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Abstract
Proteins from the neurotrophin family perform trophic and regulatory functions in the nervous and other 
body systems. Understanding the mechanisms of neurotrophin action is crucial not only for the evolution of 
fundamental scientific knowledge but also for developing new treatment strategies targeting neurotrophin 
signaling regulation. At our center, dimeric dipeptide mimetics of nerve growth factor (NGF), brain-derived 
neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) have been obtained based on the structure of 
neurotrophins’ individual loops β-turns. These mimetics activated tyrosine kinase (Trk) receptors TrkA, 
TrkB, or TrkC specific to their respective neurotrophins, but exhibited varied activation patterns in the 
main post-receptor signaling cascades. Thus, some dipeptides activated all three main phosphoinositide 3-
kinase (PI3K)/threonine-protein kinase (Akt), mitogen-activated protein kinase (MAPK)/extracellular 
signal-regulated kinase (ERK) and phospholipase C-gamma (PLC-γ) pathways, while others triggered only 
PI3K/Akt and PLC-γ or MAPK/ERK and PLC-γ. Herewith, dipeptides exhibited a specific set of effects 
(neuroprotective, differentiating, antidepressant-like, anxiolytic, memory-enhancing, analgesic, 
antidiabetic) within the spectrum of biological activities of their corresponding native neurotrophin. It was 
revealed that these effects are influenced by both the patterns of post-receptor signaling activation and the 
nature of progenitor neurotrophin, uncovering significant correlations. This article is dedicated to 
reviewing the data that has been collected.
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Introduction
Neurotrophins are a family of regulatory proteins that play a crucial role in supporting the development of 
the nervous system, ensuring its proper function throughout adulthood, and performing trophic and 
regulatory functions in other body systems. In mammals, four proteins from this family have been 
identified: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 
and NT-4 [1]. The main biological functions of neurotrophins are mediated through their interaction with 
tyrosine kinase (Trk) receptors (TrkA, TrkB, TrkC). NGF activates TrkA receptors; BDNF and NT-4 engage 
TrkB receptors; NT-3 interacts with all three types of Trk receptors, with the highest affinity for TrkC [2]. 
Binding of neurotrophins to Trk receptors leads to the activation of phosphoinositide 3-kinase 
(PI3K)/threonine-protein kinase (Akt), mitogen-activated protein kinase (MAPK)/extracellular signal-
regulated kinase (ERK), and phospholipase C-gamma (PLC-γ) post-receptor signaling cascades [1].

The PI3K/Akt signaling cascade is primarily involved in neuroprotection through the activation of 
various genes that regulate neuronal survival, stimulation of anti-apoptotic protein expression, and 
inhibition of pro-apoptotic proteins [3]. One of the components of the PI3K/Akt pathway is the mammalian 
target of rapamycin (mTOR) protein, a pivotal regulator of ribosome biogenesis and protein translation [4]. 
The involvement of the PI3K/Akt/mTOR signaling cascade in synaptogenesis has been established [5].

The MAPK/ERK signaling cascade, like the PI3K/Akt pathway, is involved in neuroprotection [6]. 
However, under pathological conditions, it may contribute to neuronal cell death [7]. Additionally, this 
cascade is implicated in cellular differentiation and proliferation [8]. A key downstream component of the 
MAPK/ERK pathway is the transcription factor cAMP response element-binding protein (CREB), which 
plays a critical role in synaptogenesis and synaptic plasticity [9, 10]. Furthermore, the MAPK/ERK cascade 
is a major regulator of pain sensitivity [11].

The PLC-γ1-mediated signaling pathway is involved in maintaining synaptic plasticity, regulating axon 
growth, and internalizing the neurotrophin/Trk receptor complex into signaling endosomes [12].

It has been established that the pathogenesis of many neurological and psychiatric disorders is 
associated with disruptions in neurotrophin signaling, which has prompted efforts to use neurotrophins as 
treatments for these conditions [13–17]. However, the clinical application of native neurotrophins has been 
largely unsuccessful, primarily due to low bioavailability and severe side effects, with hyperalgesia and 
weight loss being among the most common [15, 18]. To overcome the limitations of full-sized 
neurotrophins, several research groups are developing their low-molecular-weight mimetics, with some of 
these compounds currently advancing through preclinical or clinical stages [19–25]. A research group led 
by Burgess and Saragovi [24] created a small-molecule partial TrkA agonist, compound tavilermide (D3) 
(Figure 1), based on the pharmacophore of the 5C3 monoclonal antibody targeting the NGF-binding site of 
the human TrkA receptor. D3 is currently being developed by Mimetogen Pharmaceuticals (Canada) as a 
treatment for dry eye and has successfully completed phase 3 clinical trials (https://www.clinicaltrials.
gov/study/NCT03925727?intr=Tavilermide%20ophthalmic%20solution&rank=2). D3 also demonstrated 
neuroprotective, anti-amyloidogenic, neuroregenerative, and cognitive-enhancing effects in a genetic 
mouse model of Alzheimer’s disease [19].

Longo’s research group [26, 27], using in silico screening based on similarity to the first loop of NGF, 
identified the compound LM11A-31 (Figure 2), which, in several genetic mouse models of Alzheimer’s 
disease, with chronic per os administration (50.0–100.0 mg/kg) counteracted the degeneration of 
cholinergic neurons, the accumulation of beta-amyloid and hyperphosphorylated tau protein, and reversed 
spatial memory deficits. Currently, LM11A-31 is undergoing phase 2 clinical trials as a treatment for 
Alzheimer’s disease (https://www.clinicaltrials.gov/study/NCT03069014?term=LM11A-31&rank=1).

AlzeCure Pharma pharmaceutical company (Sweden), using high-throughput cellular screening of a 
compound library for the ability to potentiate NGF/TrkA and BDNF/TrkB signaling, identified novel 
positive allosteric modulators of Trk receptors [28].
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Figure 1. Structure formula of D3 (tavilermide) [24]

Figure 2. Structure formula of LM11A-31 [20]

The most potent compound, ACD856, demonstrated neuroprotective activity, increased BDNF levels in 
vitro and in vivo, and also enhanced cognitive functions, as well as exhibited antidepressant-like effects in 
various mouse tests (0.3–3.0 mg/kg, subcutaneous) [29]. ACD856 is currently in phase 1 clinical trials as a 
treatment for Alzheimer’s disease (https://www.clinicaltrials.gov/study/NCT05077631?term=ACD856&
rank=1). The structure formula of ACD856 has not yet been disclosed. The structure of the closest analogue 
of ACD856, compound ACD855, is shown in Figure 3.

Figure 3. Structure formula of ACD855 [28]

In our center, a hypothesis was proposed regarding the possibility of selective activation of Trk 
receptor signal transduction pathways using low-molecular-weight mimetics of individual neurotrophin 
loops [30–32]. Based on this assumption, as well as the hypothesis [30–32] regarding the key role of the 
most exposed, often central, dipeptide fragments of the β-turns in the loop-like structures of neurotrophins 
in receptor interaction, dimeric dipeptide mimetics of NGF, BDNF, and NT-3 were developed. It included 
mimetics of the NGF loops 1, 3 and 4: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide (GK-6), 
bis-(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide (GK-2) and bis-(N-gamma-oxybutyryl-L-
lysyl-L-histidine) hexamethylenediamide (GTS-115), respectively (Figure 4); mimetics of the BDNF loops 1, 
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2 and 4: bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide (GSB-214), bis-(N-hexanoyl-L-
seryl-L-lysine) hexamethylenediamide (GTS-201), and bis-(N-monosuccinyl-L-seryl-L-lysine) 
hexamethylenediamide (GSB-106), respectively (Figure 5); and mimetics of the NT-3 loop 4: bis-(N-
monosuccinyl-L-asparaginyl-L-asparagine) hexamethylenediamide (GTS-301) and bis-(N-gamma-
oxybutyryl-L-glutamyl-L-asparagine) hexamethylenediamide (GTS-302) (Figure 6) (RU Patent 2410392, 
2011; CN Patent 102365294 B, 2016; US Patent 9683014 B2, 2017; EP Patent 2397488, 2019; Ru Patent 
2022108924, 2023). The compounds were designed according to a unified plan: the most exposed 
dipeptide fragment of the β-turn was preserved, the preceding amino acid residue was replaced with its 
bioisostere, and dimerization was performed at the C-termini using a hexa- or heptamethylenediamine 
spacer [30, 31, 33].

Figure 4. Dimeric dipeptide mimetics of nerve growth factor (NGF). GK-2: bis-(monosuccinyl-L-glutamyl-L-lysine) 
hexamethylenediamide; GK-6: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide; GTS-115: bis-(N-gamma-
oxybutyryl-L-lysyl-L-histidine) hexamethylenediamide [30, 34]

Figure 5. Dimeric dipeptide mimetics of brain-derived neurotrophic factor (BDNF). GSB-106: bis-(N-monosuccinyl-L-seryl-
L-lysine) hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide; GTS-201: bis-(
N-hexanoyl-L-seryl-L-lysine) hexamethylenediamide [31, 35]

Figure 6. Dimeric dipeptide mimetics of neurotrophin-3 (NT-3) loop 4. GTS-301: bis-(N-monosuccinyl-L-asparaginyl-L-
asparagine) hexamethylenediamide; GTS-302: bis-(N-gamma-oxybutyryl-L-glutamyl-L-asparagine) hexamethylenediamide [33, 
36]

As demonstrated in vitro on HT-22 mouse hippocampal neuronal cell line using Western blot analysis, 
the obtained mimetics in concentrations of 10–8–10–6 M activated Trk receptors specific to the full-length 
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neurotrophin within 5–180 min of incubation: NGF mimetics activated TrkA, BDNF mimetics activated 
TrkB, and NT-3 mimetics activated TrkC [34–38]. For the loop 4 mimetics of NGF and BDNF, the selectivity 
of interaction with TrkA and TrkB receptors, respectively, was confirmed using HT-22 knockout cells 
lacking the trka or trkb genes: the neuroprotective activity of these compounds was observed only in the 
presence of receptors specific to the native neurotrophin [39, 40]. According to the proposed hypothesis 
[30–32], dipeptide mimetics of individual neurotrophin loops exhibited different patterns of activation of 
post-receptor signaling cascades. In HT-22 cells, Western blot analysis using antibodies to Akt (pan), 
ERK1/2, and PLC-γ1 showed that all dipeptides activated PLC-γ1, with some additionally triggering both 
the PI3K/Akt and MAPK/ERK pathways, while others targeted only one of these two pathways [33–38, 41, 
42]. The activation of Trk receptors and their post-receptor signaling pathways by dipeptide mimetics of 
NGF, BDNF, and NT-3 is shown in Table 1.

Table 1. Activation of Trk receptors and their main post-receptor signaling pathways by dipeptide mimetics of NGF, 
BDNF, and NT-3

Activation of post-receptor signaling 
cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Concentration 
(M)

Trk receptor 
activation

PI3K/Akt MAPK/ERK PLC-γ1

GK-2 [37, 41] 4 10–8 TrkA ++ ns ++
GK-6 [37, 41] 1 10–6 TrkA + + +

NGF

GTS-115 [34, 41] 3 10–6 TrkA ++ + +
GSB-106 [38, 41] 4 10–8 TrkB + ++ ++
GSB-214 [38, 41] 1 10–7 TrkB + ns ++

BDNF

GTS-201 [35, 41] 2 10–7 TrkB ns + ++
GTS-301 [33, 42] 10–6 TrkC ns ++ ++NT-3
GTS-302 [36, 42]

4
10–6 TrkC ++ ++ +

Full-length NGF, BDNF and NT-3 at concentrations of 10–9 M were used as positive controls. Trk: tyrosine kinase; NGF: nerve 
growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; MAPK/ERK: mitogen-activated protein 
kinase/extracellular signal-regulated kinase; PLC-γ1: phospholipase C-gamma; GK-2: bis-(monosuccinyl-L-glutamyl-L-lysine) 
hexamethylenediamide; GK-6: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide; GSB-106: bis-(N-monosuccinyl-L-
seryl-L-lysine) hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide; GTS-115: 
bis-(N-gamma-oxybutyryl-L-lysyl-L-histidine) hexamethylenediamide; GTS-201: bis-(N-hexanoyl-L-seryl-L-lysine) 
hexamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) hexamethylenediamide; GTS-302: bis-(N-
gamma-oxybutyryl-L-glutamyl-L-asparagine) hexamethylenediamide; +: the effect is inferior to the full-length neurotrophin in 
terms of intensity and/or duration; ++: the effect is comparable to the full-length neurotrophin in terms of intensity and duration; 
ns: non-significant

The dipeptides demonstrated pharmacological activity in vitro (10–9–10–5 M) and in vivo [0.01–10.0 
mg/kg, intraperitoneally (ip), orally], exhibiting diverse sets of effects [32, 33, 43]. We investigated the 
potential links between these effects and the patterns of post-receptor signaling activation, as well as the 
nature of the parent neurotrophin.

Neuroprotective activity
One of the main biological functions of neurotrophins is to support the survival of neurons, which is 
achieved both by stimulating the expression of pro-survival genes and by inhibiting pro-apoptotic proteins 
[1].

It has been established in vitro, that all dipeptide mimetics of NGF, BDNF, and NT-3, regardless of the 
pattern of post-receptor signaling activation, improved the survival of HT-22 hippocampal neuronal cell 
line under oxidative stress conditions at micro-nanomolar concentrations [30, 31, 33–36].

The contribution of PI3K/Akt and MAPK/ERK pathways to the neuroprotective activity of the BDNF 
loop 4 mimetic (GSB-106) and the NGF loop 1 mimetic (GK-6), both of which activate all major post-
receptor signaling cascades of Trk receptors, was examined through pharmacological inhibition analysis 
[37, 44]. Human SH-SY5Y neuroblastoma cells in serum-free medium were used for GSB-106 [44], while 
GK-6 was tested on HT-22 cells under oxidative stress conditions [37]. It was observed that specific 
inhibitors of PI3K or MEK1 (LY294002 and PD98059, respectively) diminished the protective effects of the 
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dipeptides. Inhibition of PI3K/Akt nearly entirely eliminated the neuroprotective effects, whereas blocking 
MAPK/ERK reduced them by about 20%. The results of these studies are consistent with the literature, 
which indicates that both PI3K/Akt and MAPK/ERK pathways are associated with neuroprotection, at least 
in vitro, with PI3K/Akt playing a more significant role [1, 45].

The neuroprotective effects of NGF, BDNF, and NT-3 dipeptide mimetics in vivo were investigated 
using a rat model of ischemic stroke, induced by transient middle cerebral artery occlusion (MCAO). The 
dipeptides were administered ip for 7 days post-surgery at doses ranging from 0.1 mg/kg to 1.0 mg/kg. 
Their efficacy was assessed primarily through the reduction of brain infarct volume, determined by 
morphometric analysis of brain sections stained with 2,3,5-triphenyltetrazolium chloride. Notably, 
neuroprotection was observed only for compounds that engage the PI3K/Akt signaling cascade in their 
post-receptor activation patterns. These are mimetics of the NGF loops 3 and 4 (GTS-115 and GK-2) [46], 
mimetics of the BDNF loops 1 and 4 (GSB-214 and GSB-106) [38], and the NT-3 loop 4 mimetic (GTS-302) 
(Povarnina P, et al. unpublished data).

The most active compounds were the mimetics of the highly exposed 4th loops of NGF and BDNF, 
specifically dipeptides GK-2 and GSB-106. Dipeptide GK-2 activated PI3K/Akt and PLC-γ1, while GSB-106 
activated PI3K/Akt, MAPK/ERK, and PLC-γ1. Both compounds reduced brain infarct volume by 60% [38, 
46]. The NT-3 loop 4 mimetic GTS-302, which activates PI3K/Akt, MAPK/ERK, and PLC-γ1, showed lower 
activity, decreasing infarct volume by 40%. Mimetics of the NGF loop 3, which activates PI3K/Akt, 
MAPK/ERK, and PLC-γ1, and the BDNF loop 1, which activates PI3K/Akt and PLC-γ1, demonstrated 
relatively lower efficacy, reducing infarct volume by 25% and 30%, respectively [38, 46]. Dipeptides that 
activate only MAPK/ERK and PLC-γ1, specifically the BDNF loop 2 mimetic GTS-201 and the NT-3 loop 4 
mimetic GTS-301, were found to be inactive (Povarnina P, et al. unpublished data). The in vivo 
neuroprotective activity was also absent in the NGF loop mimetic 1, the dipeptide GK-6, which activated 
PI3K/Akt, MAPK/ERK, and PLC-γ1. This could be attributed to the relatively weaker activation of PI3K/Akt 
by GK-6 compared to the in vivo active NGF mimetics, GK-2 and GTS-115. While GK-6 activated PI3K/Akt 
for only 1 h after being introduced into the culture medium [37], the latter two mimetics sustained 
activation for at least 3 h [34, 37]. The data on the neuroprotective activity of dipeptide neurotrophin 
mimetics in the ischemic stroke model are summarized in Table 2.

Table 2. Neuroprotective efficacy of NGF, BDNF, and NT-3 dipeptide mimetics in a rat model of ischemic stroke induced 
by transient middle cerebral artery occlusion

Activation of post-receptor signaling 
cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold dose 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1

Reduction in 
brain infarct 
volume (%)

GK-2 [46] 4 0.5 ++ ns ++ 60
GK-6 [46] 1 Not active + + + ns

NGF

GTS-115 [46] 3 1.0 ++ + + 25
GSB-106 [38] 4 0.1 + ++ ++ 60
GSB-214 [38] 1 0.1 + ns ++ 30

BDNF

GTS-201 [46] 2 Not active ns + ++ ns
GTS-301 Not active ns ++ ++ nsNT-3
GTS-302

4
1.0 ++ ++ + 40

ip: intraperitoneally; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; MAPK/ERK: 
mitogen-activated protein kinase/extracellular signal-regulated kinase; PLC-γ1: phospholipase C-gamma; GK-2: bis-
(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide; GK-6: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide; 
GTS-115: bis-(N-gamma-oxybutyryl-L-lysyl-L-histidine) hexamethylenediamide; GSB-106: bis-(N-monosuccinyl-L-seryl-L-lysine) 
hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide; GTS-201: bis-(N-
hexanoyl-L-seryl-L-lysine) hexamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) 
hexamethylenediamide; GTS-302: bis-(N-gamma-oxybutyryl-L-glutamyl-L-asparagine) hexamethylenediamide; +: the effect is 
inferior to the full-length neurotrophin in terms of intensity and/or duration; ++: the effect is comparable to the full-length 
neurotrophin in terms of intensity and duration; ns: non-significant. All effects not labeled as “ns” are statistically significant. The 
data on the reduction in brain infarct volume are presented as means. The reference drug Mexidol (100.0 mg/kg, ip), reduced 
brain infarct volume by 40% in the same experimental protocol
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Overall, the obtained results are consistent with the literature, which indicates that the 
neuroprotective effects of neurotrophins are primarily mediated through PI3K/Akt signaling [47–49]. It is 
important to note that the MAPK/ERK pathway, under pathological conditions such as ischemia, may 
exacerbate neurodegeneration [50, 51]. Unlike in vitro models, where MAPK/ERK contributes to 
neuroprotection by activating anti-apoptotic mechanisms [44, 52], in experimental ischemic stroke, this 
signaling cascade can also play a pro-pathological role by contributing to processes such as inflammation 
and disruption of the blood-brain barrier [50].

Antidiabetic activity
Antidiabetic effects were observed with NGF, BDNF, and NT-3 dipeptide mimetics following chronic 
intraperitoneal and oral administration (0.1–10.0 mg/kg) in streptozotocin-induced diabetes models in rats 
and mice [53–56]. Consistent with the in vivo neuroprotective activity, our findings indicate that activation 
of PI3K/Akt is essential for the antidiabetic effects of NGF and BDNF mimetics. This requirement may be 
related to the role of this signaling cascade in protecting pancreatic β-cells. According to the literature, the 
PI3K/Akt pathway is involved in maintaining the viability and phenotypic stability of pancreatic β-cells, and 
the involvement of PI3K/Akt signaling disruption in the pathogenesis of diabetes is confirmed by 
experimental and clinical studies [57, 58].

Among the BDNF mimetics, the most effective was GSB-214, a dipeptide based on the 1st loop, which 
activates PI3K/Akt and PLC-γ. This compound reduced hyperglycemia in diabetic mice with the greatest 
effect reaching 84% of the maximum possible and maintained its efficacy for up to 44 days after 
discontinuation [53]. The loop 4 mimetic, GSB-106, which activates PI3K/Akt, MAPK/ERK and PLC-γ, 
showed less pronounced activity, achieving a maximum antihyperglycemic effect of 42% with a duration of 
up to 4 days post-treatment. The loop 2 mimetic, GTS-201, which activates MAPK/ERK and PLC-γ, was 
inactive [53].

The NGF loop 4 mimetic, dipeptide GK-2, also demonstrated high antidiabetic activity. Similar to GSB-
214, it activated the PI3K/Akt and PLC-γ signaling cascades. The dipeptide exhibited antihyperglycemic 
effects in diabetic mice, reaching up to 90% of the maximum possible effect from day 4 to day 60 post-
diabetes induction (44 days after the end of compound administration) [56]. It also showed cytoprotective 
properties for β-cells and was effective in reducing diabetes-related polydipsia, polyphagia, weight changes, 
and diabetic neuropathy in mice and rats [55, 56, 59]. The involvement of PI3K/Akt activation in the 
antidiabetic activity of GSB-214 and GK-2 was confirmed through inhibitor analysis—administration of the 
specific PI3K inhibitor LY294002 completely abolished effects of these dipeptides in the streptozotocin-
induced diabetes models [60, 61].

It is interesting to note that the NT-3 loop 4 mimetic, dipeptide GTS-301, also demonstrated activity in 
experimental diabetes [54], despite only activating the MAPK/ERK and PLC-γ pathways in vitro, with no 
influence on PI3K/Akt. This dipeptide exhibited antihyperglycemic effects, achieving up to 53%. This 
suggests that the antidiabetic activity mediated by NT-3 mimetics may be realized through mechanisms 
independent of PI3K/Akt signaling.

The data on the antidiabetic activity of dipeptide mimetics of NGF, BDNF, and NT-3 are summarized in 
Table 3.

Table 3. Antidiabetic activity of dipeptide mimetics of NGF, BDNF, and NT-3 in a streptozotocin-induced diabetes model 
in mice and rats

Activation of post-receptor 
signaling cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold dose 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1

Antihyperglycemic 
activity, percent of 
the maximum 
possible effect (%)

NGF GK-2 [56] 4 0.5 ++ ns ++ 90
GSB-106 [53] 4 0.5 + ++ ++ 42
GSB-214 [53] 1 0.5 + ns ++ 84

BDNF
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Activation of post-receptor 
signaling cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold dose 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1

Antihyperglycemic 
activity, percent of 
the maximum 
possible effect (%)

GTS-201 [53] 2 Not active ns + ++ ns
NT-3 GTS-301 [54] 4 0.1 ns ++ ++ 53
ip: intraperitoneally; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; MAPK/ERK: 
mitogen-activated protein kinase/extracellular signal-regulated kinase; PLC-γ1: phospholipase C-gamma; GK-2: bis-
(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide; GSB-106: bis-(N-monosuccinyl-L-seryl-L-lysine) 
hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide; GTS-201: bis-(N-
hexanoyl-L-seryl-L-lysine) hexamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) 
hexamethylenediamide; +: the effect is inferior to the full-length neurotrophin in terms of intensity and/or duration; ++: the effect 
is comparable to the full-length neurotrophin in terms of intensity and duration; ns: non-significant. All effects not labeled as “ns” 
are statistically significant. The table shows the most pronounced antihyperglycemic effects of the compounds, achieved during 
treatment or its discontinuation. These effects are presented as percentages of the maximum possible effect and are provided 
as average values. The antihyperglycemic effect of the reference drug Metformin (300.0 mg/kg, orally) in the same experimental 
design reached up to 85% of the maximum possible

Antidepressant-like activity
It is well established that BDNF, NGF, and NT-3 are involved in the pathogenesis of depression, with the 
association between this disorder and dysregulation of BDNF signaling being the most well-supported [62–
66].

Comparative studies on the antidepressant-like activity of dipeptide mimetics from various loops of 
NGF, BDNF, and NT-3 in the forced swim test in mice revealed that only the loop 4 mimetics of BDNF and 
NT-3 (GSB-106 and GTS-302, respectively) displayed this activity following acute administration (0.1–10.0 
mg/kg, ip) [36, 67]. These mimetics, similar to full-length neurotrophins, activated the PI3K/Akt, 
MAPK/ERK, and PLC-γ pathways. This highlights the necessity of engaging all three signaling cascades of 
Trk receptors to achieve antidepressant-like effects with acute administration of dipeptide neurotrophin 
mimetics. It also suggests that such activity is more characteristic of BDNF and NT-3 than NGF. According to 
the literature, BDNF and NT-3 exhibit antidepressant-like activity following acute intracerebral 
administration, whereas NGF demonstrates such effects only with prolonged treatment [68, 69]. The 
requirement for activating the PI3K/Akt, MAPK/ERK, and PLC-γ pathways of TrkB receptors for the 
antidepressant-like effects of the BDNF mimetic dipeptide GSB-106 was confirmed through 
pharmacological inhibitor analysis. Specific inhibitors for these pathways (LY294002, PD98059, and 
U73122, respectively) and the Trk receptor blocker K252A each completely abolished the dipeptide’s 
activity in the forced swim test [67, 70].

In subchronic ip administration, all studied dipeptides exhibited antidepressant-like activity, except for 
the BDNF loop 2 mimetic GTS-201, which activates MAPK/ERK and PLC-γ without affecting PI3K/Akt [33, 
36, 67]. However, the NT-3 loop 4 mimetic GTS-301, which shares the same post-receptor signaling pattern 
as GTS-201, was active in this test [33]. The difference in in vivo activity between GTS-201 and GTS-301 
likely stems from their distinct MAPK/ERK signaling activation kinetics. GTS-201 triggered MAPK/ERK 
activation for only up to 5 min [35], while GTS-301 induced sustained activation lasting up to 180 min [42]. 
The involvement of MAPK/ERK activation in the realization of antidepressant-like effects during 
subchronic administration of compounds may be due to this cascade leading to the activation of the 
transcription factor CREB, one of the key regulators of synaptic plasticity [71].

The antidepressant-like properties of the most active dipeptides, GSB-106 and GTS-302, were 
confirmed in a chronic social stress model in mice: both compounds counteracted the manifestation of 
anhedonia and deterioration of hippocampal neuroplasticity [70, 72].

Data on the antidepressant-like activity of NGF, BDNF, and NT-3 dipeptide mimetics are summarized in 
Table 4.

Table 3. Antidiabetic activity of dipeptide mimetics of NGF, BDNF, and NT-3 in a streptozotocin-induced diabetes model 
in mice and rats (continued)
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Table 4. Antidepressant-like activity of NGF, BDNF and NT-3 dipeptide mimetics in the forced swim test in mice

Activation of post-receptor 
signaling cascades

Decrease in immobility time 
compared to the control 
group (%)

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold 
dose 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1 Acute 
administration

Subchronic 
administration

GK-2 [67] 4 1.0 ++ ns ++ ns 14NGF
GK-6 [67] 1 2.0 + + + ns 15
GSB-106 [67] 4 1.0 + ++ ++ 20 16
GSB-214 [67] 1 1.0 + ns ++ ns 20

BDNF

GTS-201 [67] 2 Not active ns + ++ ns ns
GTS-301 [33] 10.0 ns ++ ++ ns 27NT-3
GTS-302 [36, 
43]

4
0.5 ++ ++ + 31 34

ip: intraperitoneally; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; MAPK/ERK: 
mitogen-activated protein kinase/extracellular signal-regulated kinase; PLC-γ1: phospholipase C-gamma; GK-2: bis-
(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide; GK-6: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide; 
GSB-106: bis-(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) 
heptamethylenediamide; GTS-201: bis-(N-hexanoyl-L-seryl-L-lysine) hexamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-
asparaginyl-L-asparagine) hexamethylenediamide; GTS-302: bis-(N-gamma-oxybutyryl-L-glutamyl-L-asparagine) 
hexamethylenediamide; +: the effect is inferior to the full-length neurotrophin in terms of intensity and/or duration; ++: the effect 
is comparable to the full-length neurotrophin in terms of intensity and duration; ns: non-significant. All effects not labeled as “ns” 
are statistically significant. The data on the reduction in immobility time compared to the control group (%) are presented as 
means. The reference drug Amitriptyline (10.0 mg/kg, ip) reduced immobility time under the same conditions in various 
experiments up to 40%

Anxiolytic activity
A range of clinical and experimental data indicates the involvement of BDNF and NT-3 in the pathogenesis 
of anxiety disorders [17, 73, 74]. We evaluated the potential anxiolytic activity of dipeptide mimetics of 
BDNF and NT-3 through their acute administration (0.1–10.0 mg/kg, ip) in the elevated plus maze test in 
mice.

Anxiolytic effects were observed in mimetics of the BDNF and NT-3 loops 4, which activate PI3K/Akt, 
MAPK/ERK, and PLC-γ [43, 75], as well as in the BDNF loop 2 mimetic (GTS-201), which targets MAPK/ERK 
and PLC-γ [75]. The BDNF loop 1 mimetic (GSB-214), which activates PI3K/Akt and PLC-γ, and the NT-3 
loop 4 mimetic (GTS-301), which affects MAPK/ERK and PLC-γ, were ineffective [75].

Data on the anxiolytic activity of dipeptide mimetics of BDNF and NT-3 are summarized in Table 5.

Table 5. Anxiolytic activity of BDNF and NT-3 dipeptide mimetics in the elevated plus maze test in mice

Activation of post-receptor 
signaling cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold dose 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1

Increase in the time 
spent in open arms 
compared to the 
control group 
(times)

GSB-106 [75] 4 1.0 + ++ ++ 6.2
GSB-214 [75] 1 Not active + ns ++ ns

BDNF

GTS-201 [75] 2 1.0 ns + ++ 3.6
GTS-301 Not active ns ++ ++ nsNT-3
GTS-302 [43]

4
1.0 ++ ++ + 1.9

ip: intraperitoneally; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; MAPK/ERK: 
mitogen-activated protein kinase/extracellular signal-regulated kinase; PLC-γ1: phospholipase C-gamma; GSB-106: bis-(N-
monosuccinyl-L-seryl-L-lysine) hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) 
heptamethylenediamide; GTS-201: bis-(N-hexanoyl-L-seryl-L-lysine) hexamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-
asparaginyl-L-asparagine) hexamethylenediamide; GTS-302: bis-(N-gamma-oxybutyryl-L-glutamyl-L-asparagine) 
hexamethylenediamide; +: the effect is inferior to the full-length neurotrophin in terms of intensity and/or duration; ++: the effect 
is comparable to the full-length neurotrophin in terms of intensity and duration; ns: non-significant. All effects not labeled as “ns” 
are statistically significant. The data on the increase in the time spent in open arms compared to the control group are presented 
as means. The reference drug Diazepam (1.0 mg/kg, ip) increased the time spent in open arms under the same conditions by 
3.2 times
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Memory-enhancing activity
A large body of evidence has accumulated regarding the roles of NGF, BDNF, and NT-3 as regulators of 
plastic changes in the brain that underlie memory processes [76–78]. We investigated the memory-
enhancing activity of dipeptide mimetics of NGF, BDNF and NT-3 following acute administration (0.1–10.0 
mg/kg, ip) in the novel object recognition test in rats. Testing was performed 1 h and 24 h after the rats 
were familiarized with the objects to assess short-term and long-term memory, respectively. It was found 
that the NGF loop 4 mimetic (GK-2) and the BDNF loop 1 mimetic (GSB-214), which activate PI3K/Akt and 
PLC-γ without affecting MAPK/ERK, improved long-term memory in this test without influencing short-
term memory [79]. The NT-3 loop 4 mimetics GTS-301, which activates MAPK/ERK and PLC-γ, and GTS-
302, which activates PI3K/Akt, MAPK/ERK, and PLC-γ, improved both short-term and long-term memory 
[43].

The NGF loop 1 mimetic (GK-6) and the BDNF loop 4 mimetic (GSB-106), which activate all three major 
signaling cascades, as well as the BDNF loop 2 mimetic (GTS-201), which activates MAPK/ERK and PLC-γ, 
were found to be inactive [79].

The data on the memory-enhancing activity of dipeptide mimetics of NGF, BDNF, and NT-3 are 
summarized in Table 6.

Table 6. Memory-enhancing activity of dipeptide mimetics of BDNF and NT-3 in the novel object recognition test in rats

Activation of post-receptor 
signaling cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold dose 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1

Memory-
enhancing 
activity

GK-2 [79] 4 0.5 ++ ns ++ Improves long-
term memory

NGF

GK-6 [79] 1 Not active + + + ns
GSB-106 [79] 4 Not active + ++ ++ ns
GSB-214 [79] 1 0.1 + ns ++ Improves long-

term memory

BDNF

GTS-201 [79] 2 Not active ns + ++ ns
GTS-301 1.0 ns ++ ++ Improves short- 

and long-term 
memory

NT-3

GTS-302 [43]

4

1.0 ++ ++ + Improves short- 
and long-term 
memory

ip: intraperitoneally; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; MAPK/ERK: 
mitogen-activated protein kinase/extracellular signal-regulated kinase; PLC-γ1: phospholipase C-gamma; GK-2: bis-
(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide; GK-6: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide; 
GSB-106: bis-(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) 
heptamethylenediamide; GTS-201: bis-(N-hexanoyl-L-seryl-L-lysine) hexamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-
asparaginyl-L-asparagine) hexamethylenediamide; GTS-302: bis-(N-gamma-oxybutyryl-L-glutamyl-L-asparagine) 
hexamethylenediamide; +: the effect is inferior to the full-length neurotrophin in terms of intensity and/or duration; ++: the effect 
is comparable to the full-length neurotrophin in terms of intensity and duration; ns: non-significant. All effects not labeled as “ns” 
are statistically significant. The reference drug Piracetam (200.0 mg/kg, ip), under the same conditions, improved only short-
term memory

The observed improvement in only long-term memory following acute administration of NGF and 
BDNF mimetics aligns with the literature on the effects of full-length neurotrophins. Thus, full-length NGF 
and BDNF enhance long-term memory in rats in the novel object recognition test and the inhibitory 
avoidance task, without affecting short-term memory [80–82]. Moreover, blocking NGF or BDNF with 
antibodies in the novel object recognition test results in impaired long-term memory while leaving short-
term memory unaffected [83]. In our study, a similar trend was observed with NGF and BDNF mimetics: 
active dipeptides improved only long-term memory. Interestingly, activity was noted exclusively for 
mimetics that activated the PI3K/Akt and PLC-γ pathways without affecting the MAPK/ERK. The PI3K/Akt 
cascade is known to play a crucial role in long-term memory formation through its downstream component, 
mTOR, a key factor in memory consolidation [84]. Meanwhile, the MAPK/ERK pathway is also well-
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established in long-term memory formation by activating transcription factors such as CREB, which are 
associated with the expression of proteins involved in neuroplasticity [85]. The absence of memory 
enhancement in NGF and BDNF dipeptide mimetics that activate both PI3K/Akt and MAPK/ERK signaling 
warrants further investigation to elucidate the underlying reasons.

Effect on pain sensitivity
NGF, BDNF, and NT-3 play significant roles in the regulation of pain sensitivity [86–88]. Experimental and 
clinical research has shown that NGF enhances pain sensitivity across various routes of administration, 
presenting a challenge for its therapeutic use [86]. BDNF, on the other hand, exhibits dual effects depending 
on the dose and method of delivery, acting as either pronociceptive or antinociceptive. Specifically, BDNF 
demonstrates analgesic properties when administered directly into the midbrain, near the periaqueductal 
gray and dorsal raphe nuclei, reducing responses to thermal and chemical (formalin) stimuli [88, 89]. This 
analgesic effect is linked to elevated levels of neurotransmitters, including endogenous opioids, in both the 
brain and spinal cord. However, intrathecal administration of BDNF has been shown to produce 
pronociceptive effects [90, 91]. NT-3 predominantly exhibits antinociceptive activity [92–94], although a 
few studies have reported increased pain sensitivity following exogenous NT-3 administration [95].

The potential impact of neurotrophin dipeptide mimetics on pain sensitivity was examined following 
their acute administration (0.01–10.0 mg/kg, ip) using the tail-flick test in rats. Among the NGF mimetics, 
the dipeptide GK-2, which activates PI3K/Akt and PLC-γ, exhibited analgesic effect, which was observed 
0.5 h after administration and persisted for 24 h [37]. This effect may be related to partial agonistic activity 
of GK-2 towards NGF. In contrast, the dipeptide GK-6, which activates PI3K/Akt, MAPK/ERK, and PLC-γ, 
had the opposite effect, lowering pain thresholds as noted at 1 h and 24 h post-administration [37]. These 
findings are consistent with literature describing the predominant role of the MAPK/ERK cascade in the 
development of hyperalgesia upon TrkA receptor activation [96]. Interestingly, the mutant NGF, which 
lacks hyperalgesic properties, activates PI3K/Akt and, compared to the native neurotrophin, induces only 
weak activation of MAPK/ERK [97].

Among the BDNF mimetics, the dipeptide GSB-106, which activates PI3K/Akt, MAPK/ERK, and PLC-γ, 
exhibited the most pronounced analgesic activity [98]. This dipeptide significantly increased pain 
thresholds from 0.5 h to 48 h after administration. The dipeptide GSB-214, which activates PI3K/Akt and 
PLC-γ, had no effect on pain sensitivity. These results suggest the involvement of the MAPK/ERK signaling 
pathway in the analgesic effects of BDNF mimetics, a hypothesis confirmed through inhibitory 
pharmacological analysis. Inhibition of the MAPK/ERK pathway abolished the analgesic activity of GSB-106, 
whereas blockade of the PI3K/Akt pathway had no impact on this effect (Kolik L, et al. unpublished data).

The results for NT-3 mimetics resembled those observed with BDNF mimetics. The dipeptides GTS-301 
and GTS-302—the former activating MAPK/ERK and PLC-γ, and the latter activating all three major 
signaling cascades—exhibited analgesic effects that became evident 30 min after administration and 
persisted for 24 h. Notably, the effect of GTS-301 was more pronounced [99].

The data on the effects of dipeptide mimetics of NGF, BDNF, and NT-3 on pain sensitivity are 
summarized in Table 7.

Table 7. The effects of dipeptide mimetics of NGF, BDNF, and NT-3 on pain sensitivity in the tail flick and hot plate tests 
in mice and rats

Activation of post-receptor 
signaling cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold dose, 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1

Pain threshold 
compared to the 
control group 24 h 
after administration 
of the compound (%)

GK-2 [37] 4 1.0 ++ ns ++ 144

(analgesia)
62

NGF

GK-6 [37] 1 2.0 + + +
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Activation of post-receptor 
signaling cascades

Parent 
neurotrophin

Code Neurotrophin 
loop

Threshold dose, 
(mg/kg, ip)

PI3K/Akt MAPK/ERK PLC-γ1

Pain threshold 
compared to the 
control group 24 h 
after administration 
of the compound (%)

(algesia)
GSB-106 [98] 4 0.1 + ++ ++ 144

(analgesia)

BDNF

GSB-214 1 Not active + ns ++ ns
GTS-301 [99] 0.01 ns ++ ++ 120

(analgesia)

NT-3

GTS-302

4

0.1 ++ ++ + 110

(analgesia)
ip: intraperitoneally; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; MAPK/ERK: 
mitogen-activated protein kinase/extracellular signal-regulated kinase; PLC-γ1: phospholipase C-gamma; GK-2: bis-
(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide; GK-6: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide; 
GSB-106: bis-(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) 
heptamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) hexamethylenediamide; GTS-302: bis-(N-
gamma-oxybutyryl-L-glutamyl-L-asparagine) hexamethylenediamide; +: the effect is inferior to the full-length neurotrophin in 
terms of intensity and/or duration; ++: the effect is comparable to the full-length neurotrophin in terms of intensity and duration; 
ns: non-significant. All effects not labeled as “ns” are statistically significant. Effects of mimetics on pain thresholds are 
presented as average values. Morphine, used as a reference drug, increased pain thresholds by 200% in the same 
experimental setup, and this effect persisted for 1 h after its administration

Thus, a preliminary conclusion can be drawn regarding the predominant role of the MAPK/ERK 
signaling cascade in the pronociceptive activity of NGF mimetics and the antinociceptive activity of BDNF 
and NT-3 mimetics.

Conclusions
Thus, we have developed dimeric dipeptide mimetics of the neurotrophins NGF, BDNF, and NT-3. These 
compounds exhibit distinct patterns of activation of the post-receptor signaling cascades of Trk receptors, 
specific to their parent neurotrophins. All mimetics activated the PLC-γ cascade, with some also activating 
the PI3K/Akt and MAPK/ERK pathways, while others activated only one of them. The mimetics 
demonstrated diverse sets of pharmacological activities in vivo following systemic administration (0.1–10 
mg/kg). Using these mimetics, we identified correlations between different pharmacological activities and 
the specific patterns of post-receptor signaling, as well as the nature of the parent neurotrophin.

It was found that all dipeptides exhibited neuroprotective activity in vitro, indicating that activation of 
either PI3K/Akt and PLC-γ, or MAPK/ERK and PLC-γ, mediated by any type of Trk receptor, is sufficient. In 
in vivo experiments on a rat model of ischemic stroke, PI3K/Akt activation was shown to be essential for 
the neuroprotective effects of NGF, BDNF, and NT-3 mimetics—compounds that did not activate this 
pathway had no impact on infarct size. This is consistent with literature data on the neuroprotective roles 
of PI3K/Akt [1].

The PI3K/Akt signaling pathway was also found to be essential for the antidiabetic activity of NGF and 
BDNF mimetics, which, in our studies, was likely associated with the increased viability of pancreatic β-
cells. The involvement of PI3K/Akt in the antidiabetic effects was confirmed through pharmacological 
inhibitor analysis.

Antidepressant-like activity was notably stronger in BDNF and NT-3 mimetics than in NGF mimetics, 
with the most significant effects seen in compounds that simultaneously activated all three major post-
receptor signaling cascades. These compounds exhibited robust antidepressant-like effects even after a 
single administration. Pharmacological inhibitor analysis highlighted the necessity of activating all three 
pathways—PI3K/Akt, MAPK/ERK, and PLC-γ—for their efficacy.

Table 7. The effects of dipeptide mimetics of NGF, BDNF, and NT-3 on pain sensitivity in the tail flick and hot plate tests 
in mice and rats (continued)
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A clear association between the MAPK/ERK signaling cascade and pain sensitivity was demonstrated. 
In the case of NGF mimetics, activation of MAPK/ERK led to increased pain sensitivity, while a mimetic that 
selectively activated only PI3K/Akt and PLC-γ exhibited analgesic effects. This aligns with literature reports 
indicating that a mutant form of NGF, which does not induce hyperalgesia, activates PI3K/Akt and PLC-γ 
but triggers MAPK/ERK signaling only weakly compared to the native protein [96]. For BDNF and NT-3 
mimetics, the presence of MAPK/ERK in the pattern of post-receptor signaling activation correlated with 
analgesic activity, whereas its absence was associated with a lack of effect on pain sensitivity. The 
contribution of MAPK/ERK activation to the analgesic activity of BDNF mimetics was confirmed through 
pharmacological inhibition analysis.

The data on the identified correlations are summarized in Table 8.

Table 8. The relationships between the diverse pharmacological activities of NGF, BDNF, and NT-3 dipeptide mimetics, 
their patterns of post-receptor signaling activation, and the nature of the parent neurotrophins

Activation patterns 
of post-receptor 
signaling pathways 
of Trk receptors by 
dipeptide mimetics 
of neurotrophins

    

Parent 
neurotrophins

NGF BDNF NT-3 NGF BDNF BDNF NT-3

Dipeptide mimetic GTS-115 GK-61 GSB-106 GTS-302 GK-2 GSB-214 GTS-201 GTS-301

In 
vitro

+ + + + + + + +Neuroprotective 
activity

In 
vivo

+ ns ++ + ++ + ns ns

Antidiabetic activity Not 
assessed

Not 
assessed

+ Not 
assessed

++ ++ ns +

Memory-enhancing 
activity

Not 
assessed

ns ns + + + ns +

Antidepressant-like Not 
assessed

+ ++ ++ + + ns +

Anxiolytic activity Not 
assessed

not 
assessed

+ + Not assessed ns + ns

Effect on pain 
sensitivity

Not 
assessed

↑ ↓ ↓ ↓ ns Not assessed ↓

NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; NT-3: neurotrophin-3; ns: non significant; GK-2: bis-
(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide; GK-6: bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide; 
GTS-115: bis-(N-gamma-oxybutyryl-L-lysyl-L-histidine) hexamethylenediamide; GSB-106: bis-(N-monosuccinyl-L-seryl-L-lysine) 
hexamethylenediamide; GSB-214: bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide; GTS-201: bis-(N-
hexanoyl-L-seryl-L-lysine) hexamethylenediamide; GTS-301: bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) 
hexamethylenediamide; GTS-302: bis-(N-gamma-oxybutyryl-L-glutamyl-L-asparagine) hexamethylenediamide. All effects not 
labeled as “ns” are statistically significant. ↑: increase in pain thresholds; ↓: decrease in pain thresholds; 1 Although NGF 
mimetics GTS-115 and GK-6 both activated all major post-receptor signaling cascades of Trk receptors, GK-6, in contrast to 
GTS-115, induced only short-term activation of the PI3K/Akt pathway. This presumably explains the lack of neuroprotective 
activity of GK-6 in vivo

Currently, peptide drugs have become a focal point of global interest due to their distinct advantages 
over non-peptide compounds, such as high specificity, safety, low possibility of generating resistance [100]. 
Dipeptide mimetics of neurotrophins hold significant promise as potential therapeutics for post-stroke 
conditions, neurodegenerative diseases, diabetes, depression, anxiety disorders, and more.
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