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Abstract
Aim: Alzheimer’s disease (AD) is associated with several electrophysiological biomarkers. These 
biomarkers are associated with global decline in cognition and a diagnosis of AD. However, a specific 
electrophysiological biomarker is not characterized as normal-functioning older adults convert to AD. The 
longitudinal retrospective study was conducted to describe an electrophysiological biomarker indicator for 
AD as normal-functioning older adults convert to a diagnosis in the AD continuum over a 2-year period.
Methods: The study was conducted with 54 community-residing older adults, ranging from normal 
functioning to a diagnosis of AD. All initial and follow-up electrophysiological evaluations were completed 
in the New York University Brain Research Laboratories, and overall decline assessments with the Global 
Deterioration Scale (GDS) were completed in the New York University Aging and Dementia Research 
Center. Data included measurements from the GDS and raw resting-state electroencephalogram (rsEEG), 
which was transformed into quantitative EEG (qEEG) data. Data analysis consisted of descriptive statistics 
and a Kruskal-Wallis test. The level of significance was 0.05 with a moderate effect size. Topographic brain 
images displayed electrophysiological biomarkers.
Results: A consistently increasing rsEEG theta frequency (P ≤ 0.01) occurred as normal-functioning older 
adults converted to AD across all GDS stages from the frontal to posterior regions with the progressive 
global decline. No discernible consistent electrophysiological changes were observed for rsEEG delta, alpha, 
or beta frequencies over all GDS stages. The GDS stages differed at baseline and follow-up (P ≤ 0.01). The 
rsEEG theta frequency increased with the progressive global decline across the GDS stages.
Conclusions: The consistently increasing rsEEG theta frequency may be an electrophysiological biomarker 
indicator for AD from normal functioning to a diagnosis within the AD continuum. This biomarker will 
enhance the assessment of the risk, onset, and progression of AD and potentially inform the treatment of 
AD.
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Introduction
Alzheimer’s disease (AD) is the most prevalent type of dementia worldwide with over 50 million persons 
living with diagnoses within the AD continuum [1]. By 2030, the global prevalence is estimated to reach 78 
million [1]. In the United States (US) alone, there are currently 19 million persons living with diagnoses 
within the AD continuum (preclinical, prodromal, and early stages of AD) with an estimate of 25 million by 
2030 [2, 3]. Furthermore, AD is the 7th leading cause of death in the US [4]. The cost of caring for persons 
with AD in the US was $360 billion in 2024, clearly illustrating that AD is a public health issue [5].

Since 1980s, the onset and progression of AD have been characterized by electrophysiological 
biomarkers. These biomarkers are resting-state electroencephalogram (rsEEG) delta (1.5–3.5 Hz), theta 
(3.5–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–25 Hz) frequencies [6, 7]. A diagnosis of AD correlates to 
increased rsEEG theta with a decreased rsEEG alpha [8–12] while the progressing severity is associated 
with an increased rsEEG delta and theta [11]. An increased rsEEG theta relates to increased cognitive 
decline indicative of mild cognitive impairment (MCI) or prodromal AD whereas an increased rsEEG delta 
relates to the stages of moderate to severe AD [13–15]. A decreased rsEEG theta relates to decreased word 
processing skills, which was also indicative of MCI [16]. An increased rsEEG theta occurred when normal-
functioning older adults converted to MCI within 7 years [7]. Physiologically, certain electrophysiological 
biomarkers are associated with decreased glucose metabolism [17], hypoperfusion [18], and hippocampal 
atrophy [19].

Electrophysiological biomarkers are useful in differentiating AD from vascular dementia [20], 
frontotemporal lobar dementia [21], dementia with Lewy bodies [22], and major depression [23]. However, 
electrophysiological biomarkers did not differentiate frontotemporal lobar dementia from AD with 
equanimity in the severity of the illnesses [24].

Significant associations are reported between electrophysiological biomarkers and symptoms and/or 
biologic processes indicative of AD since the mid-2010s. These symptoms and/or biologic processes are 
indicative of facial recognition, word recognition and/or recall, and the level and progression of cognitive 
impairment. The increased rsEEG theta with decreased rsEEG alpha is related to an increase in the 
progression of cognitive impairment and cognitive decline [15, 25]. An increased rsEEG theta correlated to 
decreased word comprehension and poor recognition of facial expression, both tasks relate to neural 
activity [16, 22, 26]. These results contribute to the continued investment in the goal of integrating and 
operationalizing biomarkers in clinical practice [27].

Only a change in rsEEG theta is consistently reported in persons living with a condition within the AD 
continuum. An increased rsEEG theta is reported as the earliest biomarker in the AD continuum [28]. 
Changes in rsEEG theta are observed in the parieto-occipital regions [29], the centro-parietal regions [28, 
30], and temporo-occipital regions [28] of persons with AD. This biomarker differentiated normal-
functioning older adults from those with prodromal and probable AD [28].

Measuring changes in electrophysiological biomarkers is strengthened with the use of other 
biomarkers [i.e., β-amyloid, tau (τ), and neuroinflammation markers] [31–33]. These biomarkers have 
historically been used to describe the physiology of AD [31, 33]. They contribute to physiological changes 
that impact the neural activity within and across neurons, altering the brain’s electrophysiology that is 
measurable with electrophysiological biomarkers, especially the pattern of oscillation [34, 35]. These 
biologic biomarkers contribute significantly to the understanding of the pathophysiology related to 
electrophysiological biomarkers and their association with the risk, onset, and progression of AD.
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Nevertheless, a specific electrophysiological biomarker has not been routinely observed as a consistent 
electrophysiological indicator for the risk of AD in normal-functioning older adults and their conversion to 
diagnoses within the AD continuum. Identifying such a biomarker has clinical significance in assessing the 
risk and onset of AD as older adults decline from normal functioning to diagnoses within the AD continuum. 
Therefore, the purpose of this retrospective analysis was to characterize an electrophysiological biomarker 
indicator for AD as older adults decline in their global presentation from normal functioning to AD over a 2-
year period.

Materials and methods
Design

A retrospective, descriptive design was used to analyze extracted data from 54 participants. The extracted 
data were from two databases with information related to AD, one for electrophysiological data and the 
other for clinical data. The databases resulted from a collaborative agreement between two research 
laboratories in a northeast metropolitan city. Participants provided electrophysiological data after 
providing the clinical data. The present study, a secondary analysis, was approved and received exemption 
status from the institutional review boards (IRBs) for New York University and New York University School 
of Medicine. This secondary analysis has ethical approval for informed consent exemption from New York 
University and New York University School of Medicine.

The extracted baseline (BL) and follow-up (FU) data were analyzed collectively. The FU data had a 
minimum of two years post-BL. A two-year time interval between BL and FU was selected to ensure enough 
time for the conversion from normal functioning to diagnoses within the AD continuum, facilitating the 
identification and analysis of the electrophysiological biomarkers. The median time from BL to FU was 
4 years (range = 2–14 years) for the extracted data. There was minimal variability in the data collection 
over the follow-up period. The procedures/protocols, equipment, and assessment tool were consistently 
maintained. The software quantifying the rsEEG data was assessed annually to ensure accuracy and 
consistency. The EEG technicians and clinicians were the same with the same director of the Brain Research 
Laboratories overseeing data collection over the follow-up period. Therefore, the data obtained from 
participants over the years was methodologically consistent.

Participants

The sample consisted of 54 older adults who were either normal functioning or diagnosed with prodromal 
AD or an early stage of AD at BL. The sample had a mean age of 67.3 ± 8.1 (range = 53–85). A diagnosis of 
dementia of the Alzheimer type (DAT) was based on the Diagnostic and Statistical Manual of Mental 
Disorders, 4th edition (DSM IV) [36] and probable AD according to the National Institute of Neurological 
and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association 
(NINCDS-ADRDA) criteria [37]. The sample was grouped according to the stages of the Global Deterioration 
Scale (GDS). Exclusion criteria included history of head trauma, substance abuse, signs of abnormal 
structural brain pathology, diagnosis of delirium, depression, or vascular dementia, and failure to 
discontinue any psychotropic or other cognitive-acting medication at least 2 weeks prior to the evaluation 
period.

Measurements

The GDS [38] categorized the sample by overall cognitive decline from normal functioning to a diagnosis of 
AD. The GDS is a reliability and validity scale to measure the decline of AD [39]. The GDS consists of seven 
stages. Stage GDS 1, normal functioning, relates to the absence of any subjective complaints or evidence of 
objective complaints about cognitive impairment. Stage GDS 2, preclinical or early MCI, relates to subjective 
complaints without evidence of objective cognitive impairment. Stage GDS 3, prodromal or MCI, relates to 
mild complaints of objective cognitive impairment. Stages GDS 4–GDS 7 meet the DSM IV criteria for DAT. 
They range from mild AD to severe AD with increasing severity.
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Brain activity changes were measured with the EEG. The raw rsEEG data were quantified with 
Neurometrics [40]. The electrophysiological biomarkers were characterized as rsEEG delta (1.5–3.5 Hz), 
theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–25 Hz) frequencies [6, 7]. Neurometrics is a reliable 
method for quantifying the raw rsEEG data from normal-functioning older adults and those with AD [40].

A population-based normative database was used to determine the changes in the electrophysiological 
biomarkers (rsEEG delta, rsEEG theta, rsEEG alpha, and rsEEG beta frequencies). Using a normative 
database obviates the need for a control group since the database consists of the biomarkers of individuals 
without any pathology and from the general population. This normative database is reliable, replicable, and 
ethnic-free for normal-functioning older adults to those living with a diagnosis within the AD continuum 
[41]. The normative database is also reliable when determining the changes in the electrophysiological 
biomarkers for schizophrenia [41], obsessive-compulsive disorder [41], and depression [23].

Procedures
Clinical data collection

Participants were assessed by healthcare providers and researchers. These assessments included medical 
[physical examination, electrocardiogram (EKG), and blood analysis], neurological (assessment of speech, 
motor system, cranial nerves, sensory function, and extrapyramidal signs), and psychiatric evaluations 
(psychiatric interview, neuropsychological tests, and cognitive evaluations). Some participants additionally 
received magnetic resonance imaging (MRI) or computed tomography (CT) imaging to determine if 
neuropathological changes have occurred. Participants or family members provided medical history, 
current medications, family history of dementia, and symptoms’ onset, course, and duration.

Electrophysiological data collection

Participants were seated in a light-attenuated, soundproof room. Nineteen standard Ag/AgCl recording 
electrodes were attached to the scalp using water-soluble paste, according to the 10/20 International 
System: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz (see Figure 1) [40].

Figure 1. The 10/20 International System for electrode placement in electroencephalogram. The electrode placement 
indicates the cortical area for the recording of the brain activity. Frontal cortical area = Fp1, Fp2, F3, F4, F7, F8, Fz. Temporal 
cortical area = T3, T4, T5, T6. Parietal cortical area = C3, C4, Cz, P3, P4, Pz. Occipital cortical area = O1, O2. Reference 
electrode: A1 = left ear; A2 = right ear

Electro-oculogram electrodes (differential eye channels) were diagonally placed above and below the 
eyes’ orbit [40] to detect eye movement artifacts. An additional electrode was placed on the thorax to detect 
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cardiac rhythm (EKG). A grounding electrode was placed on the dominant arm. Recordings were collected 
and referenced to linked earlobes. The EEG amplifiers had a bandpass from 0.5 to 30 Hz (3 dB points) with 
a 60 Hz notch-filter. Impedances were maintained below 5,000 ohms. The data was digitized with the A/D 
converter at 200 Hz with 12-bit resolution. Data acquisition was performed on a Spectrum 32 EEG 
Acquisition System (Cadwell Laboratories, Kennewick, WA.)

Trained EEG technicians collected 20 minutes of eye-closed raw EEG data while the participant 
remained at rest. This is also known as rsEEG data. The EEG technicians monitored the participant and the 
EEG recording for artifacts such as sleepiness, muscle movement, or eye movement. The EEG technicians 
visually edited EEG data for the artifacts because they may affect the quantitative EEG (qEEG) analysis. This 
quality check procedure was supplemented with an automatic EEG artifact detection algorithm. From the 
20 minutes of collected rsEEG data, only 1–2 minutes (24–48 artifact-free epochs, 2.5 seconds long) were 
randomly selected for qEEG analysis.

EEG data analysis

All 19 monopolar derivations, absolute (ABS) power, relative (REL) power, mean frequency (MMF), inter- 
and intra-hemispheric coherence, bilateral symmetry, and intra-hemispheric gradients of power (qEEG 
dimensions) were computed and characterized as rsEEG delta (1.5–3.5 Hz), rsEEG theta (3.5–7.5 Hz), rsEEG 
alpha (7.5–12.5 Hz), rsEEG beta (12.5–25 Hz), and total power. Neurometrics is previously described in 
detail [40]. The essential features are briefly provided. Power spectral analysis was performed on the 
artifact-free raw rsEEG data using Fast Fourier Transform (FFT) and log transformation to achieve 
Gaussianity [40]. Univariate analysis was used to statistically evaluate the relative distributions of every 
biomarker [40]. Age regressions were used to control for any variance from age [40], and Z-transformation 
was used to standardize the values relative to age-expected normal values. The Z-transformation includes 

this step: , where Ss means the sum of squares, Pop means population, Norm means 
expected or norm, SD means standard deviation [40]. The extracted biomarkers are age-matched and 
statistically analyzed to the population-based normative database.

Statistical analyses

Data were analyzed with SPSS 28.0 (Windows). The study had a power of 0.80 to detect a moderate effect 
size at an a priori alpha of 0.05 (adjusted for post-hoc analyses). Parametric and nonparametric statistics 
were used to analyze the data distribution, demographics, and electrophysiological biomarkers, all at BL 
and FU. Descriptive statistics were used to characterize age and gender. Kruskal-Wallis test was used to 
analyze the difference among the GDS stages, age, and gender at BL and FU. Group average topographic 
brain images were only used to display the distribution of electrophysiological biomarkers.

Results
BL evaluations

The sample consisted of 23 males (43%) and 31 females (57%) with an average age of 67.3 ± 8.1 (range = 
53–85) (see Table 1). At BL, 21 (39%) participants were normal functioning (GDS 1 and GDS 2), 20 (37%) 
diagnosed with MCI (GDS 3), and 13 (24%) diagnosed with probable AD (GDS 4 and GDS 5). Age and gender 
were not significantly different across GDS stages (age: χ2 = 0.94, df = 4, P ≥ 0.7; gender: χ2 = 1.5, df = 4, P ≥ 
0.83).

The brain images indicate that only ABS rsEEG theta and REL rsEEG theta electrophysiological 
biomarkers were increasing across the GDS stages from the frontal to the posterior region (P ≤ 0.01) of the 
head (see Figure 2). The MMF rsEEG delta significantly increased from GDS 4 and 5 (P ≤ 0.01) while the ABS 
total power and REL rsEEG alpha remained within normal ranges. The absence of a significant change in 
REL rsEEG theta from REL rsEEG alpha suggests that the increasing rsEEG theta is not a result of a decrease 
in rsEEG alpha-it is an independent process.
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Table 1. Demographics at baseline with mean age (± SD)

Variables Entire sample GDS 1 GDS 2 GDS 3 GDS 4 GDS 5

Sample, n 54 (100%) 4 (7%) 17 (32%) 20 (37%) 10 (18%) 3 (6%)
Age 67.3 ± 8.1 66.7 ± 6.2 68 ± 7.8 66.2 ± 8.3 67.8 ± 8.1 68 ± 14.7
Male, n 23 (43%) 2 (9%) 7 (30%) 9 (39%) 3 (13%) 2 (9%)
Age (male) 68.9 ± 8.6 71.5 ± 4.9 68.6 ± 8.6 65.9 ± 8.8 74 ± 6.2 74 ± 15.6
Female, n 31 (57%) 2 (6%) 10 (32%) 11 (36%) 7 (23%) 1 (3%)
Age (female) 66 ± 7.6 62 ± 0.0 68.2 ± 7.7 66.4 ± 8.3 65 ± 7.6 57 ± 0.0
SD: standard deviation; GDS: Global Deterioration Scale

Figure 2. Topographic brain images in Global Deterioration Scale stages 1–5 at baseline (BL). MMF: mean frequency; 
ABS: absolute; REL: relative; GDS: Global Deterioration Scale

Cortical areas with electrophysiological changes correspond to the electrode placements as 
diagrammed in Figure 1. MMF delta = mean frequency delta, ABS theta = absolute theta, REL theta = relative 
theta, REL alpha = relative alpha, and ABS total = absolute total power. Steps of the Z-score scale (± 1.5) 
were adjusted for the “n” in each GDS stage. GDS 1 Z-score step = 0.4. GDS 2 Z-score step = 1. GDS 3 Z-score 
step = 1. GDS 4 Z-score step = 0.7, and GDS 5 Z-score step = 0.4. To estimate the significance of any regional 
Z-score for this group’s average data, the Z-score should be multiplied by the square root of the number of 
participants in the group. For example, for n = 25, the probability associated with an average Z value of 1.25 

that corresponds to a standard normal deviation of approximately , that is a probability 
less than 0.0001.
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FU evaluations

Forty-four (81%) of the BL participants converted to a diagnosis within the AD continuum with a mean age 
of 73 ± 8.5 (range = 52–89) (see Table 2). Normal-functioning older adults at BL (n = 21) developed MCI 
(GDS 3: 13, 30%) and probable AD (GDS 4–GDS 5: 4, 9%) at FU. Those with BL MCI (n = 20) converted to 
probable AD (GDS 4–GDS 5: 15, 34%) and severe AD (GDS 6–GDS 7: 4, 9%) at FU. Older adults with BL 
probable AD (n = 13) converted to severe AD (GDS 6–GDS 7: 8, 18%) at FU. Age was the only demographic 
that significantly differed across GDS stages (χ2 = 14.6, df = 6, P = 0.02). Gender did not significantly differ 
across GDS stages (χ2 = 4.4, df = 6, P = 0.62).

Table 2. Demographics at FU with mean age (± SD)

No converting Converting to diagnosis in AD continuumVariables Entire sample

GDS 1 GDS 2 GDS 3 GDS 4 GDS 5 GDS 6 GDS 7

Sample, n 54 (100%) 2 (4%) 8 (15%) 13 (24%) 11 (20%) 8 (15%) 10 (18%) 2 (4%)
Age 73 ± 8.5 71 ± 7.1 68.1 ± 1 75 ± 7.5 76 ± 0.7 78 ± 5.3 66 ± 4.5 71 ± 6
Male, n 23 (43%) 0 3 (6%) 7 (13%) 6 (11%) 3 (6%) 4 (7%) 0
Age (male) 74 ± 8 - 65 ± 9 69 ± 8 70 ± 11 77 ± 2 63 ± 4 -
Female, n 31 (57%) 2 (4%) 5 (9%) 6 (11%) 5 (9%) 5 (9%) 6 (11%) 2 (4%)
Age (female) 71 ± 9 71 ± 7.1 61 ± 5 65 ± 7 73 ± 6 74 ± 7 59 ± 3 71 ± 6
SD: standard deviation; GDS: Global Deterioration Scale; FU: follow-up; AD: Alzheimer’s disease. -: no data

The FU brain images display that only ABS rsEEG theta and REL rsEEG theta significantly and 
consistently increase across the GDS stages from the frontal to the posterior regions (P ≤ 0.01) of the head 
(see Figure 3). There were changes in other electrophysiological biomarkers but the changes did not occur 
across all GDS stages. The MMF rsEEG delta significantly increased only from GDS 2 to GDS 3 in the pre-
frontal regions (Fp1, Fp2, F3, F4, Fz; P ≤ 0.01), and only at GDS 4 in the left posterior temporal region (T3, 
T4). The REL rsEEG alpha significant decreased only from GDS 6 to GDS 7 in the frontal arc (Fp1, Fp2, F3, 
F4, F7, F8, T3, T4; P ≤ 0.01). The ABS total power significantly increased only at GDS 5 in the entire head (P 
≤ 0.01). The rsEEG theta was the only electrophysiological biomarker with a consistent change from normal 
functioning to severe AD, independent of any significant decrease in REL rsEEG alpha, which occurred only 
in severe AD.

Cortical areas with electrophysiological changes correspond to the electrode placements as 
diagrammed in Figure 1. MMF delta = mean frequency delta, ABS theta = absolute theta, REL theta = relative 
theta, REL alpha =relative alpha, and ABS total = absolute total power. Steps of the Z-score scale (± 3.0) 
were adjusted for each GDS stage. GDS 2 Z-score step = 1.2. GDS 3 Z-score step = 1.6. GDS 4 Z-score step = 
1.4. GDS 5 Z-score step = 1.2. GDS 6 Z-score step = 1.4. GDS 7 Z-score step = 0.6. To estimate the significance 
of any regional Z-score for this group’s average data, the Z-score should be multiplied by the square root of 
the number of participants in the group. For example, for n = 25, the probability associated with an average 

Z value of 1.25 that corresponds to a standard normal deviation of approximately , that is 
a probability less than 0.0001.

The figures provide a visual representation of the increasing rsEEG theta occurring consistently in 
several cortical areas at FU for participants who converted to a diagnosis within the AD continuum. 
Summarizing these occurrences by gender and age groups may show a pattern for absolute and relative 
rsEEG theta in the cortical areas.

Absolute rsEEG theta increased for both males and females at GDS 5 as a frontal arc (see Table 3). 
While the relative rsEEG theta increased for both males and females at GDS 5, females had an increasing 
rsEEG theta at GDS 6 and GDS 7 as a frontal-lateral arc. The relative rsEEG theta increased in more cortical 
areas for females who were in the mild to severe stages of AD (GDS 5–GDS 7). The summary indicates more 
increasing rsEEG theta in females, which can be described as a measure discerning the level of cognitive 
deficits by gender.
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Figure 3. Topographic brain images in Global Deterioration Scale (GDS) stages 1–7 at follow-up (FU). MMF: mean 
frequency; ABS: absolute; REL: relative

Table 3. Cortical regions with increasing rsEEG theta (P ≤ 0.05) by gender

GDS stages 
for gender 
groups

Absolute theta Relative theta

Males, n = 23
GDS 1, n = 0 - -
GDS 2, n = 3 - -
GDS 3, n = 7 - -
GDS 4, n = 6 - Right frontal pole, left frontal, left & right lateral central, 

left & right lateral frontal, left temporal lobe
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GDS stages 
for gender 
groups

Absolute theta Relative theta

GDS 5, n = 3 Left & right frontal pole, left frontal, right parietal, 
left & right lateral frontal, left temporal, left & right 
lateral temporal, frontal-central-parietal midline

-

GDS 6, n = 4 - -
GDS 7, n = 0 - -
Females, n = 31
GDS 1, n = 2 - -
GDS 2, n = 5 - -
GDS 3, n = 6 - -
GDS 4, n = 5 - -
GDS 5, n = 5 Left & right frontal pole, left & right frontal, left & 

right lateral central, left & right parietal, left & right 
lateral frontal, left temporal, left frontal-central 
midline

Left & right frontal pole, left & right frontal, left & right lateral 
frontal, left temporal, left lateral temporal, frontal midline

GDS 6, n = 6 - Left & right frontal pole, left & right frontal, left & right lateral 
central, left & right parietal, left & right lateral frontal, left 
temporal, left & right lateral temporal, frontal-central-
parietal midline

GDS 7, n = 2 Left & right frontal pole, left & right frontal, frontal 
midline

Left & right frontal pole, left & right frontal, right lateral 
central, left & right lateral frontal, left lateral temporal, 
frontal-central midline

Italicized means non-converters. GDS: Global Deterioration Scale; rsEEG: resting-state electroencephalogram. -: no data

The identification of the increasing rsEEG theta may be more pronounced when grouping the data by 
age groups. The age groups were created by splitting the ages into four equal groups (see Table 4).

Absolute rsEEG theta increased mostly in participants who were between 66.48 to 80.07 years of age. 
The increase occurred in age Group 2 (GDS 7) and in age Group 3 (GDS 4 and GDS 5) as a frontal-lateral arc. 
Relative rsEEG theta increased in age Groups 1–3 (GDS 5) with the increase also occurring in age Group 1 
(GDS 4) as a frontal-lateral arc. The increase occurred over the entire head for age Group 2 in GDS 7. For age 
Group 3, the absolute and relative rsEEG theta had a pattern of increasing activity in GDS 5. This pattern 
occurred in absolute rsEEG for age Group 2 (GDS 7). It was also evident in relative rsEEG theta for age 
Group 1 (GDS 4 and GDS 6) and age Group 2 (GDS 5). The increasing rsEEG theta may have been more 
evident in age Groups 2 and 3. The summary indicates more increasing rsEEG theta in age Groups 2 and 3, 
which can be described as a measure discerning the level of cognitive deficits by age groups.

This summary is another way to understand the findings. There is a pattern of increasing rsEEG in 
several cortical areas across GDS 5–GDS 7 for females. This pattern is driven by the increasing rsEEG theta 
in GDS 5–GDS 7. This pattern is also evident in several cortical areas for age Groups 2 and 3, but it is not 
specific to absolute rsEEG theta, relative rsEEG theta, or the combination of the two. For certain ages, the 
pattern is in absolute rsEEG theta and for others in relative rsEEG theta.

Amount of change over time

The amount of change in ABS and REL rsEEG theta was significantly increasing (Z-scoresAVG CHANGE = –0.2 to 
1.3, P ≤ 0.01) across all GDS stages in the entire head (see Figure 4). For REL rsEEG alpha, a significant 
decrease only occurred from GDS 4 to GDS 7 (Z-scoresAVG CHANGE = –1.1 to 0.5, P ≤ 0.01), indicative of only a 
change from probable AD to severe AD. The MMF rsEEG delta and ABS total power did not have a 
significant amount of change across the GDS stages. Only ABS and REL theta had a significant amount of 
change that demonstrated consistent and increasing changes in brain activity from normal functioning to 
severe AD.

Table 3. Cortical regions with increasing rsEEG theta (P ≤ 0.05) by gender (continued)
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Table 4. Cortical regions with increasing rsEEG theta (P ≤ 0.05) by age groups

GDS stages for 
age groups

Absolute theta Relative theta

Group 1, n = 14
GDS 1, n = 0 - -
GDS 2, n = 3 - Left lateral central, left temporal, right lateral 

central
GDS 3, n = 3 - -
GDS 4, n = 2 - Left & right frontal pole, left & right frontal, left & 

right lateral central, left & right parietal, left & right 
lateral frontal, left temporal, left & right lateral 
temporal, frontal-central midline

GDS 5, n = 0 - -
GDS 6, n = 6 - Left & right frontal pole, left & right frontal, left & 

right lateral central, left & right parietal, left & right 
lateral frontal, left temporal, left & right lateral 
temporal, frontal-central midline

GDS 7, n = 0 - -
Group 2, n = 13
GDS 1, n = 1 - -
GDS 2, n = 3 - -
GDS 3, n = 1 - -
GDS 4, n = 2 - -
GDS 5, n = 1 Left & right frontal, frontal midline Left & right frontal pole, left & right frontal, right 

lateral central, left & right lateral frontal, left 
temporal, right lateral temporal, frontal midline

GDS 6, n = 4 - -
GDS 7, n = 1 Left & right frontal pole, left & right frontal, left & right 

lateral central, left & right parietal, left & right occipital, 
left & right lateral frontal, left temporal, left lateral 
temporal, frontal-central-parietal midline

Entire head (all cortical regions)

Group 3, n = 14
GDS 1, n = 1 Left & right frontal, left & right lateral central, left & right 

parietal
-

GDS 2, n = 0 - -
GDS 3, n = 4 - -
GDS 4, n = 2 Left & right frontal, left & right lateral central, left & right 

parietal, left lateral frontal, left temporal, right lateral 
temporal, central-parietal midline

Left temporal

GDS 5, n = 6 Left & right frontal pole, left & right frontal, left & right 
lateral central, left & right parietal, left & right occipital, 
left & right lateral frontal, left temporal, left & right lateral 
temporal, frontal-central-parietal midline

Left & right frontal pole, left & right frontal, left 
lateral central, left & right lateral frontal, left & 
right temporal, left & right lateral temporal, frontal-
central midline

GDS 6, n = 0 - -
GDS 7, n = 1 - -
Group 4, n = 13
GDS 1, n = 0 - -
GDS 2, n = 2 - -
GDS 3, n = 5 - -
GDS 4, n = 5 - -
GDS 5, n = 1 Left temporal Right lateral frontal, left temporal
GDS 6, n = 0 - -
GDS 7, n = 0 - -
Italicized means non-converters. Age groups: Group 1 = age 58.26–66.40; Group 2 = age 66.48–73.58; Group 3 = age 
73.79–80.07; Group 4 = age 80.82–89.51. GDS: Global Deterioration Scale; rsEEG: resting-state electroencephalogram. -: no 
data
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Figure 4. The amount of change in the qEEG features in the Global Deterioration Scale (GDS) stages at follow-up (FU). 
The average (AVG) amount of change in Z-score was computed by taking the summation of the change score (Z-scoreFU – Z-
scoreBL) for each qEEG feature in the selected regions and dividing by the number of qEEG features in the regions. MMF delta = 
mean frequency delta, ABS theta = absolute theta, REL theta = relative theta, REL alpha = relative alpha, and ABS total 
power = absolute total power. The regions of interest are the prefrontal region (Fp1, Fp2, F3, F4, Fz) for MMF delta, the entire 
head (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz) for ABS and REL theta, frontal arc (Fp1, 
Fp2, F3, F4, F7, F8, T3, T4, Fz) for REL alpha, and the entire head for ABS total power. The level of significance was 0.01. 
qEEG: quantitative electroencephalogram; BL: baseline

Discussion
The present study, to the author’s knowledge, is one of the first studies to report a consistently increasing 
electrophysiological biomarker as a possible indicator of older adults declining from normal functioning to 
a diagnosis within the AD continuum. In the present study, rsEEG theta was the only electrophysiological 
biomarker to increase across all GDS stages from BL to FU with an increasing amount of change over time. 
The increase progressively moved from the frontal region of the head to the posterior region. There was no 
discernible change in rsEEG delta, alpha, or beta. These findings suggest that the increasing rsEEG theta 
from normal functioning to a diagnosis of AD may be an electrophysiological biomarker indicator of the 
onset and progression of AD.

An electrophysiological biomarker indicator serves as a measure of the changes in the 
electrophysiology of AD, which is evident in the biological mechanism underlying the change in rsEEG theta 
frequency. The change revolves around the association among β-amyloid, tau (τ), inflammatory proteins, 
and neural activity. The proteins increase at the cellular level, affecting the brain’s neurochemistry, 
metabolism, and neuropathology, which alters the neural activity in the brain. Electrophysiological 
biomarkers detect these cellular-level alterations or disruptions [41]. Excessive amyloid-β and tau (τ) 
proteins lead to the production and overproduction of neuritic plaques and neurofibrillary tangles, which is 
contributed by inflammatory proteins in response to any disruptions of the brain [31, 33, 41]. Eventually, 
the overproduction of plaques and tangles significantly impacts the oscillation and functional connectivity 
of the neural activity (or neural transmission) in the limbic system, altering the neural activity for cognitive 
processing [34, 35]. The progression of these neuropathological changes is associated with manifested 
cognitive impairment that links to the onset of AD [41]. Electrophysiological biomarkers detect these 
structural changes, altered cognitive processing, and manifested cognitive impairment. During the 
disruption of the brain’s neurochemistry, metabolism, and neuropathology, the proteins disrupt the neural 
activity, generating electrophysiological biomarkers based on the brain activity changes in certain cortical 
areas [41]. For rsEEG theta, it is occurring in the limbic system. The neuropathological changes inhibit the 
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ventral tegmental area so that the septal nuclei and the nucleus accumbens activate the hippocampus and 
cingulate, generating rsEEG theta frequency [41]. This frequency is manifested as electrophysiological brain 
changes.

The correlation between the increasing neuropathological changes and cognitive impairment defines 
electrophysiological brain changes and the electrophysiological biomarker in the rsEEG theta frequency 
[42]. An increasing rsEEG theta can be described as an indicator of a change in the brain’s electrophysiology 
from plaques and tangles negatively impacting neural activity [43, 44]. This rsEEG theta can be described as 
a way to detect and measure cognitive impairment in persons with MCI and AD without being dependent 
on brain activity changes reaching a certain threshold for detection [43, 44]. Thus, the electrophysiological 
biomarker indicator measures the brain activity changes at the cellular and structural level for cognitive 
impairment.

The electrophysiological biomarker can function as an early indicator because it is not dependent on 
achieving a specific threshold for detection. With the neuropathological changes from β-amyloid, tau (τ), 
and/or inflammatory proteins, a certain threshold or level of production and overproduction has to occur 
for a discernible measure of the neuropathological change that is associated with a person’s cognition, 
affective complications, or possible genetic factors [41]. Overproduction of the proteins leads to the 
production and excessive presence of plaques and tangles, facilitating their detection [41]. The rsEEG theta 
biomarker lacks this threshold dependency, indicating that it can detect disruption before structural 
changes. Importantly, the electrophysiological biomarker can function as an early indicator of the risk and 
onset of manifested cognitive impairment, where the risk may be associated with the electrophysiological 
biomarker’s detection of the cellular disruption that leads to structural changes [41].

The results of the current study are in accordance with another study that characterized 
electrophysiological biomarkers from normal functioning older adults to those with a diagnosis of AD. An 
increased ABS and REL rsEEG theta occurred at the 7-year FU evaluations for 44 participants who were 
normal-functioning older adults (GDS 2) at BL [7]. The increased rsEEG theta is associated with declining 
cognition for participants with a FU diagnosis of MCI (GDS 3) or DAT (GDS ≥ 4). This biomarker may be a 
potential predictor for cognitive decline [7]. In another study, certain biomarkers were reported in 
participants who ranged from normal functioning to a diagnosis of AD [42]. An increase in ABS and REL 
rsEEG theta occurred in the frontal regions and advanced to the posterior [42]. Interestingly, an increase in 
rsEEG delta was reported, which was not observed in the current study. Both studies substantiate the 
increasing rsEEG theta as a possible electrophysiological indicator of AD across the stages of GDS.

A diagnosis of AD is associated with electrophysiological biomarkers such as increased rsEEG delta or 
theta, and/or a decreased rsEEG alpha and beta [8, 45, 46]. Changes in these electrophysiological 
biomarkers may be occurring after a diagnosis within the AD continuum, and progressing with extensive 
pathological changes [47]. However, a consistent electrophysiological biomarker was not an indicator of the 
participants’ decline from normal functioning to a diagnosis of AD either at BL or FU.

Some studies have demonstrated an association between the progression of AD with only an increase 
in rsEEG theta frequency in parieto-occipital regions [29], the centro-parietal regions [28, 30], temporo-
occipital regions [28], and the entire head [48]. Yet, an electrophysiological biomarker indicator for AD was 
not reported as characterized in the current study. Interestingly, a “normal” group instead of a population-
based normative database was used for comparison when characterizing electrophysiological biomarkers 
of AD. The “normal” groups were often reported as persons with at least subjective cognitive impairment 
[9, 48]. Interestingly, age was a contributing factor to a change in rsEEG alpha [25]. This finding was not 
reported in the current study.

The consistently increasing rsEEG theta as a possible electrophysiological indicator for AD may aid in 
the treatment of the risk, onset, and progression of the AD continuum. Monitoring any significant changes in 
rsEEG theta may be useful in assessing the effectiveness of cholinesterase inhibitors in treating persons 
diagnosed with AD. A decrease in rsEEG theta is observed with the administration of tacrine hydrochloride 
(Cognex) and donepezil (Aricept) [49, 50]. Only the consistent change in rsEEG theta significantly 
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correlated with improved cognition for persons diagnosed with probable AD when examining long-term 
tacrine treatment [49]. In addition, a consistent decrease in rsEEG theta was observed with the long-term 
treatment of donepezil in the frontal, temporo-parietal, and occipital regions of persons diagnosed with 
mild dementia [50]. While these findings are promising in regard to the potential clinical utility of this 
electrophysiological biomarker, further investigation is warranted.

The present study is one of the first to report on an electrophysiological biomarker indicator for AD 
progression across the GDS stages (from normal functioning to severe stages of AD). It is conceivable with 
this electrophysiological biomarker to objectively measure the risk, onset, and progression of AD; 
moreover, the biomarker will be critical to understanding the etiology of AD.

A limitation of this study was that it was a secondary analysis; however, using databases based on a 20-
year collaboration optimized the quantity and quality of accessible data. Because of the extended period of 
data collection that occurred over time (1979–2003), the electrophysiological and neuropsychological data 
are not attributed to temporal, social, or environmental factors. In addition, the study’s aims were within 
the scope of both databases. Hence, these strengths enhanced the findings’ generalizability. Another 
limitation was the categorization of the participants with the GDS. This method assumed that GDS is a linear 
measurement and that each GDS stage is equal to a specific increase in the abnormal electrophysiological 
feature. Further examination and quantification of this association are needed.

Conclusions

An electrophysiological biomarker indicator for AD was detected from the electrophysiological data of 
normal-functioning older adults who developed a diagnosis within the AD continuum. The indicator 
emerged as the increasing rsEEG theta progressed across all GDS stages. This increasing rsEEG theta 
initiated in the frontal region and progressed to the posterior region of the head. This electrophysiological 
biomarker may enhance the current assessment of AD; nevertheless, further analyses are needed to 
expound on the clinical utility of this electrophysiological indicator of AD. With further examination, a 
diagnosis within the AD continuum is not solely dependent on subjective assessment of presenting clinical 
symptoms. The electrophysiological biomarker will enhance the treatment of persons diagnosed with AD 
and the identification of interventions to prevent the onset of the illness. Thus, the findings from this study 
may initiate other studies so that contributions can be made to the implementation of proactive care across 
GDS stages, transforming the current prognosis from total loss of independence to improved quality of life.
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