathogenesis of neurodegenerative disorders [9, 10].

The concept of synaptic communication has evolved from a simplistic neuron-to-neuron model to a 
more intricate framework that includes non-neuronal cells, such as astrocytes and microglia [11]. This 
expanded model emphasizes the pivotal roles of glial cells in synaptic function, maintenance, and plasticity, 
with purinergic signaling acting as a key mediator. It offers new insights into neuroimmune interactions 
that underlie neurological disorders, such as epilepsy and neurodegeneration, through the modulation of 
purinergic pathways and glial cell responses [12].

Moreover, purinergic signaling plays a critical role in regulating immune responses during 
inflammatory processes by modulating immune functions in both the peripheral and CNS. ATP, released in 
response to cellular injury, activates purinergic receptors on immune cells, including microglial cells, 
thereby initiating inflammatory cascades [13, 14]. In contrast, adenosine exerts immunosuppressive effects, 
balancing pro-inflammatory and anti-inflammatory responses. Disruptions in purinergic signaling are 
associated with neuroinflammatory disorders such as epilepsy and multiple sclerosis (MS) [10, 15]. 
Targeting purinergic signaling pathways offers promising therapeutic strategies for managing CNS-related 
diseases.

This article provides a comprehensive analysis of glial purinergic signaling, emphasizing the roles of 
ATP and adenosine in cellular communication and their broader implications for CNS function. It explores 
the evolving concept of synaptic communication, highlighting the critical involvement of astrocytes and 
microglia in regulating neuroinflammatory responses and synaptic plasticity. The review details the 
functional roles of glial purinergic receptors, including P2X, P2Y, and P1 subtypes, in mediating key 
physiological processes such as phagocytosis, calcium signaling, and cytokine release. Additionally, it 
examines how dysregulated glial purinergic signaling disrupts CNS homeostasis and contributes to the 
pathophysiology of neurological disorders, including neurodegenerative diseases, stroke, and traumatic 
brain injury (TBI). By emphasizing the therapeutic potential of selectively targeting purinergic receptors, 
the article provides insights into strategies for promoting CNS repair in various neurological conditions.

Functional diversity of purinergic signaling and its implications for cellular 
communication and glial cell mediation
Purinergic receptors in the central nervous system: mechanisms of synaptic modulation, 
neuroplasticity, and neuroinflammation

The discovery of purinergic receptors has significantly advanced our understanding of how nucleotides and 
nucleosides regulate a variety of physiological processes, particularly in the CNS. These receptors are 
classified into two major families: P1 receptors, which are selective for adenosine, and P2 receptors, which 
primarily respond to ATP and ADP (Figure 1). While ATP is well-known for its role in cellular energy 
metabolism, it also acts as a crucial extracellular signaling molecule in the CNS. Astrocytes and neurons are 
the primary sources of ATP release into the surrounding environment [16, 17]. Early studies faced 
challenges due to ATP’s rapid degradation into adenosine, which masked the distinct roles of ATP and 
adenosine in signaling. Later research clarified that P1 receptors, inhibited by methylxanthines, mediate 
adenosine’s effects, while ATP activates P2 receptors, establishing two distinct signaling pathways [1, 18, 
19].
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Figure 1. Classification of purinergic receptors in the CNS. CNS: central nervous system

Purinergic signaling plays a fundamental role in cellular communication across various species, 
underscoring its evolutionary conservation. Homologs of P2X receptors have been identified in organisms 
like Dictyostelium and Schistosoma, and ATP signaling is even present in plants, highlighting its importance 
in maintaining cellular functions and enabling adaptive responses across biological systems [20, 21]. In the 
healthy brain, purinergic signaling coordinates processes between both neural and non-neural cells, 
promoting homeostasis and facilitating adaptive responses to physiological and environmental changes. 
Glial cells are central to orchestrating these processes, interacting with neurons and regulating synaptic 
activity, metabolism, and immune responses [7, 8, 22].

Purinergic receptors exhibit remarkable diversity, with specific subtypes performing distinct cellular 
functions (Figure 1). The P1 receptor family includes four subtypes (A1, A2A, A2B, and A3), each with 
varying affinities for adenosine, influencing pathways such as modulation of adenylate cyclase activity [1, 
23, 24]. The P2 receptor family consists of P2X receptors, which are ligand-gated ion channels, and P2Y 
receptors, which are G protein-coupled receptors (GPCRs) [25]. The P2X receptor family consists of seven 
subtypes (P2X1–7), which can form both homo- and heteromeric channels [26, 27]. Notably, in addition to 
heteromeric channels, the P2X7 receptor forms homotrimeric channels that mediate cellular responses 
such as proliferation, apoptosis, and inflammation. P2X receptors facilitate ion flux (Na+, K+, Ca2+), resulting 
in increased intracellular calcium levels and membrane depolarization [28, 29]. In contrast, the eight 
subtypes of P2Y receptors (P2Y1, 2, 4, 6, and 11–14) initiate downstream signaling via GPCR pathways, 
regulating targets like phospholipase C (PLC) and adenylate cyclase [30, 31].

The activity of purinergic receptors is precisely regulated by ecto-nucleotidases, such as nucleoside 
triphosphate diphosphohydrolase-1 (CD39) and ecto-5’-nucleotidase (CD73), which hydrolyze ATP and 
ADP into adenosine, thus activating P1 receptors and maintaining the balance between ATP and adenosine 
signaling [32–34]. Adenosine’s effects are further fine-tuned by enzymatic degradation and uptake through 
equilibrative nucleoside transporters (ENT1–4) [35, 36], ensuring that purinergic signaling maintains 
cellular homeostasis and facilitates appropriate cellular responses.

Purinergic receptors are crucial for neuroplasticity, influencing neurotransmission, structural 
plasticity, and behavioral adaptation (Figure 2) [5, 24]. Glial cells play key roles in these processes due to 
their expression of purinergic receptors, extending the influence of purinergic signaling beyond neurons 
[37]. P2 receptors, particularly P2X receptors localized to postsynaptic sites, mediate rapid excitatory 
signaling in response to ATP release [38–40]. P1 receptors, such as A1 and A2A, modulate neurotransmitter 
release through feedback inhibition at presynaptic sites, fine-tuning synaptic activity, especially during 
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prolonged neuronal firing, and contributing to synaptic plasticity [41, 42]. Astrocytes actively participate by 
releasing ATP and adenosine in response to neuronal activity, influencing synaptic function and 
maintaining extracellular homeostasis [43, 44].

Figure 2. Functions of purinergic receptors in CNS. CNS: central nervous system; MS: multiple sclerosis

Purinergic signaling also regulates structural changes in neurons. P2X7 receptors are involved in 
dendritic remodeling and synapse formation, processes critical for learning and memory [45, 46]. P2Y 
receptors regulate the cytoskeleton and promote axonal growth, facilitating synapse formation and 
neuronal connections [47, 48]. Glial cells support structural plasticity by releasing ATP in response to 
neuronal activity, promoting synaptogenesis and neuronal growth [49, 50]. Microglia utilizes purinergic 
signaling to mediate neuroinflammatory responses that can impact synaptic plasticity [51, 52]. These glial-
mediated effects emphasize the crucial role of glial cells in shaping neuronal networks during development, 
learning, and injury repair [50, 53].

Purinergic signaling is also implicated in regulating behavioral processes such as attention and 
memory [54]. Glial cells, particularly astrocytes, contribute to behavioral plasticity by modulating synaptic 
transmission through purine release, directly affecting neuronal excitability and cognitive functions [55].

Purines produced in the CNS regulate the infiltration, trafficking, and activation of peripheral immune 
cells under both physiological and pathological conditions. ATP and its metabolites, including ADP and 
adenosine, act as key extracellular signaling molecules through P2X and P2Y purinergic receptors 
expressed on glial and immune cells [1, 56]. Under normal conditions, purinergic signaling maintains CNS 
homeostasis by modulating microglial surveillance and synaptic activity [7]. However, in 
neuroinflammatory states such as TBI and neurodegenerative diseases, excessive ATP release from 
damaged cells acts as a damage-associated molecular pattern (DAMP), activating microglia and infiltrating 
immune cells via P2X7 receptors [57]. Purines also influence leukocyte adhesion and transmigration across 
the blood-brain barrier (BBB) by modulating endothelial activation. Adenosine, through A2A receptors, can 
suppress inflammation by inhibiting leukocyte adhesion and promoting the anti-inflammatory M2 
microglial phenotype [58]. Conversely, ATP-P2X7 receptor signaling amplifies inflammation by promoting 
pro-inflammatory cytokine release, such as interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α), 
further enhancing leukocyte recruitment [57].
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Experimental models have provided critical insights into the multifaceted roles of purinergic signaling 
in CNS pathology. In experimental autoimmune encephalomyelitis (EAE), a widely used model for MS, the 
blockade of P2X7 receptors has been shown to attenuate neuroinflammation by reducing T cell activation 
and subsequent CNS infiltration [59, 60]. T cell activation in EAE is a highly coordinated process initiated by 
antigen-presenting cells (APCs), including dendritic cells, microglia, and macrophages, which process and 
present myelin-derived peptides via major histocompatibility complex (MHC) molecules to naïve CD4+ T 
cells [61]. This interaction, in conjunction with co-stimulatory signaling (e.g., CD28/B7) and cytokine-
mediated polarization, drives the differentiation of naïve T cells into pathogenic effector subsets, 
particularly T helper 1 (Th1) and Th17 cells [62, 63]. ATP, acting through P2X7 receptors on both APCs and 
T cells, plays a pivotal role in modulating this activation process. P2X7 receptor activation promotes the 
assembly of the NOD-like receptor protein 3 (NLRP3) inflammasome, leading to the release of pro-
inflammatory cytokines such as IL-1β and interleukin-18 (IL-18), which further amplify T cell expansion 
and effector function [64]. Moreover, P2X7 receptor signaling enhances the metabolic reprogramming of T 
cells, favoring glycolysis-driven proliferation, a key requirement for sustaining the inflammatory response. 
The blockade of P2X7 receptors disrupts this inflammatory cascade by impairing inflammasome activation, 
attenuating IL-1β release, and limiting the expansion of pathogenic Th1 and Th17 cells [65]. Consequently, 
the reduction in pro-inflammatory T cell infiltration across the BBB alleviates CNS inflammation and tissue 
damage, highlighting P2X7 as a potential therapeutic target for autoimmune neuroinflammatory disorders 
[66].

Similarly, in spinal cord injury (SCI), ATP release drives microglial activation and secondary tissue 
damage [67, 68]. In TBI, purinergic receptor activity exhibits both protective and detrimental effects 
depending on receptor subtype and activation timing, underscoring the complex and context-dependent 
nature of purinergic signaling in neuroinflammation [69].

Short- and long-term roles of purinergic signaling in the CNS mediated by astrocytes and microglia

Purinergic signaling plays a central role in regulating both short-term and long-term cellular functions in 
the CNS, supporting a diverse range of physiological and pathological processes. Short-term effects, ranging 
from milliseconds to seconds, involve rapid synaptic transmission and acute cellular responses, while long-
term effects, spanning minutes to hours or even days, include sustained cellular changes such as gene 
expression modulation, neuroinflammation, and prolonged adaptations in synaptic plasticity and cellular 
proliferation [1, 5, 70]. Initially, purinergic signaling was primarily studied in the context of short-term 
events such as neurotransmission, neuromodulation, secretion, chemoattraction, and acute inflammation. 
These processes are primarily mediated by ATP, which engages P2X ionotropic and P2Y metabotropic 
receptors to trigger rapid cellular responses necessary for maintaining homeostasis under acute conditions 
[24, 25, 71]. However, emerging evidence highlights that purinergic signaling also has long-term (trophic) 
roles, such as cell proliferation, differentiation, migration, and apoptosis [72, 73]. These trophic functions 
are critical for developmental processes, tissue repair, and the progression of pathological states like cancer 
and atherosclerosis (Table 1).

Table 1. Short-term vs. long-term functions of purinergic signaling in the CNS

Function Short-term roles Long-term roles Cellular involvement References

Neuromodulation - Modulation of synaptic 
transmission
- Enhanced synaptic 
plasticity during neuronal 
firing

- Maintenance of synaptic 
homeostasis over time
- Regulation of long-term potentiation

Neurons, astrocytes, 
microglia

[7, 38, 74]

Synaptic plasticity - Modulation of 
neurotransmitter release at 
synapses

- Regulation of ion flux via 
P2X receptors

- Structural changes like dendritic 
remodeling
- Synapse formation and stabilization

Neurons, astrocytes, 
oligodendrocytes

[6, 40, 70]
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Function Short-term roles Long-term roles Cellular involvement References

Inflammatory 
responses

- Activation of microglia for 
injury response

- Chemotactic signaling 
through P2Y12 receptors

- Persistent neuroinflammatory 
responses in neurodegenerative 
disorders, such as Alzheimer’s and 
Parkinson’s disease

Microglia, astrocytes, 
neurons

[24, 75, 76]

Cognitive and 
behavioral 
adaptation

- Modulation of neuronal 
excitability

- Regulation of 
neurotransmitter release 
during short-term stress or 
stimulus

- Long-term effects on learning and 
memory

- Potential involvement in psychiatric 
disorders (e.g., schizophrenia, 
anxiety)

Astrocytes, neurons, 
microglia

[24, 54, 70, 
77]

Tissue repair and 
regeneration

- Acute ATP release to 
mediate damage response 
and recruit glial cells

- Long-term neurogenesis, axonal 
growth, and synaptic remodeling

Astrocytes, 
microglia, 
oligodendrocytes

[78, 79]

Astrocytes and microglia are key mediators of purinergic signaling in both short-term and long-term 
contexts [80]. Astrocytes release ATP in response to neuronal activity and various physiological stimuli. In 
short-term contexts, ATP activates P2 receptors on neighboring neurons and glial cells, modulating 
synaptic transmission and enhancing synaptic plasticity. These processes are integral to neuromodulation, 
a crucial aspect of dynamic neuronal communication [75, 78]. Astrocytic purinergic signaling is also 
essential for long-term functions such as regulating cell migration, angiogenesis, and tissue repair. ATP 
released by astrocytes is metabolized to adenosine, acting on trophic receptors to influence cell 
proliferation and neurogenesis, supporting developmental and reparative processes [78, 81, 82].

Microglia are similarly regulated by purinergic signaling. In short-term responses, ATP acts as a “find-
me” signal, guiding microglial migration to injury or infection sites through activation of P2Y12 receptors 
[75, 83]. This chemotactic response initiates inflammatory processes and facilitates the clearance of cellular 
debris, essential for resolving acute damage. Beyond these immediate actions, microglia are involved in 
long-term functions, including synaptic remodeling and pruning, crucial for maintaining synaptic integrity 
and plasticity [22, 51, 84]. These processes are regulated by ATP and adenosine signaling, with 
dysregulation contributing to neurodegenerative diseases. Chronic activation of P2X7 receptors on 
microglia, for example, has been associated with sustained inflammatory responses and neurotoxicity, 
highlighting the dual nature of purinergic signaling in microglial physiology [52, 76, 85, 86].

By integrating both short-term and long-term functions, purinergic signaling orchestrates a complex 
network of cellular processes in the CNS, with astrocytes and microglia playing critical roles. Astrocytes 
primarily contribute to neuromodulation and structural support, while microglia specialize in immune 
surveillance and synaptic remodeling [74, 80, 87]. Together, these glial cells modulate the dynamic and 
adaptive responses of the CNS to physiological demands and pathological challenges.

The quadripartite synapse and the role of purinergic receptors in neuro-
immune communication
The concept of the synapse has evolved considerably, transitioning from an understanding rooted solely in 
neuronal interactions to a more complex model that incorporates non-neuronal cell types [11, 37]. Early 
studies emphasized synaptic communication as a direct interaction between pre- and post-synaptic 
neurons, focusing on neurotransmitter release, receptor activation, and subsequent downstream effects. 
However, over time, research began to reveal astrocytes as active participants in synaptic function, leading 
to the emergence of the tripartite synapse model [11, 88]. In this model, astrocytes are recognized not only 
as structural supports but as active modulators of synaptic transmission through the release of 
gliotransmitters. Their processes extend into synaptic spaces, where they detect and respond to changes in 
neurotransmitter levels, influencing synaptic activity and plasticity (Table 2) [55, 89–91].

Table 1. Short-term vs. long-term functions of purinergic signaling in the CNS (continued)
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Table 2. Evolution of synaptic models: from neuronal communication to the role of glial cells in synaptic function and 
neurological disorders

Era/Model Key concepts Key 
players

Main mechanisms Notable findings Implications for 
neurological 
disorders

References

Early synaptic 
model

Synapse as a 
site of 
communication 
between pre- 
and post-
synaptic 
neurons

Neurons Neurotransmitter 
release, receptor 
activation

Focus on direct 
synaptic 
communication 
via 
neurotransmitter 
release and 
downstream 
effects

Limited scope, failed 
to account for 
contributions from glial 
cells in synaptic 
function

[92, 93]

Tripartite 
synapse model 
(astrocytes and 
neurons) 
(2000s)

Inclusion of 
astrocytes as 
active 
participants in 
synaptic 
communication

Neurons, 
astrocytes

Gliotransmitter 
release, astrocyte 
involvement in 
synaptic plasticity

Astrocytes play an 
active role in 
synaptic activity 
by detecting and 
responding to 
neurotransmitter 
levels, modulating 
plasticity

Introduced the idea of 
glial cells’ involvement 
in synaptic modulation

[94–96]

Modified 
tripartite 
synapse model 
(neurons and 
microglia) 
(2000s–2010s)

Recognition of 
microglia as 
regulators of 
synaptic function 
and plasticity

Neurons, 
microglia

Microglial 
surveillance, 
synaptic pruning, 
cytokine-mediated 
signaling

Microglia monitor 
and eliminate 
weak synapses, 
playing a role in 
synaptic 
remodeling

Dysregulated 
microglial activity 
contributes to 
neurodevelopmental 
disorders and 
neurodegenerative 
diseases

[97, 98]

Quadripartite 
synapse model 
(2010s)

Extension to 
include microglia 
in synaptic 
function

Neurons, 
astrocytes, 
microglia

ATP-driven 
purinergic 
signaling, synaptic 
maintenance and 
pruning

Microglia actively 
participate in 
synaptic signaling 
and plasticity, 
contributing to 
both health and 
pathology

Provides a more 
holistic view of 
synaptic 
communication, 
involving immune and 
neuroinflammatory 
responses

[22, 99]

Purinergic 
signaling in 
quadripartite 
synapse

ATP as a key 
signaling 
molecule among 
neurons, 
astrocytes, and 
microglia

Neurons, 
astrocytes, 
microglia

ATP release during 
neuronal activity, 
microglial 
recruitment via 
P2Y12 receptors

ATP release 
directs microglial 
processes toward 
active synapses, 
influencing 
plasticity and 
hyperactivity in 
disorders like 
epilepsy

Disruption of ATP 
signaling and glial 
synchronization can 
lead to disorders like 
epilepsy and 
neurodegeneration

[75, 80, 
100]

Astrocyte-
microglial 
crosstalk

Dynamic 
interaction 
between 
astrocytes and 
microglia via 
ATP

Astrocytes, 
microglia

Modulation of 
microglial 
responses to 
neurotransmission 
(glutamatergic and 
GABAergic)

Astrocytes can 
enhance or 
suppress 
microglial activity, 
maintaining 
synaptic balance

Disruptions in 
crosstalk contribute to 
pathologies like 
epilepsy, and 
neurodegenerative 
diseases

[80, 101]

Neuroimmune 
modulation

Role of glial 
cells in 
neuroprotection 
and response to 
injury

Astrocytes, 
microglia

Release of 
protective 
molecules (IL-6) 
and ATP in 
response to 
inflammation or 
injury

Glial cells 
coordinate 
protective 
responses to 
neurotoxic stimuli 
and maintain 
neuronal health

Imbalances in glial 
responses contribute 
to inflammatory 
diseases and worsen 
neuronal damage in 
conditions like 
neurodegeneration 
and injury

[80, 102, 
103]

Disruptions in 
synaptic 
homeostasis

Alterations in 
glial cell function 
contribute to 
disease

Neurons, 
astrocytes, 
microglia

Disruption of 
synaptic balance 
via glial dysfunction

Loss of synchrony 
between 
astrocytes and 
microglia can lead 
to hyperexcitable 
synapses, as in 
epilepsy

Implicates glial 
dysfunction in 
diseases such as 
epilepsy, 
neurodegeneration, 
and 
neuroinflammatory 
conditions

[74, 104, 
105]

IL-6: interleukin-6

Despite the progress introduced by the tripartite model, it quickly became evident that even this 
framework did not capture the full complexity of synaptic interactions. Microglia have garnered attention 
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for their roles in synaptic pruning, neuro-surveillance, and modulation of neuronal circuits [22, 106]. Their 
involvement in synaptic health has led to the development of the quadripartite synapse hypothesis, which 
includes neurons, astrocytes, and microglia in a cooperative network [99, 107]. This model proposes that 
microglia, alongside astrocytes, participate in synaptic signaling, maintenance, and plasticity through 
intricate interactions with neurons [74]. The quadripartite model provides a more holistic view of synaptic 
communication, recognizing the importance of glial cells and highlighting their contributions to both 
synaptic homeostasis and pathological conditions (Table 2) [108].

Microglial activity is crucial in synaptic remodeling, particularly in synapse elimination, but recent 
evidence suggests that synaptic pruning is a complex and multifaceted process that may not always depend 
on microglial engulfment. For instance, in the rodent cortex, synapse elimination continues even in the 
absence of microglia, with dendritic spines turning over at a rate of 5–10% within a few days [109, 110]. 
Moreover, Synapse elimination is largely unaffected in mice lacking the complement receptor C3, a key 
mediator in the proposed microglial synapse engulfment pathway [111]. This observation suggests that 
synaptic pruning may involve alternative mechanisms, such as tunneling nanotubes, which facilitate 
bidirectional transfer of intracellular molecules between microglia and neurons, thereby enabling synaptic 
component exchange [112, 113]. While microglia are known to actively engulf synaptic elements through 
processes mediated by the complement system, particularly C1q and C3, the precise mechanisms by which 
complement-tagged synapses are targeted and eliminated in the developing visual system remain an area 
of active investigation [114]. Foundational studies in this field have opened avenues for exploring 
molecular cues that regulate microglia-synapse interactions, including purinergic signaling. Specifically, 
purinergic receptors, especially P2Y12, are implicated in microglial motility and their capacity to detect 
ATP/ADP gradients released by active neurons, guiding their processes toward synaptic sites [115]. This 
signaling cascade is essential for both physiological synaptic pruning and pathological conditions, where 
dysregulated purinergic signaling and complement activation contribute to synaptic loss in 
neurodegenerative diseases [116]. Consequently, the intersection of complement-mediated pruning and 
purinergic receptor signaling represents a critical regulatory axis in neurological disease, providing a 
potential framework for therapeutic interventions aimed at mitigating aberrant synapse elimination. 
Moreover, microglia may engage in presynaptic trogocytosis or directly phagocytose neurons and 
dendrites, indicating that synaptic pruning extends beyond traditional microglial engulfment processes. 
Overall, these observations underscore the complexity of synaptic pruning, revealing diverse mechanisms 
that may or may not rely on microglial activity [117].

Purinergic signaling has emerged as a critical regulator of microglial functions during synaptic pruning. 
Both P2X and P2Y receptors are essential in modulating microglial responses to neuronal activity. 
Activation of P2X receptors induces a rapid influx of calcium ions, significantly influencing microglial 
motility and their interactions with synaptic sites. This calcium signaling is crucial in determining whether 
synapse elimination or stabilization occurs, depending on the local environment. In contrast, P2Y receptors 
regulate microglial chemotactic migration, guiding them to areas where synaptic pruning is taking place. 
These receptors also modulate the microglial response to ATP released during neuronal activity, thereby 
influencing the dynamics of synaptic remodeling. Furthermore, microglia contribute to learning-dependent 
synapse formation via microglial brain-derived neurotrophic factor (BDNF) [110] and dendritic spine 
remodeling through TNF-α produced by CX3CR1+ monocytes [109]. Therefore, although microglia play a 
crucial role in synaptic pruning, their functions extend beyond mere synapse elimination. Purinergic 
receptors act as key regulatory mechanisms that modulate microglial activity in synaptic remodeling and 
developmental plasticity.

Purinergic signaling is central to the interactions within the quadripartite synapse, particularly the role 
of ATP as a signaling molecule among neurons, astrocytes, and microglia [99]. During heightened neuronal 
activity—such as when NMDA receptors are activated—neurons release ATP into the extracellular 
environment [17, 118]. This ATP release acts as a beacon, signaling microglia and astrocytes to mobilize 
toward active synapses [119, 120]. Specifically, ATP binds to P2Y12 receptors on microglia, directing their 
processes toward areas of increased neuronal activity [83]. This recruitment process is crucial in conditions 
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of synaptic hyperactivity, as seen in diseases like epilepsy, where microglial interactions with hyperactive 
synapses may exacerbate neuronal hyperexcitability [118, 121, 122].

ATP-driven purinergic signaling is not limited to neuron-microglia interactions but extends to 
astrocyte-microglial crosstalk, influencing overall synaptic modulation. Astrocytes, in response to ATP 
signaling, release molecules that can enhance or suppress microglial activity, depending on the needs of the 
surrounding neurons [75, 80, 123]. Experimental studies using agents like probenecid and suramin have 
further clarified ATP’s role in coordinating microglial responses to both excitatory (glutamatergic) and 
inhibitory (GABAergic) neurotransmission [124–126]. Through these purinergic pathways, astrocytes and 
microglia work synergistically to maintain synaptic balance, responding dynamically to shifts in neuronal 
signaling and ensuring synaptic stability [51, 89].

Astrocytes and microglia engage in complex, ATP-mediated communication that plays a significant role 
in maintaining synaptic integrity and modulating the brain’s response to injury and neurotoxicity [37, 127]. 
In inflammatory conditions, such as those induced by lipopolysaccharide (LPS), activated microglia release 
ATP, signaling astrocytes to engage in protective responses that help shield neurons from potential damage 
[128, 129]. For instance, astrocytes release interleukin-6 (IL-6) in response to certain neurotoxic stimuli, 
such as exposure to methylmercury, a process regulated through ATP released by microglia [130, 131]. This 
crosstalk not only sustains neuronal health but also provides an adaptive response to neurotoxic 
environments, underscoring the neuroprotective roles of glial cells in the brain’s immune response.

Disruptions in this delicate neuro-immune balance can result in neurological disorders. In epilepsy, for 
example, the loss of astrocyte-microglial synchrony contributes to the hyperexcitable neuronal 
environment characteristic of the disorder [132, 133]. Factors such as TNF-α—often released by 
microglia—can increase glutamate release, exacerbating network hyperactivity [134]. Additionally, P2Y1 
receptor signaling has been linked to abnormal synaptic function, implicating purinergic receptor 
dysfunction in epileptogenesis [10, 135]. Beyond epilepsy, the quadripartite synapse model offers insights 
into other neurodegenerative and neuroinflammatory conditions, highlighting how glial cell contributions 
to synaptic function can both support and disrupt neuronal networks, depending on the cellular 
environment [105, 136, 137].

Purinergic signaling in neuron-glia interactions: mechanisms regulating 
synaptic function, neuroinflammation, and brain homeostasis
Purinergic signaling, involving ATP and its breakdown product adenosine, is crucial for regulating neuronal 
and glial functions within the brain. This signaling system interacts with P2 and P1 receptors, which 
respond to extracellular ATP and adenosine, respectively, and plays a key role in synaptic transmission, 
plasticity, and neuroinflammatory processes (Table 3).

Table 3. Mechanisms of purinergic signaling in neuron-astrocyte-microglia interactions

Mechanism Cell types 
involved

Key receptors Function/Role References

Purinergic signaling in 
brain homeostasis

Astrocytes, 
microglia, 
neurons

P2 receptors 
(P2Y1, P2Y12), 
A1Rs, A2ARs

Purinergic signaling regulates synaptic pruning, 
neuroprotection, maintaining brain development, 
and homeostasis

[75, 138, 
139]

Neuron-astrocyte 
communication for 
homeostasis

Neurons and 
astrocytes

P2X, P2Y, 
A1Rs, A2ARs

Bidirectional communication: neurons release 
neurotransmitters causing Ca2+ changes in 
astrocytes, which release ATP to modulate 
synaptic activity and maintain brain homeostasis

[44, 140, 
141]

ATP in synaptic 
transmission

Neurons and 
astrocytes

P2XRs, NMDA 
receptors, 
A1Rs, A2ARs

ATP mediates excitatory neurotransmission; 
P2XRs regulate synaptic plasticity, with roles in 
both LTP and synaptic depression

[44, 142, 
143]

Astrocytic ATP release 
and synaptic regulation

Astrocytes 
and neurons

P2X, P2Y, 
A1Rs, A2ARs

Astrocytes release ATP, influencing synaptic 
excitability, ion balance, and synaptic plasticity 
through interaction with adenosine receptors 
(A1Rs, A2ARs)

[44, 144, 
145]
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Mechanism Cell types 
involved

Key receptors Function/Role References

Adenosine receptor 
interactions

Astrocytes 
and neurons

A1Rs, A2ARs A2ARs enhance NMDA receptor activity and 
glutamate release, while A1Rs inhibit synaptic 
transmission, offering neuroprotective effects

[42, 146, 
147]

ATP and calcium (Ca2+)-
mediated communication

Astrocytes P2Y, P2X ATP activates purinergic receptors (P2X, P2Y) to 
induce Ca2+ increases in astrocytes, propagating 
Ca2+ waves that influence synaptic modulation

[148–150]

Neurovascular coupling 
and redox homeostasis

Astrocytes 
and blood 
vessels

A1Rs, A2ARs Astrocytes regulate blood flow and redox balance 
in response to neuronal activity, utilizing ATP and 
adenosine signaling

[151, 152]

Reactive astrocytes in 
injury

Astrocytes A1Rs, A2ARs During injury, ATP and adenosine modulate 
astrocytic responses: A1Rs suppress excessive 
excitation; A2ARs promote synaptic facilitation and 
inflammation

[153, 154]

Microglial activation and 
neuroinflammatory 
responses

Microglia P2X4, P2Y12, 
A2AR

ATP activates microglia through P2X and P2Y 
receptors, initiating immune responses; P2X4Rs 
mediate pro-inflammatory responses, while 
P2Y12Rs guide microglial migration

[155–157]

Adenosine modulation of 
microglial inflammation

Microglia A2AR Adenosine via A2ARs counterbalances ATP-
induced activation of microglia, reducing 
inflammation and promoting neuroprotection

[157–160]

Astrocyte-microglia 
crosstalk during injury

Astrocytes 
and microglia

P2Y1, P2Y12 ATP release from damaged cells activates 
purinergic receptors on both astrocytes and 
microglia, amplifying the inflammatory response 
and modulating synaptic activity

[37, 75, 80]

LTP: long-term potentiation

Astrocytic ATP release and purinergic signaling: key mechanisms in synaptic plasticity and 
intercellular communication

ATP serves as a critical mediator of synaptic function, particularly in excitatory neurotransmission. 
Ionotropic P2XRs mediate rapid synaptic responses, with hippocampal slice studies demonstrating their 
involvement in regulating synaptic plasticity. However, their role in long-term potentiation (LTP) and 
synaptic depression is debated, with some evidence suggesting P2XRs facilitate LTP, while others suggest 
they induce synaptic depression [38, 39, 142, 161–163].

Astrocytes contribute to synaptic regulation by releasing ATP, which can occur via exocytosis, 
modulating neuronal excitability and synaptic activity [44, 55, 145, 164]. The interaction between ATP-
mediated P2 receptor activation and adenosine receptors (A1Rs and A2ARs) creates a dynamic balance that 
modulates synaptic transmission [165, 166]. A2ARs typically enhance NMDA receptor activity and 
glutamate release, promoting synaptic plasticity, while A1Rs inhibit synaptic transmission, offering 
neuroprotective effects [167–169]. This interplay is vital for maintaining functional neuronal networks and 
may influence neurodegenerative processes.

In addition to synaptic regulation, astrocytes use purinergic signaling to coordinate calcium (Ca2+)-
mediated intercellular communication [170]. ATP acts as a critical extracellular messenger activating 
purinergic receptors like P2Y and P2X, inducing intracellular Ca2+ increases in astrocytes [38, 145]. These 
Ca2+ waves propagate through astrocyte networks, influencing synaptic modulation and metabolic support 
for neurons [171].

ATP signaling also plays a key role in neurovascular coupling, where astrocytes regulate blood flow in 
response to neuronal activity, and in maintaining redox homeostasis [152]. During injury, astrocytes 
undergo reactive changes influenced by ATP and adenosine signaling [172]. Adenosine, produced from ATP 
breakdown by ecto-nucleotidases on astrocyte surfaces, acts on A1 and A2A receptors, modulating 
astrocytic responses. A1Rs suppress excessive excitation, while A2ARs promote synaptic facilitation and 
inflammation [166, 169, 173].

Table 3. Mechanisms of purinergic signaling in neuron-astrocyte-microglia interactions (continued)
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ATP and adenosine mediated crosstalk between neurons, astrocytes, and microglia

Neuron-astrocyte communication is essential for brain homeostasis, with both neurons and astrocytes 
capable of releasing ATP and responding to its extracellular concentrations [4]. Synaptically released 
neurotransmitters trigger Ca2+ changes in astrocytes, leading to the release of gliotransmitters like ATP, 
which modulate synaptic activity [174]. This bidirectional communication enables astrocytes to regulate 
synaptic environments by clearing neurotransmitters, maintaining ion balance, and modulating synaptic 
strength [175]. ATP conversion to adenosine further refines synaptic transmission through P1 receptors 
(A1Rs and A2ARs) [144, 176].

The fine-tuning of synaptic activity by this purinergic system is vital for regulating excitatory and 
inhibitory synapses, which is essential for maintaining neural network activity [177, 178]. Dysregulation of 
purinergic signaling has been implicated in various pathological conditions, including neurodegenerative 
diseases [6].

Purinergic signaling is also essential for microglial function, particularly in neuroinflammatory 
processes. ATP acts as danger signal activating microglia via P2X and P2Y receptors, initiating immune 
responses [75, 179]. P2X4 receptors mediate pro-inflammatory responses, contributing to conditions like 
neuropathic pain, epilepsy, and stroke, while P2Y12 receptors guide microglial migration to injury sites, 
modulating their interaction with neurons and promoting neuroprotective processes [75, 180, 181].

Adenosine, through A2ARs, counterbalances ATP-mediated microglial activation, reducing 
inflammation by inhibiting cytokine release and regulating potassium currents [157, 182]. This balance 
ensures that microglia respond appropriately to injury without exacerbating inflammation, highlighting the 
purinergic system’s role in neuroprotection.

Astrocytes and microglia interact closely during both physiological and pathological conditions, with 
ATP playing a crucial role in this crosstalk [37, 80]. In response to brain injury, damaged cells release ATP, 
activating purinergic receptors on both astrocytes and microglia. Microglial ATP release can activate P2Y1 
receptors on astrocytes, triggering additional ATP release and amplifying the response [75, 183, 184]. This 
interaction influences synaptic activity, with astrocyte-derived ATP modulating microglial motility and 
activation, often via P2Y12Rs.

The bidirectional communication between astrocytes and microglia, mediated by purinergic signaling, 
is critical for brain development, homeostasis, and injury responses [7]. The balance between ATP and 
adenosine signaling through P2 and P1 receptors shapes glial activity, impacting processes such as synaptic 
pruning, and neuroprotection [6].

Purinergic signaling in neuroinflammation: glial regulation and immune dynamics

Purinergic signaling orchestrates an extensive range of immune and inflammatory responses. In the CNS, 
glial cells serve as pivotal regulators of these processes, shaping the neuroinflammatory landscape 
(Figure 3). Dysregulation of glial-mediated purinergic signaling plays a central role in the progression of 
neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and MS [3, 6, 76]. 
Deciphering the intricate mechanisms underlying this signaling network is essential for advancing 
therapeutic strategies targeting neuroinflammatory and immune-related disorders.

In the CNS, ATP released from damaged or necrotic cells acts as a potent “danger signal”, triggering 
immune responses via purinergic receptor activation on glial cells (Figure 3) [185, 186]. Among these 
receptors, P2X7 stands out for its pivotal role in assembling inflammasomes—multiprotein complexes that 
mediate the production and release of pro-inflammatory cytokines, including TNF-α and IL-1β [2, 179, 187]. 
These cytokines amplify immune responses, creating a feed-forward loop of inflammation that exacerbates 
neurodegenerative disease pathology [9, 188, 189].

The extracellular environment of the CNS is meticulously regulated by ectoenzymes such as CD39 and 
CD73, which sequentially hydrolyze ATP into adenosine (Figure 3). This enzymatic conversion shifts the 
signaling milieu from a pro-inflammatory state dominated by ATP to an anti-inflammatory state mediated 
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Figure 3. Purinergic signaling in neuroinflammation: mechanisms and glial cell interactions. CNS: central nervous 
system; NAD+: nicotinamide adenine dinucleotide; CD39: nucleoside triphosphate diphosphohydrolase-1; CD73: ecto-5’-
nucleotidase; AD: Alzheimer’s disease; PD: Parkinson’s disease; MS: multiple sclerosis; TNF-α: tumor necrosis factor-alpha; IL-
1β: interleukin-1β

by adenosine [33, 190–192]. Acting through P1 receptors expressed on glial cells, adenosine suppresses 
immune activation, fosters tissue repair, and preserves CNS homeostasis [160, 193, 194]. This dynamic 
interplay highlights the dual and context-dependent roles of ATP and adenosine in neuroinflammation.

Astrocytes play dual roles during neuroinflammatory events, acting as both supportive and detrimental 
players in the pathology of neurodegenerative diseases. In conditions such as amyotrophic lateral sclerosis 
(ALS), astrocytes release ATP, which activates P2X7 receptors on neighboring microglia [195, 196]. This 
activation initiates a cascade of inflammatory responses that can exacerbate neuronal damage. While P2X7 
receptor activation may promote neuroinflammation, it also serves a regulatory role in modulating the 
inflammatory response, underscoring its complex involvement in the neuroinflammatory process [26]. In 
vitro studies using astrocyte cell cultures have demonstrated that P2X7 receptor activation leads to the 
release of pro-inflammatory cytokines, further highlighting the importance of these receptors in the 
neuroinflammatory milieu.

This interaction amplifies the release of inflammatory cytokines, creating a positive feedback loop that 
intensifies neuroinflammation [37, 85]. Concurrently, microglia respond to purinergic signals by mounting 
immune responses. While this activation can be protective during acute phases, prolonged microglial 
activation contributes to chronic inflammation and tissue damage, which are hallmarks of 
neurodegenerative diseases [3, 197, 198].

Nicotinamide adenine dinucleotide (NAD+) emerges as a critical modulator of purinergic signaling, 
primarily through its enhancement of P2X7 receptor activation. Elevated NAD+ levels potentiate ATP-driven 
inflammatory signaling, positioning NAD+ metabolism as a promising therapeutic target for modulating 
immune responses and neuroinflammation in the CNS [199–201].

Targeting purinergic signaling offers a compelling approach to managing neuroinflammation and 
related neurodegenerative disorders. Key strategies include inhibiting ATP release, blocking P2 receptor 
activation, and modulating ectoenzymes like CD39 and CD73 to regulate glial activation, mitigate 
inflammation, and slow disease progression. A comprehensive understanding of its role in glial immune 
regulation is essential for advancing effective therapeutic interventions.

Purinergic signaling in astrocytes: mechanisms, neuroinflammatory 
modulation, and implications for CNS disorders
Purinergic signaling in astrocytes is a pivotal mechanism for maintaining brain homeostasis and 
modulating neuroinflammatory responses [15, 78, 195]. Astrocytes, as the most abundant glial cells in the 
CNS, engage in a variety of processes through purinergic receptors (Figure 4). Ionotropic P2X receptors, 
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particularly P2X4 and P2X7, mediate rapid responses to extracellular ATP, a vital intercellular signaling 
molecule. P2X4 facilitates calcium influx, synaptic plasticity, and astrocytic migration, functions essential 
for neuronal health and tissue repair [38, 66, 202, 203]. Furthermore, P2X4 activation triggers the release 
of BDNF, which supports neuronal survival and plasticity. The upregulation of P2X4 in neuroinflammatory 
conditions like SCI and MS positions it as a potential therapeutic target for modulating astrocytic function 
and mitigating inflammatory damage [204–207]. Conversely, P2X7 plays a central role in gliotransmitter 
release and cellular stress responses but is often dysregulated in neuroinflammatory diseases such as 
Alzheimer’s and epilepsy [66, 208]. Persistent activation of P2X7 by elevated ATP levels leads to NLRP3 
inflammasome activation and the release of pro-inflammatory cytokines [23, 209, 210], exacerbating 
disease progression and making it another critical target for intervention.

Figure 4. Purinergic receptor expression in astrocytes: mechanisms of activation and their roles in CNS function and 
pathophysiology. MAPK: mitogen-activated protein kinase; ALS: amyotrophic lateral sclerosis; CNS: central nervous system; 
BDNF: brain-derived neurotrophic factor; MS: multiple sclerosis; NLRP3: NOD-like receptor protein 3

Metabotropic P2Y receptors facilitate slower but sustained responses in astrocytes [150]. P2Y1, a 
receptor involved in ADP-induced calcium signaling, is integral to synaptic plasticity and memory 
formation. However, its dysregulation is linked to excitotoxicity, contributing to neuronal damage in 
conditions such as stroke and epilepsy [54, 211]. P2Y2 is crucial for astrocyte migration and tissue repair, 
mediated through the activation of mitogen-activated protein kinase (MAPK) and PLC signaling pathways. 
While P2Y2 promotes healing, its prolonged activation can result in reactive astrocytosis, a pathological 
hallmark of chronic neuroinflammation [47, 212, 213]. Although less studied, P2Y4 is believed to play a role 
in regulating nutrient uptake and energy metabolism, suggesting its importance in cellular energetics [214, 
215].

The P1 adenosine receptors add another layer of complexity to purinergic signaling in astrocytes [7, 
78]. Among these, the A1 receptor exerts neuroprotective effects by inhibiting excitatory signaling and 
calcium wave propagation, which helps prevent excitotoxicity. This receptor emerges as a promising target 
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for neuroprotection in ischemic stroke and epilepsy, where excessive excitatory signaling can lead to 
neuronal damage [169, 216, 217]. Conversely, the A2A receptor exacerbates neuroinflammation by 
enhancing glutamate release, contributing to excitotoxicity and disease progression in conditions like 
Huntington’s disease [218, 219]. The A3 receptor, on the other hand, promotes astrocyte migration and the 
release of anti-inflammatory cytokines, offering neuroprotection in neuropathic pain conditions [220, 221]. 
Together, these receptors regulate a delicate balance between excitotoxic and anti-inflammatory pathways 
in astrocytes, influencing their role in CNS physiology and pathology.

The interplay between P2 and P1 receptors orchestrates critical astrocytic processes, including calcium 
dynamics, energy metabolism, and immune responses. Dysregulation of these signaling pathways is 
implicated in a variety of CNS disorders. In neurodegenerative diseases such as Alzheimer’s and 
Huntington’s, aberrant P2X7 and A2A receptor activity drives chronic neuroinflammation, a key factor in 
disease progression [222, 223]. Similarly, in ischemic stroke, the neuroprotective effects of the A1 receptor 
stand in contrast to the tissue repair-promoting functions of P2Y2 [224, 225]. In chronic pain and epilepsy, 
alterations in P2X4 and P2Y1 receptor signaling contribute significantly to disease pathology [184, 226]. 
The diverse roles of these purinergic receptors underscore their therapeutic potential, offering 
opportunities to target neurodegeneration, inflammation, and injury repair effectively (Figure 4).

The pivotal roles of purinergic signaling in microglial function: 
mechanisms, receptor dynamics, and neuroinflammatory implications
Microglia relies heavily on purinergic signaling to regulate their diverse physiological and pathological 
roles [75, 227]. Purinergic receptors play a central role in modulating microglial functions and processes, 
including cell dynamics, phagocytosis, chemotaxis, and the release of inflammatory mediators [75, 228]. 
Different P2Y and P2X receptor subtypes are critical for these activities, with the involvement of each 
receptor varying according to the activation state of the microglia in response to ATP or ADP signaling 
(Figure 5) [229, 230]. These dynamics enable both homeostatic regulation and responses to pathological 
stimuli within the brain. Each receptor subtype contributes uniquely to microglial functions, including 
cellular motility and interactions with neurons [25].

P2X receptors in microglia

P2X receptors, particularly P2X4 and P2X7, are expressed in microglia and play crucial roles in injury, 
inflammation, and pain responses [180, 231, 232].

P2X4 receptors play a pivotal role in regulating inflammatory responses and are closely associated 
with neuropathic pain. Activation by ATP induces calcium influx through the receptor, which triggers the 
p38 MAPK pathway and leads to the release of BDNF [181, 207, 233–235]. BDNF enhances dorsal horn 
neuron excitability, contributing to pain sensitivity, especially following nerve or SCI. Additionally, P2X4 
receptors modulate microglial activity, amplifying pro-inflammatory signaling and cytokine release, which 
exacerbates neuroinflammation and promotes further neuronal damage. This dual role in pain modulation 
and glial activation underscores the importance of P2X4 in chronic pain and neuroinflammatory conditions 
[236, 237].

P2X7 receptors are minimally expressed in homeostatic microglia, with quantitative analyses 
indicating low surface expression and transcript levels under normal physiological conditions [238, 239]. 
However, these receptors are highly expressed in meningeal macrophages, highlighting cell-type-specific 
expression patterns within the CNS [239]. In the context of inflammation and neurodegeneration, microglial 
P2X7R expression may become upregulated, suggesting a role in pathological states [238]. Notably, P2X7R 
has been implicated in synaptic pathology and behavioral deficits. In a mouse model of Rett syndrome, 
pharmacological inhibition of P2X7R ameliorated dendritic spine abnormalities and improved social 
behavior, further supporting its involvement in neurodevelopmental disorders [238].
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Figure 5. Purinergic receptor subtypes in microglia: expression, activation, and their functional and pathophysiological 
roles. D2R: D2 receptor; NF-κB: nuclear factor kappa B

P2X7R plays a crucial role in neuroinflammatory signaling. Activated by high extracellular ATP 
concentrations (> 100 μM), P2X7R induces cation permeability, particularly for Ca2+, and activates 
diacylglycerol lipase (DAGL)-mediated inflammatory pathways [240–243]. These receptors are essential 
for the release of pro-inflammatory cytokines, emphasizing their significance in neuroinflammation.

Electrophysiological studies have provided no evidence supporting the formation of a large pore by 
P2X7R. The receptor’s single-channel conductance (15–20 pS) remains consistent even during prolonged 
ATP exposure, indicating that pore dilation is not an intrinsic property of P2X7R. Instead, the observed 
increase in membrane permeability to large molecules during sustained P2X7R activation may involve 
alternative mechanisms, such as the recruitment of pannexin-1 channels, the involvement of other ion 
channels and transporters, or specific intrinsic properties of the P2X7R channel [244–246]. High-resolution 
single-channel recordings further distinguish the unitary conductance of P2X7R (approximately 15 pS) 
from other surface channels in whole-cell recordings of rodent astrocytes.

P2Y receptors in microglia

The P2Y12 receptor is a crucial marker of microglial homeostasis. Under physiological conditions, its 
activation by ATP or ADP enhances microglial motility and structural responsiveness, promoting 
lamellipodia formation, which is essential for chemotaxis. This enables microglia to migrate toward ATP, 
signaling cellular distress or injury [115, 228, 247–249]. Impaired migration in P2Y12-deficient microglia 
underscores its critical role in chemotaxis [250]. P2Y12 signaling engages pathways such as 
phosphatidylinositol 3-kinase (PI3K)-Akt and PLC, which are integral to ATP/ADP-driven chemotaxis [251, 
252]. Additionally, P2Y12 activation supports cellular protrusions by promoting integrin-β1 accumulation 
at microglial terminals [253]. While pharmacological inhibition or genetic deletion of P2Y12 disrupts 
injury-induced chemotaxis, basal activity remains unaffected [190, 191]. Interestingly, state-dependent 
dynamics reveal reduced microglial motility during wakefulness, mediated by β2-adrenergic receptors 
rather than P2Y12 [254].

Beyond chemotaxis, P2Y12 contributes to pro-inflammatory signaling, including nuclear factor kappa B 
(NF-κB) activation via potassium efflux and THIK-1 channels, which affects inflammasome activation [255, 
256]. It also influences synaptic plasticity in the visual cortex by promoting microglial process arborization 
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and maintaining neuron-microglia structural connections. Notably, ischemic events reduce microglial-
neuron interactions upon P2Y12 inhibition [115, 257, 258]. Both P2Y12 and P2Y13 receptors mediate 
microglial process motility. In their surveying state, microglia extend and retract processes to monitor the 
CNS environment. Upon neuronal injury, ATP or ADP release activates P2Y12, driving chemotactic 
responses through PI3K and PLC signaling cascades, calcium influx, and cytoskeletal rearrangements [259–
262]. These mechanisms are crucial in neurodegenerative conditions like MS, where microglia migrate to 
engulf apoptotic neurons and modulate inflammation [121, 263]. The absence of P2Y13 impairs microglial 
morphology and ramification, highlighting its chemotactic role [259, 264]. P2Y13 also influences 
hippocampal neurogenesis and reduces pro-inflammatory cytokine expression in neuropathic pain models 
[265, 266]. Despite these diverse roles, basal microglial surveillance persists in the absence of P2Y12 and 
P2Y13, suggesting that normal ATP/ADP levels may not fully activate these receptors [259, 267].

P2Y6 receptors are also vital in regulating microglial functions. P2Y6R initiates phagocytosis of 
apoptotic cells and neuronal debris. This process involves PLC activation, InsP3 production, and calcium 
release, enhancing debris clearance [268–270]. Excessive ATP release during pathological conditions, such 
as epilepsy, may desensitize microglia to ATP signals, impairing phagocytosis [268–270]. Furthermore, 
P2Y6R shifts microglial behavior from migration to phagocytosis based on environmental cues, 
demonstrating a complementary role to P2Y12 in microglial dynamics [179, 271–273]. Other P2Y 
receptors, such as P2Y1 and P2Y4, also contribute to microglial activities. P2Y1 activation by ADP supports 
migration, while P2Y4 facilitates pinocytosis and migration [274, 275].

A1 and A3 adenosine receptors in microglia

A1R is highly expressed in microglia and suppresses ATP-induced morphological changes without 
regulating cytoskeletal alterations like A2ARs. A1R activation inhibits calcium influx, reducing ATP-induced 
cell rounding and membrane ruffling [159, 166, 276, 277]. In TBI and EAE models, A1R activation limits 
microglial activation and neuroinflammation, as evidenced by comparisons between wild-type and A1R 
knockout mice [278–280].

A3R interacts with P2Y12R to mediate microglial process extension and migration in response to ATP 
and adenosine. A3R activation also mitigates neuropathic pain by suppressing microglial activation in the 
spinal cord dorsal horn [75, 281]. ATP released by microglia is degraded into adenosine via ectoenzymes 
like CD39 and CD73, establishing a feedback loop that recruits microglia to injury sites [282, 283].

In CD39-deficient mice, microglial migration toward ATP is impaired, while phagocytic activity 
increases independently of ATP stimulation [283, 284]. Combined CD39 and CD73 deficiency reduces 
microglial network complexity, which can be restored by elevated adenosine levels [283, 285].

In PD models, CD73-derived A2AR signaling modulates microglial morphology and activation. CD73 
deficiency attenuates pro-inflammatory responses to LPS while promoting microglial process extension in 
injury and PD models [75, 286–288]. Understanding A1R and A3R roles offers promising therapeutic 
opportunities for managing neuroinflammatory processes in neurological disorders.

A2A receptors in microglia and neuroinflammation

Microglia are central to maintaining CNS homeostasis, dynamically monitoring their microenvironment 
through process extension and retraction [289, 290]. These movements are driven by chemoattractants like 
ATP and ADP, which activate P2Y12R on microglia [75, 83]. In response to inflammatory stimuli, microglia 
transition from a ramified, resting state to an amoeboid, activated form. This transition is characterized by 
process retraction, increased phagocytosis, and the release of bioactive molecules, which play a key role in 
neuroinflammatory processes [291, 292]. A2AR regulates this transition. Inflammatory conditions 
upregulate A2AR expression while reducing P2Y12R levels, promoting reactive microglial states [51, 291, 
293]. Adenosine, derived from ATP, activates A2AR pathways, modulating microglial behavior and 
increasing their sensitivity to inflammatory signals [287, 294].
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A2ARs have diverse roles in CNS, including enhancing glutamate release, which exacerbates 
excitotoxicity, and promoting microglial activation [295, 296]. A2AR antagonists have shown 
neuroprotective effects in preclinical models of neurodegenerative diseases [297, 298]. In PD, they are 
particularly effective when combined with dopamine D2 receptor (D2R) agonists, enhancing weakened 
D2R signaling in the striatum caused by dopaminergic neuron loss and reducing neuroinflammation in the 
extrapyramidal system [288, 299–303].

The activation of A2ARs exacerbates neuroinflammation in various contexts. In perinatal brain injury 
models, A2AR activation increases pro-inflammatory markers such as IL-1β, IL-6, and TNF-α, effects 
mitigated by A2AR antagonists [75, 159]. These antagonists also reverse glucocorticoid-induced microglial 
hyper-ramification and associated anxiety-like behaviors, while reducing cytokine levels following LPS 
exposure [75].

The role of glial purinergic receptors in neurological disorders: 
mechanistic insights and therapeutic implications
Purinergic receptors play a central role in the pathophysiology of numerous neurological disorders by 
regulating processes such as neuronal excitability, neuroinflammation, and glial cell function [24, 54, 75]. 
These receptors are key mediators in amplifying inflammatory cascades and exacerbating neuronal 
dysfunction, which contribute to the progression of conditions such as epilepsy, MS, AD, PD, ALS, and 
traumatic brain and spinal cord injuries (TBI/SCI) [3]. Their critical involvement in these pathologies 
highlights their therapeutic potential, with recent advances in targeting purinergic signaling offering 
innovative strategies for improving clinical outcomes (Figure 6).

Figure 6. The role of glial purinergic receptors in disease progression and their potential as therapeutic targets in 
neurological disorders. IL-1β: interleukin-1β; TNF-α: tumor necrosis factor-alpha; IL-6: interleukin-6; BDNF: brain-derived 
neurotrophic factor; BBB: blood-brain barrier; ASD: autism spectrum disorder
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The role of glial purinergic receptors in epilepsy: mechanisms of neuroinflammation and 
therapeutic opportunities

In epilepsy, glial purinergic receptors play pivotal roles in modulating neuronal excitability and 
neuroinflammation—two interconnected processes critical to seizure initiation and propagation [226]. The 
P2X7R, predominantly expressed on microglia, serves as a key driver of neuroinflammatory responses. Its 
activation induces the release of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6 via 
inflammasome activation, exacerbating neuronal excitability and contributing to increased seizure 
frequency and severity [304–306]. Furthermore, P2X7R activation facilitates ATP release from glial cells, 
amplifying purinergic signaling and sustaining a pro-inflammatory microenvironment that worsens seizure 
pathology [240, 307]. Targeted antagonism of P2X7R has shown significant promise in preclinical models 
by reducing neuroinflammation, dampening seizure severity, and protecting against neuronal loss.

The P2Y1R also plays a critical role in epilepsy pathophysiology. P2Y1R activation regulates astrocytic 
calcium signaling, which influences glutamate release into the synaptic cleft. Excessive glutamate release, 
driven by P2Y1R, can lead to excitotoxicity, a process that damages or kills neurons and contributes to 
epilepsy progression [15, 211, 308]. Therapeutic strategies targeting P2Y1R have demonstrated potential in 
mitigating excitotoxic damage by modulating glutamate dynamics [211, 309], thereby providing 
neuroprotection and enhancing seizure control.

Similarly, the P2X4R, primarily localized to microglia, is implicated in neuroinflammatory processes 
associated with epilepsy. Activation of P2X4R triggers the release of BDNF [235, 310], which exacerbates 
hyperexcitability in neuronal circuits. Targeting P2X4R may attenuate neuroinflammation and reduce 
seizure susceptibility [10, 311], offering a dual approach to improving seizure control and limiting neuronal 
damage.

These findings underscore the critical roles of glial purinergic receptors in epilepsy. Their involvement 
in maintaining the delicate balance between neuroinflammation and excitability not only drives disease 
progression but also highlights their potential as therapeutic targets. Advances in purinergic receptor 
modulation offer promising avenues for developing novel, glial-focused interventions aimed at reducing 
seizure burden and preserving neuronal integrity in epilepsy.

Glial purinergic receptors in MS: mediators of neuroinflammation and therapeutic targets

In MS, glial purinergic receptors, including P2X7R, P2Y1R, P2Y12R, and P2Y2R, play crucial roles in 
modulating neuroinflammatory responses and driving disease progression [85, 179, 312]. These receptors 
regulate the activation of glial cells, particularly microglia and astrocytes, which are central to the 
inflammatory processes underlying demyelination and neurodegeneration [129, 227].

The P2X7R, predominantly expressed on microglia, serves as a key mediator of pro-inflammatory 
signaling in MS [59, 85]. Activation of P2X7R triggers the release of cytokines such as IL-1β, TNF-α, and IL-6 
via inflammasome pathways, exacerbating the inflammatory cascade. This heightened inflammatory 
response contributes to myelin sheath degradation and axonal damage, hallmark features of MS pathology 
[85, 313, 314]. Moreover, sustained P2X7R activation promotes ATP release, creating a feedback loop that 
perpetuates glial activation and inflammation. Preclinical studies suggest that P2X7R inhibition can 
significantly reduce pro-inflammatory cytokine production, attenuate microglial activation, and mitigate 
neuroinflammation, thereby offering neuroprotection and reducing myelin loss [59, 202].

MS is primarily driven by the infiltration and activation of autoreactive lymphocytes, particularly CD4+ 
T cells of the Th1 and Th17 subsets, which secrete pro-inflammatory cytokines such as interferon-gamma 
(IFN-γ) and IL-17, contributing to CNS tissue damage and immune tolerance breakdown [315, 316]. 
Purinergic signaling plays a pivotal role in regulating T cell activity during MS pathogenesis, where ATP 
released from damaged and activated immune cells acts as a DAMP by binding to P2X and P2Y receptors on 
CD4+ T cells, modulating their activation, differentiation, and cytokine secretion [76]. Activation of P2X7R 
on Th1 and Th17 cells further enhances IL-1β and IL-18 release, amplifying neuroinflammation and lesion 
progression [57]. Beyond direct T cell modulation, purinergic signaling influences immune cell infiltration 
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and BBB integrity in MS, with adenosine signaling through A2A receptors inhibiting T cell adhesion and 
reducing cytokine production, while ATP-P2X7 signaling promotes BBB disruption and T cell trafficking 
into the CNS [58]. EAE, a widely used MS model, has demonstrated that pharmacological blockade of P2X7R 
reduces both CD4+ T cell infiltration and disease severity, highlighting the therapeutic potential of targeting 
purinergic pathways in MS [32].

The P2Y12R, predominantly expressed on resting microglia, plays a dual role in MS pathophysiology. 
Under physiological conditions, P2Y12R facilitates microglial surveillance [317]; however, during MS, its 
activation promotes microglial migration and aggregation at injury sites. This response amplifies 
inflammatory signaling and contributes to tissue damage [318].

Similarly, the P2Y2R is implicated in astrocytic activation and immune cell recruitment, further 
aggravating the inflammatory environment in MS. P2Y2R activation induces the release of chemokines and 
adhesion molecules, facilitating leukocyte infiltration into the CNS and exacerbating demyelination [318–
320]. Targeting P2Y2R may help reduce astrocytic-driven inflammation and immune cell infiltration, 
thereby slowing disease progression.

The P2Y1R is another critical player in MS pathology, primarily through its role in modulating 
astrocytic calcium signaling. P2Y1R activation influences the release of pro-inflammatory mediators, 
exacerbating neuronal excitotoxicity [15, 184, 211]. Inhibiting P2Y1R activity has the potential to attenuate 
astrocyte-mediated neuroinflammation and protect neurons from further damage.

These findings underscore the complex roles of glial purinergic receptors in MS. Their involvement in 
regulating glial activation, neuroinflammation, and tissue damage highlights their potential as therapeutic 
targets. Advances in receptor-specific modulation offer promising strategies to mitigate inflammation, slow 
disease progression, and preserve neurological function in MS patients.

Role of P2X7 receptor-mediated neuroinflammation in AD pathogenesis and therapeutic targeting

In AD, purinergic signaling, particularly through the P2X7R, plays a critical role in the neuroinflammatory 
processes that contribute significantly to neuronal death and cognitive decline. P2X7R, predominantly 
expressed on microglia, is activated by extracellular ATP, which is released during cellular stress or injury 
[66, 202, 321, 322]. Upon activation, P2X7R triggers a cascade of pro-inflammatory cytokine release, 
primarily through inflammasome-mediated pathways. This cascade exacerbates neuroinflammation, a key 
pathological feature of AD, and accelerates disease progression by amplifying the inflammatory 
microenvironment surrounding neurons [189, 240].

Chronic activation of P2X7R contributes to a self-perpetuating cycle of neuroinflammation, 
characterized by persistent microglial activation. This, in turn, leads to further cytokine production, 
oxidative stress, and the recruitment of peripheral immune cells into the brain [3, 52, 197, 209]. These 
processes drive synaptic dysfunction, a critical early event in AD pathology, and neuronal loss, ultimately 
resulting in the cognitive deficits characteristic of the disease. The neuroinflammatory response triggered 
by P2X7R activation also contributes to the formation of amyloid plaques and tau tangles, the hallmark 
proteinopathies of AD. The inflammation surrounding these plaques exacerbates their toxic effects on 
neurons [3, 52], further accelerating disease progression.

Recent studies have highlighted the potential of targeting P2X7R as a therapeutic strategy to mitigate 
neuroinflammation and slow the progression of AD. Inhibition of P2X7R has shown promise in preclinical 
models by reducing the release of pro-inflammatory cytokines, dampening microglial activation, and 
protecting synaptic integrity [307, 323, 324]. Modulating this receptor may help prevent the amplification 
of neuroinflammatory pathways that contribute to neuronal damage. Additionally, P2X7R antagonism could 
help preserve cognitive function by reducing synaptic loss and protecting neurons from excitotoxicity 
induced by excessive glutamate release.
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Purinergic receptors in PD: mechanisms of neuroinflammation and therapeutic implications

In PD, purinergic receptors such as P2X7R, P2X4R, P2Y1R, and P2Y12R play essential roles in the 
neuroinflammatory processes that drive dopaminergic neuron degeneration, a hallmark of the disease [24, 
179, 266]. Activation of P2X7R and P2X4R, both predominantly expressed on microglia, triggers the release 
of pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6. These cytokines perpetuate a chronic 
neuroinflammatory environment that exacerbates neuronal damage, especially in dopaminergic pathways 
[325]. This microglial activation is a critical contributor to the progressive loss of dopaminergic neurons, 
leading to motor dysfunction and other PD-related symptoms [52, 326]. Additionally, P2Y1R activation is 
implicated in the exacerbation of glutamate-induced excitotoxicity, a process that significantly damages 
neurons and contributes to the ongoing neurodegeneration in PD [309, 327].

P2Y12R, another key receptor expressed on microglia, modulates glial cell responses and amplifies the 
inflammatory cascade, thereby promoting sustained neuroinflammation and neuronal loss [83, 227]. This 
receptor’s role in regulating microglial activation and migration further highlights its contribution to the 
chronic inflammatory environment that characterizes PD pathophysiology.

Given the central roles of these purinergic receptors in promoting neuroinflammation and neuronal 
damage, targeting them presents a multifaceted approach for mitigating disease progression. Antagonism 
of P2X7R has shown promise in preclinical models by reducing microglial activation and pro-inflammatory 
cytokine release, potentially preserving dopaminergic neurons and improving motor function. Similarly, 
modulating P2Y1R and P2Y12R activity could help limit excitotoxicity and attenuate neurodegeneration, 
further contributing to the protection of dopaminergic neurons [224, 328, 329]. These therapeutic 
strategies hold significant potential for slowing the progression of PD and improving patient outcomes by 
addressing the underlying neuroinflammatory mechanisms that drive disease pathogenesis.

Purinergic receptors in ALS: modulation of P2X7R and P2Y1R as therapeutic strategies to mitigate 
neuroinflammation and excitotoxicity

In ALS, purinergic signaling, particularly through the P2X7R, plays a pivotal role in driving microglial 
activation and neuroinflammation, both of which are key contributors to the progressive degeneration of 
motor neurons [66, 240, 330]. The activation of P2X7R on microglia leads to the release of a variety of pro-
inflammatory cytokines, which further amplify the inflammatory milieu in the CNS. This enhanced 
neuroinflammatory environment exacerbates motor neuron damage, accelerating disease progression 
[331]. Additionally, P2Y1R contributes to excitotoxicity by modulating glutamate signaling, thereby 
intensifying neuronal injury [332].

Recent preclinical studies have underscored the potential therapeutic benefits of targeting P2X7R, with 
antagonists showing promise in inhibiting microglial activation, reducing neuroinflammation [333, 334], 
and slowing the rate of motor neuron degeneration [335]. Inhibition of P2Y1R, on the other hand, could 
help reduce glutamate-mediated excitotoxicity, offering further protection against neuronal loss [184, 309]. 
Together, these strategies provide a multifaceted approach to managing ALS, highlighting the potential of 
purinergic receptor modulation as a means to delay disease onset, slow progression, and ultimately 
preserve motor neuron function. These findings suggest that targeting glial purinergic receptors could 
become a valuable therapeutic strategy in the fight against ALS.

Purinergic receptors in TBI/SCI: pathophysiological roles and therapeutic potential

Following TBI/SCI, purinergic signaling plays a crucial role in the initiation and propagation of 
neuroinflammatory cascades that exacerbate secondary neuronal damage and tissue degeneration [52, 
336–338]. In these contexts, the activation of purinergic receptors, particularly P2X7R, P2X4R, and P2Y2R, 
is central to the neuroinflammatory response that not only contributes to the immediate tissue injury but 
also impedes the long-term recovery process [56, 339, 340].

Activation of the P2X7R triggers the release of a wide array of pro-inflammatory cytokines from 
microglia and astrocytes. This cytokine release amplifies the neuroinflammatory milieu, further 
exacerbating neuronal injury and impairing the ability of the CNS to effectively repair itself [179, 208]. The 
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inflammatory environment that emerges from P2X7R activation also plays a significant role in the 
disruption of the BBB and the recruitment of peripheral immune cells [59, 240, 341], thereby prolonging 
inflammation and increasing the extent of secondary damage.

P2X4R and P2Y2R also contribute to glial cell activation and modulate neuroinflammatory responses. 
P2X4R is involved in the regulation of microglial activity, where its activation leads to the release of 
additional pro-inflammatory mediators, such as reactive oxygen species (ROS) and cytokines [75, 232, 342]. 
P2Y2R, on the other hand, has been implicated in the regulation of astrocytic response to injury and 
modulating the release of glutamate [150, 343], further intensifying excitotoxicity and exacerbating 
neuronal death. These purinergic receptors collectively hinder the resolution of inflammation and 
complicate tissue repair processes, contributing to the progression of both brain and spinal cord injuries.

Targeting these glial purinergic receptors offers a promising strategy to mitigate the harmful effects of 
neuroinflammation and excitotoxicity following TBI/SCI. In particular, antagonism of the P2X7 receptor has 
shown potential in preclinical models by reducing microglial activation, cytokine production, and neuronal 
damage, thereby limiting the extent of secondary injury [240, 313, 344]. Additionally, modulating P2X4R 
and P2Y2R activity could help in fine-tuning the inflammatory response [14, 342, 345], facilitating glial cell 
reactivity and promoting tissue repair mechanisms.

Therapeutic approaches that focus on modulating purinergic signaling pathways hold the potential to 
enhance functional recovery by reducing neuroinflammation, promoting neuroprotection, and supporting 
tissue repair. By targeting purinergic receptors, it may be possible to mitigate the deleterious effects of 
inflammation while simultaneously enhancing the endogenous repair mechanisms that are critical for long-
term recovery and functional outcomes following traumatic injury to the brain or spinal cord. These 
strategies, still under investigation, may offer novel therapeutic avenues for improving both the short- and 
long-term prognosis of TBI/SCI patients.

P2X receptor dysregulation in Rett syndrome and autism spectrum disorder

Emerging evidence increasingly implicates P2X receptors, particularly P2X7 and P2X4, in the regulation of 
neuroinflammatory processes associated with Rett syndrome and autism spectrum disorder (ASD) [346–
349]. P2X receptors mediating Ca2+ and Na⁺ influx to regulate neuroimmune signaling, including NLRP3 
inflammasome activation, cytokine release, and cell survival pathways [350, 351].

In Rett syndrome, mutations in the methyl-CpG-binding protein 2 (MECP2) gene impair synaptic 
plasticity and drive chronic neuroinflammation, a key pathological feature of the disorder [352]. P2X7 
receptor activation in astrocytes and microglia has been implicated in excessive pro-inflammatory cytokine 
release, contributing to synaptic dysfunction and neuronal injury. Astrocytic P2X7 activation disrupts 
synaptic homeostasis by promoting excessive gliotransmitter release (e.g., glutamate and ATP), heightening 
excitotoxicity and neuronal stress [66, 85]. Concurrently, microglial P2X7 activation amplifies ATP-driven 
calcium influx, oxidative stress, and a self-sustaining inflammatory feedback loop. This chronic microglial 
reactivity, characterized by elevated pro-inflammatory cytokines and ROS, exacerbates neurodegeneration, 
synaptic instability, and phenotypic severity in Rett syndrome [179, 238]. Moreover, P2X7-mediated 
calcium dysregulation can disrupt neurodevelopmental processes, including dendritic growth and synapse 
formation, further compounding the disorder’s neurological deficits [238, 353].

Similarly, ASD has been increasingly linked to altered purinergic signaling through the dysregulation of 
P2X7 and P2X4 receptors [347, 354]. Elevated extracellular ATP levels and overactivation of microglial 
P2X7 receptors have been observed in ASD models, correlating with increased expression of pro-
inflammatory cytokines such as IL-6 and IL-1β. This neuroinflammatory state can impair synaptic pruning 
and neurogenesis, critical processes during early brain development [355]. Microglial cells exhibit 
exaggerated activation due to P2X7 stimulation, contributing to aberrant microglial engulfment of synaptic 
elements and a failure to appropriately regulate neuronal connectivity [86, 304]. Astrocytes, similarly, 
become reactive in ASD models, leading to excessive ATP release and disruption of normal neuronal-glial 
signaling pathways [356].
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P2X4 receptor involvement in microglial motility and synaptic plasticity has also been implicated in 
ASD, with aberrant activity contributing to altered neuronal circuit formation and behavioral abnormalities, 
such as deficits in social interaction and sensory processing [310]. Notably, microglial P2X4 activation has 
been associated with impaired phagocytic clearance of apoptotic cells and debris, further compromising the 
neurodevelopmental environment [357].

Therapeutically, targeting the P2X7 receptor has emerged as a promising strategy for mitigating 
neuroinflammation and its pathological consequences in both Rett syndrome and ASD. Pharmacological 
inhibitors of P2X7, such as Brilliant Blue G and selective small-molecule antagonists, have shown potential 
in reducing microglial activation and pro-inflammatory cytokine release in preclinical models [358]. 
Additionally, genetic approaches, such as conditional knockout models, have demonstrated reduced 
neuroinflammation and improved synaptic function [222], highlighting the receptor’s role as a viable 
therapeutic target. Targeting astrocyte activation through P2X7 inhibition may also restore synaptic 
homeostasis and limit glutamate excitotoxicity in both disorders [359].

Exploring purinergic signaling in glial cells as a therapeutic target for CNS 
disorders
Glial cells exhibit significant involvement in pathological states [360, 361]. Purinergic signaling emerges as 
a key regulator of neuroinflammation, neurodegeneration, and synaptic dysfunction, especially under 
conditions of stress, injury, or inflammation [3, 6]. This positions purinergic receptors as promising 
therapeutic targets for CNS disorders (Table 4).

Table 4. Glial purinergic receptors: roles in CNS function, and therapeutic potential in neurological disorders

Receptor 
type

Role in CNS Therapeutic potential References

P2X1 Regulates cerebral blood flow, neurovascular 
coupling, and blood-brain barrier function

Modulation could improve ischemic stroke 
outcomes by enhancing blood flow and 
neurovascular responses

[362–364]

P2X4 Involved in neuropathic pain signaling, synaptic 
plasticity, microglial activation, and cytokine 
release

Antagonists are being studied for 
neuropathic pain and chronic inflammatory 
conditions

[180, 181, 365]

P2X5 Modulates glial cell proliferation and inflammatory 
responses

Targeting P2X5 receptors could regulate 
gliosis, neuroinflammation, and 
neurodegeneration

[366–368]

P2X7 Drives inflammasome activation, cytokine release, 
and neuroinflammation. Involved in Alzheimer’s, 
Parkinson’s, and multiple sclerosis 
pathophysiology

Antagonists (e.g., BBG) reduce 
neuroinflammation and neurodegeneration 
in various CNS diseases

[66, 240, 313, 
326, 369, 370]

P2Y1 Modulates microglial activation, neuronal 
excitability, and blood-brain barrier integrity

Targeting P2Y1 receptors could aid in 
conditions like multiple sclerosis and 
traumatic brain injury

[104, 119, 371]

P2Y6 Facilitates phagocytosis, aiding in the clearance of 
cellular debris and neurotoxic aggregates

Enhancing P2Y6 activity could help clear 
amyloid plaques in Alzheimer’s and alpha-
synuclein in Parkinson’s

[272, 372–374]

P2Y12 Essential for microglial chemotaxis and 
inflammatory response

Targeting P2Y12 receptors may improve 
recovery and reduce damage in stroke, 
Alzheimer’s, and other CNS injuries

[115, 375–377]

P2Y13 Modulates microglial migration, activation, synaptic 
plasticity, and neuroinflammation

Antagonists may regulate glial activation in 
neurodegenerative diseases and acute 
CNS injuries

[264, 267, 378]

A1 
adenosine

Reduces excitotoxicity, regulates neurotransmitter 
release, and provides neuroprotection, particularly 
during ischemic events

A1 receptor agonists are potential 
treatments for ischemia, epilepsy, and 
neurodegenerative diseases

[379–382]

A2A 
adenosine

Modulates neuroinflammation, synaptic plasticity, 
and myelination. Suppresses pro-inflammatory 
cytokine release

A2A antagonists could reduce 
neuroinflammation and improve 
dopaminergic signaling in Parkinson’s 
disease

[194, 302, 382, 
383]

BBG: Brilliant Blue G; CNS: central nervous system
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Astrocytes play a protective role by releasing ATP, which is converted to adenosine through 
ectoenzymes such as CD39 and CD73. Adenosine, acting via A1 adenosine receptors, reduces excitatory 
neurotransmission, protecting neurons from excitotoxicity [173, 384, 385]. Enhancing ectoenzyme activity 
represents a potential strategy for conditions like epilepsy, characterized by neuronal hyperexcitability 
[386].

ATP interacts with microglial receptors, such as P2X7 and P2Y12, to drive neuroinflammation by 
promoting the release of pro-inflammatory cytokines. This pathological cascade exacerbates neuronal 
damage in conditions like AD, MS, and stroke [52, 179, 202]. Modulating P2Y12 receptors has been 
proposed as a strategy to prevent secondary neuronal damage following stroke [387, 388]. Additionally, 
enhancing astrocytic adenosine production can reduce neuronal excitability and suppress seizures [389, 
390], while inhibiting P2X7 receptor activity may alleviate inflammation and protect against demyelination 
in MS [59, 391]. Therapeutic strategies targeting ATP release, including inhibition of Pannexin-1 channels 
or modulation of microglial purinergic receptors, have shown promise in reducing immune activation and 
preserving neuronal integrity [392]. Furthermore, purinergic signaling presents promising therapeutic 
opportunities for neuropathic pain, with targeting P2X4 receptors on microglia demonstrating potential in 
alleviating pain hypersensitivity in neuropathic conditions [180, 181, 393].

In chronic neurodegenerative disorders, sustained P2X7 receptor activation drives inflammasome 
assembly and perpetuates inflammation [370, 394]. Selective P2X7 antagonists have demonstrated efficacy 
in reducing neuroinflammation and neuronal damage in preclinical models [326, 395]. Similarly, 
modulating A2A receptors may attenuate inflammation in Alzheimer’s and enhance dopaminergic signaling 
in PD [298, 396].

Future therapeutic strategies should prioritize the development of receptor-specific agonists and 
antagonists to precisely modulate purinergic signaling pathways. This approach could allow for targeted 
interventions that either enhance or inhibit purinergic signaling in a controlled manner, improving clinical 
outcomes in a variety of neurological conditions. Furthermore, enhancing ectoenzyme activity to regulate 
adenosine levels offers another promising avenue, as it could fine-tune the balance between purine 
nucleotides and their receptors, ultimately influencing neuroinflammatory processes, synaptic plasticity, 
and neuronal excitability. Exploring receptor crosstalk within the quadripartite synapse, which involves 
interactions between neurons, astrocytes, and microglia, could uncover novel mechanisms of cellular 
communication and identify new targets for intervention.

Additionally, targeting cell-type and region-specific purinergic responses may further optimize 
therapeutic precision, minimizing unintended effects on non-target cells and enhancing the efficacy of 
treatment. Advances in single-cell genomics, optogenetics, and spatial transcriptomics could be particularly 
valuable in dissecting the heterogeneity of purinergic receptor expression across different brain regions 
and cell types. However, significant challenges remain in achieving tissue specificity and minimizing off-
target effects, which continue to pose obstacles to the development of safe and effective therapies. To 
address these challenges, extensive preclinical validation using animal models, as well as robust 
translational studies, will be essential for ensuring the safety and efficacy of novel purinergic-based 
therapies in treating CNS disorders. This multifaceted approach holds the potential to not only advance our 
understanding of purinergic signaling but also to lead to breakthroughs in the treatment of neurological 
diseases.

Conclusions
Purinergic receptor signaling plays a pivotal role in regulating cellular functions across physiological and 
pathological states, particularly within the CNS. Its involvement in neuroinflammation, neurodegeneration, 
and synaptic communication highlights its therapeutic potential for addressing a range of neurological and 
cardiovascular diseases. The dynamic interplay between ATP and adenosine, mediated by P1 and P2 
receptors, is crucial for maintaining neural network functionality and homeostasis through the modulation 
of neuronal and glial interactions.
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Emerging insights into purinergic pathways emphasize the delicate balance between pro-inflammatory 
and anti-inflammatory signaling. Distinct receptor subtypes, including P2Y, P2X, and adenosine receptors, 
orchestrate complex microglial and astrocytic responses that influence disease progression. Targeting these 
pathways offers promising avenues for therapeutic intervention, such as modulating key receptors like 
P2X7 or regulating ectoenzymes CD39 and CD73 to balance ATP and adenosine levels. These strategies 
could enable tailored approaches for managing chronic neuroinflammatory conditions, including epilepsy, 
MS, and neurodegenerative diseases.

Despite these advances, significant research limitations persist. Many studies rely heavily on in vitro 
models or rodent systems, which may not fully capture the intricacies of human purinergic signaling. The 
heterogeneity of purinergic receptor subtypes and their context-dependent roles complicate the 
identification of universally effective therapeutic targets. Additionally, the off-target effects and systemic 
consequences of modulating purinergic signaling remain poorly understood, limiting the translational 
potential of current findings.

Future research must focus on addressing these challenges by employing more sophisticated models, 
such as human organoids or advanced in vivo systems, to better replicate the complexity of CNS 
environments. Longitudinal studies exploring receptor dynamics in chronic disease states are crucial for 
understanding the temporal and spatial specificity of purinergic signaling. Furthermore, the development of 
highly selective modulators with minimal side effects will be critical to advancing therapeutic applications.

Critically, while literature has illuminated key aspects of purinergic signaling, gaps remain in 
understanding the interplay between purinergic receptors and other signaling pathways. A more 
integrative approach, combining molecular, genetic, and systems-level studies, is essential for uncovering 
novel regulatory mechanisms. By addressing these limitations and pursuing innovative directions, the field 
holds the potential to transform our understanding of CNS pathophysiology and develop effective 
treatments that enhance neuroprotection, restore synaptic integrity, and improve clinical outcomes in a 
wide array of neurological disorders.
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