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Abstract
Neuropathic pain (NP) is a significant global health challenge, affecting an estimated 7–10% of the 
population. Painful diabetic neuropathy (PDN), a severe complication of diabetes, impacts approximately 
one in every three diabetic patients. With the rising global prevalence of diabetes, PDN is projected to 
become an increasingly urgent health concern. Current treatments for PDN often provide inadequate pain 
relief and are associated with adverse side effects, emphasizing the need for safe and effective therapeutic 
options. This review examines the limitations of existing pharmacological therapies for PDN and presents 
the sigma-1 receptor (S1R) as a promising therapeutic target. We explore the biological role of S1R, its 
implication in NP and PDN, its structural biology, and the expanding preclinical and clinical evidence 
supporting its potential. Furthermore, we present evidence for various S1R antagonists in addressing NP 
and PDN, with a particular focus on E-52862 and [18F]FTC-146. These compounds represent first-in-class 
ligands for therapeutic and diagnostic applications, respectively, marking significant advances in the 
development of S1R antagonists. This review underscores the potential of S1R antagonism as a strategy for 
developing more effective treatments for PDN, with the ability to significantly improve patient outcomes.
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Introduction
Neuropathic pain (NP) is a major global health challenge, affecting an estimated 7–10% of the world 
population [1]. It is frequently associated with a wide range of neurological and systemic disorders, 
including diabetes, postherpetic neuralgia, spinal cord injuries, and multiple sclerosis [2]. The global NP 
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therapeutics market was valued at over $7 billion in 2023 and is projected to grow at a compound annual 
growth rate of approximately 8% between 2024 and 2032 [3]. This expansion is fueled by the increasing 
incidence of diabetes and other chronic conditions, as well as greater awareness among healthcare 
providers and patients regarding the importance of effective treatment strategies.

NP arises from damage or dysfunction within the somatosensory nervous system, leading to abnormal 
pain signaling and a spectrum of distressing symptoms [4]. Its pathophysiology involves several key 
mechanisms, encompassing diabetes, peripheral nerve injury, central nervous system (CNS) damage, 
infections and autoimmune conditions, and chemotherapy-induced peripheral neuropathy [5].

Among the various types of NP, painful diabetic neuropathy (PDN) is one of the most prevalent and 
debilitating [3]. PDN emerges as one of the most severe complications of diabetes, a chronic metabolic 
disorder characterized by sustained hyperglycemia due to impaired insulin production or utilization. 
Chronic hyperglycemia leads to widespread complications affecting multiple organs, including the 
peripheral nerve systems [4]. According to the International Diabetes Federation, 537 million adults were 
living with diabetes in 2021, a figure expected to rise to 783 million by 2045 if current trends persist [6]. 
Approximately one of every three diabetic patients develop PDN, which is driven by a multifactorial 
pathophysiology involving metabolic, vascular, and inflammatory mechanisms that cause peripheral nerve 
damage [4, 7, 8]. Symptoms such as tingling and burning sensations, allodynia, hyperalgesia, and sharp 
pain, severely affect patients’ quality of life, reduce longevity, and increase healthcare burdens [8].

The complex pathology of PDN, coupled with the frequent presence of comorbidities in patients, makes 
its treatment quite challenging. At present, there are no therapies capable of completely curing the 
condition or reversing the underlying nerve damage [9]. The current management of PDN involves lifestyle 
changes to control blood glucose levels and pharmacological interventions for symptomatic pain relief [4, 
10, 11]. This review explores the pharmacological landscape for PDN, examining their mechanisms of 
action, therapeutic potential, and limitations, and further present the sigma-1 receptor (S1R) as a promising 
target for developing novel and effective therapeutics for PDN.

Current pharmacological treatments for painful diabetic neuropathy
Current pharmacological interventions for PDN include antidepressants, anticonvulsants, opioid analgesics, 
and other topical agents. While only three oral medications and one topical agent have been approved by 
the FDA specifically for PDN, a broader array of therapeutic options is available in other regions worldwide 
[11, 12] (Figure 1).

Anticonvulsants

Anticonvulsants modulate neuronal activity by acting on calcium and sodium channels and are among the 
most prescribed pharmacological treatments for PDN. Gabapentinoids, including pregabalin and 
gabapentin, are widely used as first-line treatments for PDN. These drugs act on the α2δ subunit of voltage-
gated calcium channels to reduce neurotransmitter release, calming overactive nerves that contribute to NP 
[13]. Pregabalin is particularly effective in patients with multiple NP syndromes and improves associated 
sleep disturbances [14, 15]. Mirogabalin, a newer drug, demonstrates higher selectivity for the α2δ-1 
subunit, with improved efficacy and fewer side effects [16]. However, gabapentinoids are associated with 
adverse side effects such as drowsiness, dizziness, weight gain, and peripheral edema [17, 18]. In addition, 
there is a risk of abuse, especially with pregabalin [19].

Sodium channel blockers, such as carbamazepine and oxcarbazepine, are a family of epilepsy 
medications sometimes prescribed for PDN. They inhibit voltage-gated sodium channels to reduce nerve 
excitability and alleviate pain. Carbamazepine is effective but has black box warnings for severe 
dermatological reactions, agranulocytosis and aplastic anemia [20]. Oxcarbazepine exhibits its analgesic 
effect mostly through its active metabolite licarbazepine, and offers a safer profile with fewer side effects, 
which makes it a preferable choice in this class [21]. However, these sodium channel blockers also carry 
with many side effects such as drowsiness, dizziness, headaches, nausea, vomiting, and double vision [22–
24].
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Figure 1. Current pharmacological treatments for PDN. (A) Ion channel blocker anticonvulsants; (B) serotonin-
norepinephrine reuptake inhibitors and tricyclic antidepressants; (C) mu-opioid receptor agonists; (D) capsaicinoid topical 
anesthetics and others. * Approved by the FDA for PDN

Antidepressants

Serotonin-norepinephrine reuptake inhibitors (SNRIs) are a class of antidepressant medications used to 
treat major depressive disorder, anxiety disorders, chronic NP, and other medical diseases [12]. SNRIs such 
as duloxetine and venlafaxine are very effective for PDN and are particularly valuable for patients with 
comorbid depression or anxiety. Duloxetine, an FDA-approved first-line treatment, inhibits serotonin and 
norepinephrine reuptake to modulate pain signaling in the CNS. It often provides rapid pain relief, 
sometimes within the first week of treatment [25], with fewer side effects compared to older medications 
like tricyclic antidepressants (TCAs) [26–28]. Venlafaxine has a similar mechanism of action but with lower 
binding affinity to serotonin and norepinephrine transporters [29]. SNRIs are generally well-tolerated, 
though side effects such as nausea, dry mouth, and dizziness are possible [30, 31]. However, the potential 
for developing serotonin syndrome, a potentially life-threatening condition caused by an excessive 
accumulation of serotonin, requires careful monitoring [32].

TCAs are a broad class of medications that were first discovered in the early 1950s. Common examples 
include amitriptyline, nortriptyline, and imipramine, which remain another option for treating PDN. They 
exert their analgesic effect by inhibiting serotonin and norepinephrine reuptake and targeting additional 
receptors, such as opioid receptors and ion channels [33, 34]. TCAs are highly effective for NP and can 
improve associated sleep disturbances. However, their complex pharmacology results in many side effects, 
including dry mouth, constipation, urinary retention, drowsiness, and memory impairment, making them 
less favorable compared to SNRIs [35–38].
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Opioids

Several opioid drugs are clinically used for managing moderate to severe PDN, including tapentadol, 
tramadol, morphine and oxycodone. Tapentadol is approved by the FDA as first-line use [39]. Morphine, a 
potent μ-opioid receptor (MOR) agonist, provides effective relief for acute pain [40], while oxycodone 
demonstrates similar potency with active metabolites that enhance its analgesic effects [41]. Tapentadol 
and tramadol uniquely combine MOR agonism with norepinephrine reuptake inhibition, offering 
comparable efficacy to oxycodone but with fewer gastrointestinal side effects, such as constipation [42, 43]. 
Although opioids are effective for some patients to manage PDN, they come with significant risks, such as 
tolerance, dependence, and respiratory depression, which need cautious use and close monitoring [44–48].

Capsaicin and others

Capsaicin, a plant-derived alkaloid from chili peppers, provides localized pain relief by binding transient 
receptor potential vanilloid 1 (TRPV1) receptors on nociceptive fibers [49]. The FDA-approved 8% 
capsaicin patch is applied to affected areas, such as the feet, and offers significant pain reduction in certain 
patient subpopulations with minimal systemic side effects. However, burning sensations at the application 
site are a common adverse reaction [50]. Overall, capsaicin has very few reported side effects beyond this 
localized discomfort. Additionally, antioxidants such as alpha-lipoic acid and benfotiamine supplement are 
also used to treat PDN in some countries [12, 51–53]. But none of these nutritional supplements have been 
approved by the FDA for use in the United States.

In summary, while current medications for PDN offer some relief, they are often associated with a 
range of side effects that limit their therapeutic effectiveness and patient compliance. Alarmingly, fewer 
than one-third of PDN patients achieve satisfactory pain relief with existing therapies, underscoring the 
urgent need for innovative treatments and the identification of new therapeutic targets.

It is noteworthy that several TCAs used for PDN treatment also bind to S1R, but with much lower 
affinity than their primary pharmacological targets. As a result, S1R modulation may play a secondary or 
minimal role in the analgesic effects of these drugs. Recent research suggests that directly targeting S1R 
offers a novel mechanism for alleviating NP across various etiologies, including PDN. As explored in this 
review, S1R represents a promising therapeutic target that could lead to more effective and mechanistically 
distinct treatments for PDN.

Overview of the sigma-1 receptor system
The sigma receptor was initially identified as a subtype (σ) of opioid receptors in the 1970s [54]. However, 
subsequent research using radioligand binding assays showed that the sigma receptor exhibited very 
different binding profiles to classical opioids such as naloxone, suggesting that the sigma receptor might 
possess unique ligand binding sites distinct from other opioid receptors [55]. The development of a 
benzomorphan-based specific radioligand ([3H]-(+)-pentazocine), which exhibited high affinity and 
selectivity for S1R, enabled the discovery of two distinct sigma receptors: S1R and S2R. S1R binds to 
benzomorphans with high affinity and corresponds to the classical σ opioid receptor first described by Su 
[55], whereas S2R does not bind to benzomorphans but has a high affinity for haloperidol and 
ditolylguanidine [56]. Moreover, both sigma receptors have been successfully cloned [57, 58], and their 
crystal structures have been resolved [59–63]. S1R is encoded by the SIGMAR1 gene with 223 amino acids 
[57], while S2R is encoded by the TMEM97 gene with 176 amino acids [58]. Despite their shared 
classification as sigma receptors, S1R and S2R exhibit limited structural similarity, with only 23% identity 
in their primary sequences. Both receptors have been shown to involve in the pathology of NP [62, 64]. 
However, this review will focus on the S1R only: its biology, function, structure, and pharmacological 
significance in the context of NP.

S1R does not share homology with any other mammalian proteins, but is highly conserved across 
species [65]. Interestingly, its closest homolog is the yeast C8-C7 sterol isomerase, though S1R itself has no 
sterol isomerase activity [57]. The identification of endogenous ligands for S1R remained a longstanding 
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challenge. S1R has no definitively identified endogenous ligands, although some neurosteroids such as 
progesterone and dehydroepiandrosterone (DHEA) [66], hallucinogen N,N-dimethyltryptamine [67], 
sphingolipids [68], and choline [69], have been proposed to be S1R endogenous ligands. Importantly, the 
first S1R knockout (KO) mouse model was developed in 2003, providing a valuable tool for exploring the 
role of S1R in both normal and pathological physiology [70].

S1R is found in multiple organs, including the heart, gastrointestinal tract, liver, muscle in human body, 
as well as the nervous system [71, 72]. S1R is highly expressed in both the central and peripheral nervous 
systems [73, 74]. In the brain, S1R is widely distributed in pain-modulating regions including the dorsal 
spinal cord, dorsal root ganglion neurons, the periaqueductal gray matter, rostroventral medulla, and locus 
coeruleus, making it an attractive candidate for pain management [73, 75].

S1R is now widely recognized as a ligand-operated and Ca2+ sensitive chaperone protein that is 
primarily located at the mitochondria-associated membrane of the endoplasmic reticulum (ER) [71]. Under 
basal conditions, S1R forms a complex with the binding immunoglobulin protein (BiP) in the ER, essential 
for proper protein synthesis and the degradation of misfolded proteins [76]. Upon agonist binding or 
during ER stress, S1R dissociates from BiP and interacts with other proteins in the ER or other organelles, 
such as the inositol 1,4,5-trisphosphate receptor (IP3R), to regulate Ca2+ signaling and maintain cellular 
homeostasis and managing stress responses [77]. Meanwhile, S1R can also translocate from the ER 
membrane to the nuclear and plasma membranes, where it interacts with diverse pharmacological targets, 
including ion channels and G-protein coupled receptors (GPCRs) [78–83]. Acting as a regulatory subunit of 
these proteins, S1R can produce a profound impact on signal transduction and transmission [84, 85]. To 
date, over 50 client proteins with highly divergent sequences and structures have been identified for S1R, 
underscoring its broad functional repertoire [86]. Consequently, S1R has been considered a potential 
therapeutic target for neurological diseases including pain, depression and anxiety, memory and learning 
disorders, and substance disorders [86–88].

Structures of sigma-1 receptor

The X-ray crystallographic structures of the human S1R in complex with several known agonists and 
antagonists were successfully resolved at high resolution, offering significant insights into its molecular 
architecture and ligand interactions. The first breakthrough came in 2016 with the disclosure of human S1R 
crystal structures in complex with an antagonist (PD144418; Figure 2 and Figure 3) and an ambiguous 
ligand (4-IBP) [63]. Later in 2018, additional cocrystal structures of S1R with one agonist ((+)-pentazocine), 
two antagonists (haloperidol and NE-100; Figure 2) were published [61]. As illustrated in Figure 3, these 
crystal structures reveal S1R adopts a homotrimeric overall architecture, with each protomer containing a 
single transmembrane domain (Figure 3A). The ligand binding pocket in the S1R structure is located in the 
cytosolic domain within a β-barrel region, which is predominantly hydrophobic and occluded by the 
solvent. Key molecular interactions between the receptor and its ligands have been identified based on 
these crystal structures. Specifically, the anionic sidechain of Glu172 forms a salt-bridge with the cationic 
amine of the ligands, while the protonated Asp126 forms a hydrogen bond with Glu172 to retain the 
interaction network. Tyr103 interacts with ligands through π−π stacking and forms a hydrogen bond with 
Glu172 to stabilize its orientation. Additionally, several hydrophobic residues (Trp89, Leu95, Tyr103, 
Phe107, and Trp164) are involved in extensive nonpolar interactions with the hydrophobic or aromatic 
regions of the ligands (Figure 3B).

Given the highly occluded nature of the binding pocket revealed by the original crystal structures, the 
mechanisms of ligand enter and exit for S1R remain an interesting topic of study. In 2022, the crystal 
structures of Xenopus laevis S1R in complex with PRE084 (an agonist) and E-52862 (an antagonist) suggest 
that ligands likely access the binding site via conformational changes in the carboxy-terminal two-helix 
bundle, rather than the cupin-fold domain [60]. More recently in 2024, several cocrystal structures of 
Xenopus laevis with neurosteroid ligands, progesterone and DHEA sulfate, were resolved [59]. These 
findings highlight distinct binding modes of endogenous steroids and underscore the versatility of S1R’s 
ligand interactions.
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Figure 2. Structures and binding affinities of representative S1R antagonists. Subscripts (h, r, and gp) before S1R indicate 
different species: human, rat, and guinea pig

Figure 3. Crystal structures of human S1R homotrimer and ligand-binding sites. (A) Homotrimer structure of human S1R 
(PDB 5HK1); (B) Superimposition of cocrystal structures of human S1R bound to the antagonist PD144418 (PDB 5HK1; 
orange) and the agonist (+)-pentazocine (PDB 6DK1; cyan). The secondary structures and residues of S1R are colored in green 
and gray, respectively. The ligand-binding site is shown in a yellow mesh surface. The salt bridges between Glu172 and ligands 
are shown in magenta dash lines, while the hydrogen bond between Glu172 and Tyr103 is in a green dash line. ER: 
endoplasmic reticulum

Beyond static crystal structures, biochemical and cellular studies have demonstrated that S1R exhibits 
dynamic ligand-dependent oligomerization: antagonists stabilizing high-molecular-mass oligomers and 
agonists promoting their dissociation into monomers or dimers [89, 90]. However, X-ray crystallography 
studies have consistently revealed a homotrimeric architecture for S1R [59–61, 63]. This discrepancy may 
arise due to the stabilizing conditions used in crystallization, which can favor specific oligomeric 
conformations. The trimeric arrangement observed in X-ray structures might represent a stable 
intermediate or a functionally relevant oligomeric form captured in the absence of membrane dynamics 
and cellular signaling. These findings highlight the importance of studying S1R in diverse experimental 
conditions to fully understand its conformational flexibility and functional implications. Understanding the 
conformational changes induced by different ligand classes can aid in the rational design of novel 
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compounds with optimized binding properties and functional outcomes. These advances in S1R structural 
biology have not only significantly enhanced our understanding of its ligand recognition mechanisms but 
also provides a solid foundation for the structure-based design of novel S1R-targeting compounds.

Sigma-1 receptor and neuropathic pain

S1R interacts with several ion channels involved in pain modulation, including voltage-gated ion channels 
(e.g., Nav1.5, Kv1.2, and Cav2.2), calcium-activated potassium channels (e.g., SK3), and ligand-gated ion 
channels [e.g., N-methyl-d-aspartate (NMDA) receptors] [78, 81, 82]. Notably, S1R has been shown to bind 
directly to the GluN1 subunit of the NMDA receptors [79, 82]. The GPCR nociceptors binding to S1R include 
cannabinoid CB1 and MOR [80, 83]. A direct interaction between MOR and S1R has also be described in 
transfected human embryonic kidney (HEK) cells [83]. Importantly, S1R antagonists have been shown to 
potentiate opioids’ (e.g., morphine, oxycodone) analgesia without exacerbating their side effects, such as 
dependence, tolerance, and constipation [91–93]. Studies using S1R KO mice and selective antagonists have 
revealed S1R’s critical roles in the modulation of pain of different etiologies, including chemical-induced 
hyperalgesia (formalin and capsaicin tests) [94, 95], central and peripheral neuropathy [64, 96, 97], 
osteoarthritis [98], and cancer pain [99]. In this review, we focus on NP, with a particular emphasis on PDN.

As summarized in Table 1, S1R has been extensively studied in preclinical NP models of multiple 
modalities. For instance, in a contusion spinal cord injury (SCI) model of central NP, S1R KO didn’t develop 
mechanical allodynia and thermal hyperalgesia in mice, while E-52862 (aka S1RA or MR309; Figure 2) 
alleviated mechanical allodynia and thermal hyperalgesia after both acute and prolonged treatments [100]. 
Similarly, S1R KO mice showed resistance to the development of mechanical allodynia and hyperalgesia in 
peripheral nerve injury models, such as paclitaxel-induced NP and partial sciatic nerve ligation (PSNL) 
[101, 102]. Selective S1R antagonists (e.g., BD-1047, S1RA, CM304, and PW507; Figure 2) have 
demonstrated analgesic efficacy in attenuating mechanical allodynia and hyperalgesia in a range of models, 
including chemotherapy (paclitaxel, cisplatin, and oxaliplatin) induced neuropathy [97, 101, 103], PSNL 
[102, 104, 105], and chronic constriction injury (CCI) [97, 106–108]. Furthermore, in clinical trials, E-52862 
demonstrated significant efficacy to mitigate chronic oxaliplatin-induced peripheral neuropathy [109, 110]. 
These findings underscore S1R’s essential roles in amplifying pain responses across diverse pain 
conditions.

Table 1. Summary of preclinical studies that describe S1R KO or antagonists in different NP models

Pain type Pain model Specie Sex Ligand Route Effect on pain References

Mouse F E-52862 i.p. 7 days ↓ mechanical allodynia and 
thermal hyperalgesia

[98]

Mouse F E-52862 i.p. ↓ mechanical allodynia and 
thermal hyperalgesia

[100]

Central 
neuropathic pain

Spinal cord contusion

Mouse F KO No mechanical allodynia 
and thermal hyperalgesia

[100]

Rat M E-52862 i.p., acute, 
b.i.d. 7 days

↓ mechanical hyperalgesia [97]

Rat M PW507 i.p., acute, 
b.i.d. 14 
days

↓ mechanical allodynia and 
thermal hyperalgesia

[111]

Streptozotocin-induced

Mouse M BD-1047 i.t. 7 days ↓ mechanical allodynia and 
thermal hyperalgesia

[112]

Mouse M Haloperidol s.c. ↓ mechanical allodynia and 
hyperalgesia

[113]Nicotinamide-
streptozotocin induced

Mouse M LMH-2 s.c. ↓ mechanical allodynia and 
hyperalgesia

[113]

Zucker diabetic fatty Rat M E-52862 i.p., acute, 
b.i.d. 14 
days

↓ mechanical allodynia and 
thermal hyperalgesia

[114]

Peripheral 
neuropathic pain
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Pain type Pain model Specie Sex Ligand Route Effect on pain References

Mouse M KO No mechanical allodynia 
and thermal hyperalgesia

[115]High-fat diet

Mouse M BD-1047 i.t. ↓ mechanical allodynia and 
thermal hyperalgesia

[115]

Oxaliplatin-induced Rat M E-52862 i.p., acute, 
b.i.d. 7 days

↓ cold allodynia [97]

Cisplatin-induced Mouse M CM304 i.p. ↓ mechanical allodynia [116]
Mouse F E-52862 s.c. ↓ mechanical allodynia and 

cold hyperalgesia
[101]

Mouse F BD-1047 s.c. ↓ mechanical allodynia and 
cold hyperalgesia

[101]

Mouse F KO No mechanical allodynia 
and cold hyperalgesia

[101]

Paclitaxel-induced

Rat M PW507 i.p. ↓ cold hyperalgesia [103]
Mouse M E-52862 i.p., acute, 

b.i.d. 21 
days

↓ mechanical allodynia and 
thermal hyperalgesia

[104]

Mouse M E-52862 i.v.10 days ↓ mechanical allodynia and 
thermal hyperalgesia

[105]

Partial sciatic nerve 
ligation

Mouse M KO No mechanical allodynia 
and thermal hyperalgesia

[102]

Rat M BD-1047 i.t. ↓ mechanical allodynia [106]
Rat M BD-1047 p.o. ↓ mechanical allodynia and 

cold hyperalgesia
[107]

Mouse M BD-1047 i.t. ↓ mechanical allodynia [108]
Rat M E-52862 i.p., acute, 

b.i.d. 7 days
↓ mechanical allodynia [97]

Chronic constriction 
injury

Mouse M CM304 i.p. ↓ mechanical allodynia [116]
i.p.: intraperitoneal; i.pl.: intraplantar; i.t.: intrathecal; i.v.: intravenous; p.o.: oral; s.c.: subcutaneous; b.i.d.: twice daily; KO: 
knockout

Sigma-1 receptor and painful diabetic neuropathy

Several preclinical models of diabetes have been used to investigate S1R’s roles in the development of PDN, 
including chemical-induced, genetically modified, and diet-induced neuropathy models.

Streptozotocin (STZ), a toxin causing selective pancreatic β-cell destruction, induces physiological and 
behavioral changes resembling type 1 diabetes in humans [117–119]. In STZ-induced diabetic models, S1R 
has been found to be overexpressed in dorsal root ganglion, implicating its role in the development and 
maintenance of PDN [112]. BD-1047 inhibited STZ-induced PDN, such as mechanical allodynia and thermal 
hyperalgesia, after treatment for 7 days [intrathecal (i.t.)] [112]. Similarly, E-52862 significantly reduced 
mechanical allodynia both after acute [intraperitoneal (i.p.)] and 7-day [i.p., twice daily (b.i.d.)] treatments 
[97]. Furthermore, another potent and selective S1R antagonist, PW507, demonstrated robust efficacy in 
alleviating both mechanical allodynia and thermal hyperalgesia after acute (i.p.) and 14-day treatments 
(i.p., b.i.d.) [111].

In the nicotinamide (NA)-STZ model, which resembles type 2 diabetes by combining β-cell damage and 
insulin resistance, haloperidol and its analog LMH-2 (Figure 2) exhibited efficacy in alleviating PDN 
symptoms [subcutaneous (s.c.)], such as mechanical allodynia and thermal hyperalgesia [113].

In the Zucker diabetic fatty (ZDF) rat model, a genetic model of type 2 diabetes characterized by 
obesity and insulin resistance, E-52862 treatment produced significant reductions in mechanical allodynia 
and thermal hyperalgesia. These effects were observed after both acute (i.p.) administration and a 
sustained 14-day twice-daily (b.i.d.) regimen, emphasizing the compound’s robust therapeutic efficacy in 
this context [114].

Table 1. Summary of preclinical studies that describe S1R KO or antagonists in different NP models (continued)
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Meanwhile, the high-fat diet (HFD)-induced neuropathy model, which simulates the metabolic 
dysfunction associated with diet-induced obesity, provided additional insights into S1R’s role in PDN. In 
this model, S1R KO mice did not develop mechanical allodynia and thermal hyperalgesia. Complementing 
these findings, BD-1047 (i.t.) effectively reduced both mechanical allodynia and thermal hyperalgesia in the 
same model [115].

Together, these findings across diverse preclinical studies reinforce the therapeutic promise of S1R 
antagonists in mitigating PDN, offering hope for improved management of this debilitating condition in 
diabetic patients. However, the precise mechanisms by which S1R antagonists alleviate PDN remain 
unclear. S1R has been reported to interact with the NR1 subunit of the NMDA receptor, a key player in the 
development of NP [82, 120–122]. In diabetic neuropathy models induced by STZ, ZDF, or HFD, nerve 
injuries activate the NMDA receptor, contributing to central sensitization and heightened pain sensitivity. 
Antagonizing S1R disrupts its interaction with NR1, thereby reducing NMDA receptor activity and 
dampening pain signaling and amplification [79]. However, other potential mechanisms should not be 
overlooked. For instance, S1R antagonists have been shown to mitigate STZ-induced peripheral neuropathy 
by downregulating high-mobility group box 1 (HMGB1), a DNA-binding protein and a proinflammatory 
modulator for chronic pain [112, 123]. Further research is necessary to elucidate the full scope of 
pharmacological mechanisms underlying S1R antagonist efficacy.

Sigma-1 receptor antagonists for painful diabetic neuropathy treatment

Initially, S1R was mistakenly categorized as a subtype of opioid receptors, leading to the belief that its 
binding was off-target and undesirable. For example, haloperidol (Figure 2), a butyrophenone-based 
antipsychotics, demonstrates potent binding affinity for S1R (Ki = 2.3 nM) and has served as a reference 
S1R antagonist for over four decades. However, haloperidol preferentially binds to dopamine receptors 
with sub-nano molar binding affinity [103, 124]. Early selective S1R antagonists, such as NE-100 and BD-
1047, also exhibit potent S1R binding affinity (Ki < 10 nM) and have been widely used as research probes 
[125, 126]. Following the reclassification of S1R as a distinct receptor in the 1990s and the advancements in 
S1R structural biology in 2010s, increasing interests have emerged in developing potent and selective S1R 
ligands for multiple diseases. Over the years, a variety of S1R antagonists with various chemical structures 
have been developed, including pyrrolidine-ones, substituted piperazines, benzothiazole-ones, spirocyclics, 
di-substituted pyrazoles and triazoles (Figure 2) [104, 127–132]. Several of these S1R antagonists (BD-
1047, E-52862, PW507, CM304 and its radio-tracer [18F]FTC-146) have been extensively studied in 
preclinical and clinical pain research.

E-52862

E-52862, developed by Esteve Research and Development in Spain, is a potent and selective S1R antagonist 
that has advanced to clinical development. It demonstrates high binding potency for S1R (Ki = 17 nM) and 
remarkable selectivity over S2R (Ki > 1,000 nM), as well as a panel of 170 additional targets, including 
receptors, transporters, ion channels, and enzymes (Ki or IC50 > 1,000 nM) [104]. Among these targets, only 
human 5HT2A exhibited a moderate binding (Ki = 328 nM), but with weak functional antagonism (IC50 = 
4,700 nM) [104]. Structural insights into the binding conformations of E-52862 to S1R, revealed through X-
ray crystallography, have enhanced our understanding of ligand-receptor interactions and guided the 
design of novel S1R ligands [60].

In preclinical studies, E-52862 has exhibited significant analgesic effects across various pain models of 
different etiologies, including inflammatory pain (induced by formalin, carrageenan, or capsaicin) [96, 104, 
133], central NP (SCI) [98], STZ-induced diabetic neuropathy [97, 114], chemotherapy-induced peripheral 
neuropathy (caused by paclitaxel, cisplatin, or oxaliplatin) [97, 101, 103], and peripheral neuropathy due to 
nerve injuries (e.g., PSNL, CCI, spared nerve injury) [93, 96, 97, 104]. These studies, conducted in mice and 
rats, also confirmed a strong safety and efficacy profile, enabling E-52862’s rapid progression to clinical 
trials.
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In phase 1 trials in healthy volunteers, E-52862 demonstrated excellent safety, tolerability, and 
pharmacokinetics, prompting its further development in various pain conditions [134, 135]. In a phase 2 
trial for oxaliplatin-induced peripheral neuropathy in elderly colorectal cancer patients in stages I-IV, E-
52862 effectively alleviated acute NP symptoms, such as cold pain and motor impairments, while being well 
tolerated even under high oxaliplatin exposure [110]. In another phase 2 clinical trial evaluating post-
surgical NP occurring more than 3 months post-surgery, E-52862 provided clinically significant pain relief, 
with fewer patients requiring rescue medicines (opioids or other analgesics) compared to the placebo 
group throughout the 28-day treatment period [400 mg, once daily (q.d.), oral (p.o.)] [109].

Furthermore, in a phase 2 clinical trial involving patients with moderate-to-severe PDN, E-52862 
exhibited a safe profile and promising results [109]. Throughout the 4-week study period (400 mg, p.o., 
q.d.), E-52862 consistently reduced patients’ pain intensity and Neuropathic Pain Symptom Inventory 
scores. While statistical significance was not achieved due to high placebo responses, there was a clear 
trend toward greater pain relief in the E-52862 group compared to placebo. Moreover, a higher proportion 
of patients receiving E-52862 reported meaningful improvements in their overall condition, as reflected in 
the Patient Global Impression of Change scale. In addition, E-52862 was well tolerated, with a safety profile 
comparable to placebo and no increase in the need for rescue medication.

[18F]FTC-146

Another noteworthy S1R antagonist is the radio-tracer [18F]FTC-146, the most potent S1R antagonist so far 
with a binding affinity (Ki) of 0.0025 nM in rat brain homogenates (Figure 2) and > 10,000-fold selectivity 
over S2R and additional 59 targets [130]. It has been studied in phase 1 clinical trials as a diagnostic agent 
for PET/MRI imaging to identify sites of nerve damage in patients with chronic NP [136]. Its non-
radiolabeled analog, CM304, showed significant analgesic effects in preclinical models, including reducing 
mechanical allodynia in CCI and cisplatin-induced NP, and inflammatory pain in the formalin test [116]. 
However, CM304’s pharmacokinetics—characterized by a short elimination half-life (115 min) and 
moderate clearance (33 mL/min/kg)—limited its progression into clinical development [137]. 
Nevertheless, CM304’s rapid clearance makes it ideal as a precursor for imaging agents like [18F]FTC-146 
[130, 138, 139].

In a phase 1 clinical trial in healthy participants, [18F]FTC-146 demonstrated high uptake in S1R-rich 
organs such as the pancreas, spleen, and thyroid, moderate uptake in the brain and myocardium, and low 
uptake in bones and muscles [136, 140]. The total radiation exposure (9.1 mSv) is well within the 
acceptable range for [18F]-labeled radiopharmaceuticals and below the FDA limit of 30 mSv. Importantly, all 
participants tolerated the tracer without significant adverse effects [136, 140].

In subsequent clinical trials, [18F]FTC-146 was used to image patients with complex regional pain 
syndrome and sciatica, enabling precise visualization of nerve damage and effectively monitoring changes 
in S1R expression [141]. A noteworthy case study involved a female patient with chronic knee pain 
unresponsive to multiple treatments over several years. PET/MRI imaging with [18F]FTC-146 revealed high 
radioligand uptake in the intercondylar notch, leading to the surgical removal of an inflamed lipoma and 
completely resolving her pain [141]. This emphasizes the potential of [18F]FTC-146 to localize pain sources 
across diverse pathologies. [18F]FTC-146 is currently undergoing more clinical trials, including studies on 
chronic pelvic pain and pediatric pain, further supporting its potential as a PET/MRI imaging agent for pain 
diagnosis and management [142].

PW507

While demonstrating proof-of-concept efficacy in phase 2 clinical trials for various pain conditions, the 
clinical development of E-52862 was halted, potentially due to concerns regarding its oral bioavailability 
and/or efficacy. Notably, clinical trial participants required very high daily oral doses (400 mg, p.o., q.d.), 
despite E-52862’s potent binding affinity for S1R (Ki = 17 nM) [104]. This underscores a critical need for the 
development of S1R antagonists with enhanced oral bioavailability and absorption, distribution, 
metabolism and excretion (ADME) properties, and greater efficacy.
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In response to these limitations, our laboratory developed PW507, a potent and selective S1R 
antagonist with enhanced pharmacokinetic and safety profiles [103]. PW507 demonstrated potent S1R 
binding affinity (Ki = 7.5 nM), high selectivity over S2R (Ki > 1,000 nM) and a broad panel of 87 targets (Ki > 
1,000 nM, SafetyScreen87TM) [103]. In preclinical studies, PW507 exhibited promising in vitro and in vivo 
ADME and pharmacokinetic properties, minimal toxicity, and significant efficacy to relieve paclitaxel-
induced NP and formalin-induced inflammatory pain [103, 111]. In rat models of STZ-induced diabetic 
neuropathy, PW507 significantly alleviated mechanical allodynia and thermal hyperalgesia following both 
acute (i.p.) and chronic (i.p., b.i.d. for 14 days) administration, without inducing tolerance and toxicity 
[111].

Importantly, PW507 represents an improved S1R antagonist compared to E-52862, with superior 
ADME properties. PW507 demonstrated much lower plasma protein binding than E-52862 (66% vs. 96%), 
which indicates a greater amount of unbound PW507 available for cellular action, potentially enhancing 
efficacy. Furthermore, PW507 exhibited a higher oral bioavailability (F = 28% vs. 15%) and approximately 
4 times greater brain exposure (B/P = 12 vs. 2.7) than E-52862, providing higher brain exposure [143]. 
Additionally, PW507 showed preclinical efficacy at a lower dose (20 mg/kg, i.p.) than E-52862 (40 mg/kg, 
i.p.). All these findings underscore PW507’s potential as a more effective therapeutic option for NP and 
PDN. PW507 is currently undergoing further preclinical efficacy studies in various pain models using the 
oral administration route, with plans to advance to clinical trials.

Conclusion
PDN remains a significant clinical challenge due to its complex pathophysiology and limited efficacy of 
current treatment options. While conventional therapies may offer partial relief for some patients, they are 
often associated with adverse effects and carry risks of tolerance and dependence. This underscores an 
urgent need to identify novel therapeutic targets that address the underlying mechanisms of PDN and 
provide effective symptom relief.

Strong evidence supports S1R as a promising therapeutic target for PDN and other NP conditions. The 
S1R biological system, through its modulatory role in calcium signaling, plays a crucial role in pain 
processing. Advances in structural biology have provided detailed insights into the ligand-receptor 
interaction patterns, facilitating the rational design of novel selective antagonists. Over the past decade, 
substantial progress has been made in understanding S1R’s role and developing selective S1R antagonists. 
The promising results of E-52862 in clinical trials has demonstrated the potential of S1R antagonists in 
effectively alleviating pain. Moreover, the PET/MRI ligand [18F]FTC-146 has emerged as a valuable tool, 
offering critical insights into S1R expression and occupancy. It plays a pivotal role in refining patient 
diagnosis and improving clinical trial design, ultimately enhancing the translational success of new pain 
medicines. However, significant interspecies differences in the pharmacokinetics of S1R antagonists have 
been observed, which emphasize the necessity of refining preclinical models to enhance translational 
accuracy and predictive value. To advance this field further, the discovery and development of next-
generation S1R antagonists are essential to deliver novel and effective treatments for PDN and NP.
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