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Abstract
Aim: The development of selective and potent antitumor agents remains a significant challenge. This study 
aimed to synthesize and evaluate biaryl hydroxy-1,2,3-triazoles and 9H-fluorene-1,2,3-triazole hybrids, 
inspired by previously identified bioactive 1,2,3-triazoles, for their cytotoxic potential against human 
cancer cell lines.
Methods: A library of 13 biaryl hydroxy-1,2,3-triazoles and 11 fluorene-1,2,3-triazoles was synthesized 
using optimized Suzuki and telescopic one-pot reactions, with yields ranging from 16% to 97%. The 
cytotoxicity of these compounds was tested against HCT-116 (colorectal cancer), SNB-19 (astrocytoma), 
MDA-MB-231 (triple-negative breast cancer), and MOLM-13 (acute myeloid leukemia, FLT3-ITD mutant) 
cell lines.
Results: Two fluorene-triazoles, 1-(2-bromophenyl)-4-(9H-fluoren-9-yl)-1H-1,2,3-triazole (LSO258) and 1-
(4-bromophenyl)-4-(2-fluoro-9H-fluoren-9-yl)-1H-1,2,3-triazole (LSO272), both containing bromine 
substituents, exhibited selective cytotoxicity against MOLM-13, with half-maximal inhibitory concentration 
(IC50) values of 25.5 μM and 12.5 μM, respectively. Furthermore, LSO258 and LS0272 showed a selectivity 
index ≥ 2 towards the MOLM-13 cell line. Biaryl hydroxy-1,2,3-triazoles displayed broader activity, with 
[1,1’-biphenyl]-2-yl(1-(2,5-dibromophenyl)-1H-1,2,3-triazol-4-yl)methanol (LSO278), featuring two 
bromine groups, demonstrating potency across HCT-116, MDA-MB-231, and MOLM-13 (IC50: 23.4 μM, 34.3 
μM, and 18.7 μM, respectively). However, structural rigidity did not consistently predict activity, as 1-(2,5-
dibromophenyl)-4-(9H-fluoren-9-yl)-1H-1,2,3-triazole (LSO275), a rigid fluorene-triazole, was inactive. 
MOLM-13 was the most sensitive cell line, with compounds such as 4-(9H-fluoren-9-yl)-1-(4-
(trifluoromethyl)phenyl)-1H-1,2,3-triazole (LSO259) and (1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)(4’-
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fluoro-[1,1’-biphenyl]-2-yl)methanol (LSO280), achieving maximum growth inhibition (MGI > 55%) despite 
not reaching IC50 values.
Conclusions: The results highlight the critical role of bromine substitution on the aryl azide-derived ring in 
modulating cytotoxic activity. The study reinforces the potential of rigid fluorene-based scaffolds as 
promising leads for the development of targeted therapies against FLT3-mutant leukemia, aligning with 
previous reports on 1,2,3-triazole hybrids antiproliferative activity in leukemia models.

Graphical abstract.  Hydroxy-triazole and fluorene-triazole hybrids and their antitumoral activity
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Introduction
Cancer has become the leading cause of death worldwide among people under 70 years old [1]. In addition, 
premature deaths due to various types of cancer are also rising across countries [2]. In 2020, the estimated 
number of cancer cases was almost 20 million, and 10 million deaths related to cancer. Among the most 
common and fatal cancers include breast, prostate, lung, colon, and leukemia [3]. Cancer cells are constantly 
evolving which results in a high tumor heterogeneity with a subpopulation of cells displaying a different 
molecular landscape [4]. This characteristic leads to drug resistance due to genetic, epigenetic, and 
metabolic changes that hinder anticancer activity [5, 6]. Another important factor that limits cancer 
treatment is chemotherapy-related toxicities that affect healthy cells leading to acute toxicities, such as 
hematological and gastrointestinal [7, 8]. Therefore, there is an urgent need for the development of new 
anticancer compounds to overcome these limitations.

Among the most promising scaffolds for addressing challenges in cancer therapy are 1,2,3-triazoles, a 
class of heterocycles known for their exceptional stability and diverse pharmacological properties. Their 
mechanisms of action include the inhibition of cancer cell proliferation, cell cycle arrest, and induction of 
apoptosis, making them effective against both drug-sensitive and multidrug-resistant cancers [9].

In recent years, triazole-based hybrid compounds have emerged as promising candidates for cancer 
treatment, demonstrating remarkable therapeutic potential [10]. These hybrids often exhibit dual or 
multiple mechanisms of action, addressing the limitations of conventional chemotherapeutics by improving 
selectivity and reducing side effects. Furthermore, their ability to overcome drug resistance and their 
promising in vivo activities against various cancer types have solidified their role as valuable frameworks 
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for next-generation anticancer agents. By integrating triazoles into hybrid molecules, researchers aim to 
unlock new possibilities for more effective and safer cancer therapies [11].

Aryl(1-aryl-1H-1,2,3-triazole-4-yl)methanols, commonly known as hydroxy-1,2,3-triazoles, are a 
promising and versatile scaffold with significant potential for novel drug development. Our research group 
has extensive expertise in their synthesis, utilizing both copper-catalyzed alkyne-azide cycloaddition 
(CuAAC) between propargylic alcohols and aryl azides [12], as well as the metal-free and solvent-free 
enaminone-azide cycloaddition (EACA) employed in this study to synthesize 4-acyl-1,2,3-triazoles [13]. The 
EACA method provided a simpler and more efficient route to generate bioactive hydroxy-1,2,3-triazoles 
through acyl reduction. These compounds presented antileishmanial [14], antiviral [15], and cystic fibrosis 
activity [13].

9H-Fluorene-based compounds have emerged in past years due to their unique chemical and physical 
properties, which allow their application in a wide range of scientific disciplines, such as optoelectronics 
[16, 17], solar cells [18], nanostructures [19, 20], and others. Its great prominence is seen in the field of 
medicinal chemistry where this scaffold is being used in various bioactive compounds [21–24].

Given their structural characteristics (conformational rigidity with significant aromaticity structure), 
which intensify their pharmacophoric characteristics [25, 26], it is possible to combine them with other 
structures, such as 1,2,3-triazoles. These synthetic heterocycles have great potential and applicability, 
mainly due to their trans-amides bioisosteric proprieties that possess broad-spectrum biological activity, 
low cytotoxicity, and significant structural versatility. These properties allow triazoles to act both as 
pharmacophores, directly engaging biological targets, and as linkers in hybrid molecules, tethering different 
pharmacophores to enhance efficacy.

The development of fluorene-triazole hybrid compounds is a little-explored field with great potential. 
In literature, some examples are present so far, mainly in functional materials chemistry [27–31]. With a 
view to biological applications, examples can be found, however, most of them bonded together by 
fluorene’s aromatic rings [32–35].

Fewer examples are found when it comes to 9H-fluorenes-triazole hybrids. Yang et al. [36] proposed 
the synthesis of fluorene-triazoles containing the pentafluorosulfanyl group, with emphasis on the CuAAC 
between 3,5-bis(pentafluorosulfanyl)phenyl azide (1a) and 9-ethynyl-9H-fluoren-9-ol (2) as presented in 
Figure 1a. The authors verified the ability of compound 3 to trigger cell death in human leukemic monocyte 
lymphoma U937 cells obtaining a half-maximal inhibitory concentration (IC50) value of 6.29. Compound 3 
was also compared to Caspase-3, an important enzyme responsible for apoptosis, which has been proven to 
be 3.4 times more efficient than this enzyme. These results demonstrate the antitumor potential of 
fluorene-triazole hybrids.

Looking for analogs of structures reported in the literature as Mycobacterium tuberculosis (M. tb) InhA 
(NADH-dependent 2-trans-enoyl-acyl carrier protein reductase) inhibitors, Suresh et al. [37] rationalized 
such molecular skeletons as essential elements for InhA inhibition. In this way, the authors presented three 
9H-fluorene structures derived from fluorene-triazoles (5) with a good variety of substituents by reacting 
fluorene-based alkynes (4) and azidobenzenes (1) [37] (Figure 1b).

More recently in 2020, our research group reported 3 examples of 9H-fluorenes-triazole hybrids 
employing a Friedel-Crafts alkylation. Starting from substituted biaryl hydroxy-1,2,3-triazoles (6) 
(previously synthesized by CuAAC between biaryl-propargyl alcohols and azidobenzenes), in the presence 
of Pd(OAc)2, Na2CO3, PhI(TFA)2 in dichloroethane, 100°C for 36 hours, with yields of 25 to 40% [38] 
(Figure 1c). Since the metal-free and solvent-free EACA to obtain 4-acyl-1,2,3-triazoles is a simpler and 
more effective alternative than CuAAC, our research group decided to employ this methodology for 
obtaining biaryl hydroxy-1,2,3-triazoles (6) as precursors of 9H-fluorene-triazole (7) (Figure 1d). Given the 
biological potential of these compounds, another goal was to evaluate the antitumor potential by maximum 
growth inhibition (MGI) of the new biaryl hydroxy-1,2,3-triazoles and fluorene-triazole hybrids against 
different cell lines.
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Figure 1. Summary of 9H-fluorene-1,2,3-triazoles hybrids. (a) Synthesis of fluorene triazoles according to Yang et al. [36]. 
(b) Synthesis of fluorene triazoles according to Suresh et al. [37]. (c) Synthesis of fluorene triazoles according to da Silva et al. 
[38]. (d) This work. DCE: 1,2-dichloroethane. rt: room temperature

Materials and methods
General procedure for the synthesis of biaryl acetophenones

In a 25 mL screw-top test tube, 2-bromoacetophenone (8) (0.199 g, 1.00 mmol), phenylboronic acid (9) 
(2.00 mmol), K2CO3 (0.276 g, 2.00 mmol), Pd(PPh3)4 (0.05 mmol) and 2.0 mL of water were added. The 
reaction was stirred constantly for 3 hours at reflux temperature under an argon atmosphere (Figure 2). At 
the end of the reaction, the organic phase was extracted with ethyl acetate (EtOAc), dried with anhydrous 
sodium sulphate (Na2SO4) and filtered through celite. The solvent was evaporated under reduced pressure 
and the product (10) was purified by flash column chromatography using EtOAc/hexane (10:90) as the 
eluent.



Explor Drug Sci. 2025;3:1008107 | https://doi.org/10.37349/eds.2025.1008107 Page 5

Figure 2. General procedure for the synthesis of biaryl acetophenones

General procedure for the synthesis of biaryl-acyl-1,2,3-triazoles

In a 25 mL screw cap test tube, biaryl acetophenone (10) (1.00 mmol), aryl azide (1) (1.50 mmol), and N,N-
dimethylformamide dimethyl acetal (DMF-DMA) (0.238 g, 2.00 mmol) were added. The reaction was stirred 
constantly for 2 hours at 150°C under an argon atmosphere (Figure 3). At the end of the reaction, the 
product (11) precipitated pure in ice-cold ethanol and vacuum filtered.

Figure 3. General procedure for the synthesis of biaryl-acyl-1,2,3-triazoles. DMF-DMA: N,N-dimethylformamide dimethyl 
acetal

General procedure for the synthesis of biaryl hydroxy-1,2,3-triazoles

Adapting the methodology from Azevedo et al. [13], starting with the addition of biaryl acetophenone (10) 
(1.00 mmol), aryl azide (1) (1.50 mmol), and DMF-DMA (0.238 g, 2.00 mmol) in a 25 mL screw-capped test 
tube the reaction was stirred constantly for 2 hours at 150°C under an argon atmosphere. Followed by the 
evaporation of the DMF-DMA, the tube was then cooled to room temperature, and NaBH4 (0.151 g, 4.00 
mmol) and 2.5 mL of methanol were added. The reaction was stirred constantly for 2 hours at reflux 
temperature (Figure 4). At the end of the reaction, the product (6) was filtered into ice-cold ethanol or 
extracted with EtOAc followed by purification via flash column chromatography using EtOAc/hexane 
(50:50) as the eluent.

Figure 4. General procedure for the synthesis of biaryl hydroxy-1,2,3-triazoles. DMF-DMA: N,N-dimethylformamide 
dimethyl acetal

General procedure for the synthesis of 9H-fluorene-1,2,3-triazoles

In a 4 mL vial, biaryl hydroxy-1,2,3-triazole (6) (0.125 mmol), BF3∙OEt2 (0.050 mL, 0.40 mmol) and 2.0 mL 
of dichloromethane were added. The BF3∙OEt2 was added slowly in an ice bath under constant stirring, then 
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the reaction was brought to reflux temperature and continued for 2 hours (Figure 5). At the end of the 
reaction, the solvent was evaporated under reduced pressure and the product (7) was purified by column 
flash chromatography using EtOAc/hexane (10:90) as eluent.

Figure 5. General procedure for the synthesis of 9H-fluorene-1,2,3-triazoles

Biological evaluation
Cell culture

Cell lines were obtained from the National Cancer Institute (Bethesda, MD). All cell culture media (Gibco™, 
Thermo Fisher Scientific, Cat. No. 31800022) contained 10% fetal bovine serum (Gibco™, Thermo Fisher 
Scientific, Cat. No. 12657029)  and 1% penicillin/streptomycin (Gibco™, Thermo Fisher Scientific, Cat. No. 
15140122). For the experiments, cells were seeded in 96-well plates (Nest™, Wuxi NEST Biotechnology, Cat. 
No. 701001) in the following concentrations 7 × 104 cells/mL (HCT-116), 2 × 105 cells/mL (MDA-MB-231), 
1 × 105 cells/mL (MOLM-13 and SNB-19), and 1.5 × 105 cells/mL (HEK-293) and cells were maintained at 
37°C with 5% CO2 in a humidified incubator.

Maximum growth inhibition

The effects of biaryl hydroxy-triazoles and fluorene-triazoles compounds on human cancer cell viability, 
expressed as the percentage of cell growth inhibition, were determined by the MTT (3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) (PerkinElmer, VICTOR Nivo Multimode Plate Reader, 
Waltham, MA). Colorimetric assay, as previously described [39, 40]. Cells were grown in 96-well plates 
(Vetec™, Sigma-Aldrich, Cat. No. V900888) at defined concentrations and exposed to a single concentration 
of 50 μM for 72 h. The negative control was treated with 0.5% DMSO (ACS™, ACS científica, São Paulo, BR). 
Afterward, the plates were centrifuged, and the medium was replaced by fresh medium (150 μL) containing 
0.5 mg/mL MTT. Three hours later, the MTT formazan product was dissolved in 150 µL DMSO, and 
absorbance was measured using a multiple reader (PerkinElmer, VICTOR Nivo Multimode Plate Reader, 
Waltham, MA). Compound effect was quantified as the percentage of control (DMSO 0.5%) absorbance of 
the reduced dye at 595 nm. The compounds with MGI ≥ 75% in at least one human cancer cell line were 
selected for IC50 evaluation.

Antiproliferative effect IC50 evaluation

The IC50 evaluation of the selected fluorene-triazole hybrids was determined by the MTT colorimetric assay, 
as previously described [39, 40]. The research aimed to assess the IC50 of 5 compounds on four different 
human cancer cell lines: MOLM-13 [acute myeloid leukemia (AML)], SNB-19 (astrocytoma), MDA-MB-235 
(breast cancer), HCT-116 (colon carcinoma cell line) and one non-tumor cell line, HEK-293 (human 
embryonic kidney). The tested compounds were dissolved in DMSO, and then added to each well, followed 
by incubation of 72 h at concentrations ranging from 0.4 to 50 μM. The negative control was treated with 
0.5% DMSO. Afterward, the plates were processed as described above. Experiments were carried out in 
triplicate and repeated at least three times. The experiments were analyzed by linear regression using the 
GraphPad Prism program, version 6.01, to determine each IC50 value.
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Selectivity index

The selectivity index (SI) is based on the IC50 obtained for each cell line by calculating the ratio of IC50 on 
the non-cancer cell line over the IC50 for the cancer cell line. A compound is considered selective towards a 
tumor cell line with a SI ≥ 2 [41, 42].

SI = IC50
non-cancer cells/IC50

cancer cells

Results
Chemistry

Given that the most bioactive compounds for leishmaniosis and cystic fibrosis identified by our research 
group, such as (4-bromophenyl)(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methanol and (2-
bromophenyl)(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methanol, feature bromine in the aryl ring derived 
from aryl azide, we designed biaryl hydroxy-1,2,3-triazoles and fluorene derivatives to incorporate the 
bromine group. So, we started exploring the Suzuki reaction using 2-bromoacetophenone as a substrate to 
obtain biaryl acetophenone 10a.

The reaction, conducted under the conditions detailed in Table 1, entry 1, and adapted from the 
methodology reported by da Silva et al. [38], yielded the desired product in 65% yield after purification via 
column chromatography. To further optimize the reaction, different catalysts were evaluated in entries 2 
and 3. Among the tested catalysts, Pd(PPh3)4 delivered the highest yield and was selected for subsequent 
studies. The next phase of optimization targeted the solvent and reaction time. With the reaction time fixed 
at 3 hours, various solvents were tested, including toluene, EtOH:H2O mixtures (20% and 50% ethanol), 
pure H2O, and solvent-free conditions. Both EtOH:H2O mixtures and pure water exhibited comparable 
performance. Pure water was ultimately chosen due to its significant advantages in environmental 
sustainability, safety, and cost efficiency [43, 44].

Table 1. Reaction conditions optimization for the Suzuki reaction on 2-bromoacetophenone

Reaction for the Suzuki reaction on 2-
bromoacetophenone

Entry Catalyst Solvent Temperature Time (h) Yield (%)

1 Pd(OAc)2 + PPh3
a Toluene Reflux 16 65

2 PdCl2
b Toluene Reflux 16 65

3 Pd(PPh3)4
b Toluene Reflux 16 80

4 Pd(PPh3)4
b 20% 

EtOH:H2O
Reflux 3 90

5 Pd(PPh3)4
b 50% 

EtOH:H2O
Reflux 3 93

6 Pd(PPh3)4
b H2O Reflux 3 92

7 Pd(PPh3)4
b - 200°C 3 70

8 Pd(PPh3)4
c H2O Reflux 3 95

9 Pd(PPh3)4
d H2O Reflux 3 60

10 Pd(PPh3)4
c, e H2O Reflux 3 87

a Catalyst: 10 mol% and 20 mol% respectively. b Catalyst: 10 mol%. c Catalyst: 5 mol%. d Catalyst: 1 mol%. e Scale up to 10 
mmol from 0.2 mmol. -: no solvent

The optimized conditions identified in Table 1, entry 8, emerged as the most efficient and reliable for 
the synthesis, using 5 mol% Pd(PPh3)4 in water as the solvent under reflux for 3 hours, achieving yields of 
95%. To further validate their robustness and scalability, the reaction was performed on a 50-fold scale, 
maintaining excellent efficiency with a slightly reduced yield of 87% after purification. From this optimized 
condition, it was possible to synthesize 6 biaryl acetophenones, with yields ranging from 39 to 99%, as 
shown in Figure 6.
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Figure 6. Scope of biaryl acetophenone at 1 mmol scale

According to the literature, in general, electron-rich organoboranes and electron-deficient halides are 
the most reactive substrates for the Suzuki reaction, thus resulting in a positive effect on the reaction yield 
[45, 46]. Given that the halide used is 2-bromoacetophenone, characterized by the presence of an electron-
withdrawing group, and based on the scope presented above, the good yields obtained are in line with the 
trends reported in the literature. Additionally, boronic acids bearing electron-donating substituents 
consistently led to higher yields compared to those with electron-withdrawing groups, further 
corroborating established reactivity patterns.

The subsequent step involved applying the substituents previously established by the methodology for 
synthesizing 4-acyl-1,2,3-triazoles (11) from acetophenones and aryl azides [13]. The biaryl acetophenone 
10a reacted with 4-bromophenyl azide 1b and DMF-DMA at 150°C for 2 hours. The mechanism for this 
reaction is a combination of previously described mechanisms for enaminone formation by Thomas et al. 
[47], as well as a mechanism described by the research group in 2022 [48]. This reaction successfully 
yielded the biaryl-acyl-1,2,3-triazole 11ab, which was isolated in 40% yield following precipitation in ice-
cold ethanol, with the NMR spectra corresponding to these molecules available in the supplementary 
material (Figures S1 and S2). The reduction of compound 11ab was carried out using NaBH4 in methanol 
under reflux for 2 hours. This reaction yielded the biaryl hydroxy-1,2,3-triazole 6ab with complete 
conversion of the starting material (Thin Layer Chromatography-determined). The hydroxy-triazole 
precipitated directly from the reaction mixture upon the addition of water and was isolated by filtration, 
affording a yield of 93% (Figure 7).

Figure 7. Synthesis of biaryl-acyl-1,2,3-triazole 11ab and biaryl hydroxy-1,2,3-triazole 6ab. DMF-DMA: N,N-
dimethylformamide dimethyl acetal
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Attempts to synthesize hydroxy-triazoles with other substituents revealed a significant limitation 
during the isolation of the acyl-triazoles. Unlike the previous case, none of the type 6 triazole precipitated in 
pure form, necessitating purification via column chromatography. The isolation process was further 
complicated by the similar retention factors of the 11 and the corresponding 10, making their separation 
particularly challenging.

To address this challenge, a telescopic approach was proposed, applying the known properties of 
hydroxy-triazoles, which readily precipitate in pure form upon the addition of water. This one-pot 
methodology involved the in situ generation and consumption of intermediates, eliminating the need to 
isolate the acyl-triazole [49]. After evaporating DMF-DMA, the acyl group was directly reduced, enabling the 
synthesis of hydroxy-triazoles without requiring purification of the intermediate. Using the new telescopic 
approach, a diverse set of 13 novel biaryl hydroxy-1,2,3-triazoles (6) was successfully synthesized by 
varying the biaryl acetophenones and aryl azides, obtaining yields ranging from 16% to 89% (Figure 8).

Figure 8. Scope of biaryl hydroxy-1,2,3-triazoles. DMF-DMA: N,N-dimethylformamide dimethyl acetal
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The yields obtained showed significant variability, likely influenced by challenges in the synthesis of 
compound 11, particularly the in situ formation of the enaminone, which is essential for its subsequent 
reaction with the azide to produce the triazole. Additionally, variations in the solubility of the reduced 
product during precipitation may contribute to inconsistencies in the final yield.

Once the bi-arylated precursors were synthesized, a methodology was required to access the desired 
fluorene-triazoles (7) boron trifluoride (BF3) was selected due to its strong Lewis acid character, which 
effectively coordinates with and activates the secondary alcohol, facilitating the formation of the 
carbocation intermediate. This method not only allows for the use of mild reaction conditions but is also 
commercially available, easy to handle under standard laboratory conditions, and can be conveniently 
removed after the reaction, thereby streamlining the overall process [50–52].

The formation of fluorene was achieved via an intramolecular Friedel-Crafts alkylation approach with a 
carbocation as an intermediate [53]. This methodology was applied to biaryl hydroxy-1,2,3-triazoles, which 
were reacted with BF3∙OEt2 in dichloromethane under reflux for 2 hours. Upon completion of the reaction, 
the solvent was evaporated, yielding 11 new 9H-fluorene-1,2,3-triazole in 20 to 97% yield (Figure 9).

Figure 9. Scope of 9H-fluorene-1,2,3-triazoles. NP: no product

The observed variation in yields can be attributed to the position of substituents relative to the 
cyclization attack site. Optimal yields are achieved when this site has high electronic density, which is 
enhanced by electron-withdrawing substituents in the meta position and electron-donating substituents in 
the ortho and para positions. The failure to obtain compounds 7ca and 7da is likely due to the presence of 
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donor groups in the meta position, which reduces the electronic density at the target site, rendering it less 
reactive and thus deactivating the cyclization process. All products were thoroughly characterized by NMR 
spectroscopy, while all fluorene-triazoles were analyzed using both NMR and FTIR-ATR (Figures S1–S73).

Biological activity

As previously described, our research group identified the (4-bromophenyl)(1-(4-bromophenyl)-1H-1,2,3-
triazol-4-yl)methanol and (2-bromophenyl)(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methanol, featuring 
bromine in the aryl ring as important targets for leishmaniasis and cystic fibrosis. However, testing (4-
bromophenyl)(1-(4-bromophenyl)-1H-1,2,3-triazole-4-yl)methanol (LSO24), in these tumor cell lines 
yielded no so positive results (Table S1).

To identify LSO24 analogs with enhanced potency against tumor cell lines and assess the influence of 
flexible ligands biaryl hydroxy-triazoles or scaffolds with conformational rigidity fluorene-1,2,3-triazoles, 
the cytotoxic effect of the newly synthesized biaryl hydroxy-triazoles and fluorene-triazoles hybrids were 
evaluated in a single concentration for MGI and in a range of concentration for IC50 determination against 
human cancer cell lines HCT-116 (colorectal cancer), SNB-19 (astrocytoma, glioblastoma multiforme), 
MDA-MB-231 (triple-negative breast cancer, metastatic) and MOLM-13 (AML). MGI and IC50 from all 
compounds are summarized in Table S1.

The MGI evaluation showed that the compounds LSO258, LSO272, LSO276, LSO278, and LSO281 
achieved satisfactory growth inhibition in at least one cell line (Figure 10). Consequently, they were 
selected for IC50 determination in four human cancer cell lines and one non-cancerous human cell line.

Figure 10. The maximum growth inhibition (MGI) of biaryl hydroxy-triazoles and fluorene-triazoles compounds across a 
panel of human cancer cell lines after 72 h exposure. (a) HCT-116. (b) SNB-19. (c) MDA-MB-231. (d) MOLM-13

Table 2 presents the IC50 evaluation of biaryl hydroxy-triazole and fluorene-triazole compounds 
against human cancer cell lines. The results indicate that all compounds exhibited an IC50 below 50 µM for 
the MOLM-13 cell line, with LSO258, LSO272, and LSO276 demonstrating selectivity for this cell line. The 
compounds LS0278 and LSO281, both belonging to the biaryl hydroxy-triazoles, were able to achieve an 
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IC50 below 50 µM for more than one cancer cell line. LSO278 presented a cytotoxicity for the cell line HCT-
116 and MDA-MB-231 with IC50 values of 23.4 µM and 34.3 µM, respectively. In addition, LSO281 showed 
an IC50 value of 28.2 µM for the HCT-116 cell line.

Table 2. IC50 values (µM) of biaryl hydroxy-triazoles and fluorene-triazoles compounds across a panel of human cell 
lines after 72 h exposure

Cell linesCompound

HCT-116 SNB-19 MDA-MB-231 MOLM-13 HEK-293

LSO258 > 50 > 50 > 50 25.5 > 50
LSO272 > 50 > 50 > 50 12.5 34.5
LSO276 > 50 > 50 > 50 24.8 42.6
LSO278 23.4 > 50 34.3 18.7 20.8
LSO281 28.2 > 50 > 50 22.7 24.7
Doxorubicin ND 0.8 0.2 ND 0.8
5-Fluorouracil 19.2 ND ND ND 6.9
Azacitidine ND ND ND 0.99 > 50
> 50: not able to determine the half-maximal inhibitory concentration (IC50) value within the range of concentration tested for this 
cell line. ND: not determined

Additionally, the compounds were evaluated against the human non-cancer cell line HEK-293 to 
determine their SI. As shown in Table 3, among the tested compounds, only LSO258 and LSO272 exhibited 
an SI greater than 2 for the MOLM-13 leukemia cell line. In contrast, for the HCT-116, SNB-19, and MDA-
MB-231 cell lines, none of the compounds tested showed an SI higher than 1. Notably, LSO272 
demonstrated the highest selectivity, with the lowest IC50 value (12.5 µM) for MOLM-13 and an SI of 2.76.

Table 3. Selectivity index of biaryl hydroxy-triazoles and fluorene-triazoles compounds comparing cytotoxicity on 
tumor cell lines to non-tumor HEK-293 cell line

Cell linesCompound

HCT-116 SNB-19 MDA-MB-231 MOLM-13

LSO258 ND ND ND > 2
LSO272 ND ND ND 2.76
LSO276 ND ND ND 1.71
LSO278 0.88 ND 0.60 1.11
LSO281 0.87 ND ND 1.08
Doxorubicin ND 1 4 ND
5-fluorouracil 0.35 ND ND ND
Azacitidine ND ND ND > 50
ND: not determined

Discussion
Among the fluorene-triazole compounds evaluated, LSO258 and LSO272, both containing bromine at the 
blue ring exhibited selective cytotoxicity against the MOLM-13 cell line, with IC50 values of 25.5 µM and 12.5 
µM, respectively. In contrast, the flexible biaryl hydroxy-triazole ligands, LSO232 and LSO280, were 
inactive. In this case, the rigid scaffolds may minimize the entropic loss associated with the ligand adopting 
a preferred binding conformation, resulting in enhanced potency, improved selectivity, and reduced 
potential for drug metabolism [25, 26].

Considering the flexible biaryl hydroxy-triazole ligands, compound LSO278, which contains two 
bromine groups on the blue ring, was the only one to exhibit significant cytotoxicity across three cell lines 
(HCT-116, MDA-MB-231, and MOLM-13), with IC50 values of 23.4 µM, 34.3 µM, and 18.7 µM, respectively. In 
contrast, the fluorene-triazole compound LSO275 was inactive even with these two bromine groups, and 
the conformational rigidity doesn't corroborate the antitumoral activity.
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The only instance where both a biaryl hydroxy-triazole (flexible ligand) and a fluorene-triazole (rigid 
scaffold) demonstrated activity was observed with LSO258 and LSO276, both of which feature bromine in 
the same position in the blue ring. Compound LSO276 showed cell line-dependent activity, with an IC50 of 
24.8 µM in the MOLM-13 acute leukemia cell line and LSO258 with IC50 values of 25.5 µM, both with same 
potency.

Overall, most of the compounds evaluated in this study were more potent against MOLM-13, even 
when IC50 values were not achieved. For instance, LSO259, LSO234, and LSO280 demonstrated an MGI 
above 55% for MOLM-13, while for cell lines derived from solid tumors, their MGI values were below 35. In 
addition, most of the compounds evaluated in this study were more potent towards MOLM-13, even those 
that did not reach an IC50 value. For example, LSO259, LSO234, and LSO280 displayed an MGI above 55% 
for MOLM-13, while for the cell lines from solid tumors, only an MGI below 35%.

The MOLM-13 cell line represents a subtype of AML, specifically M5a, characterized by wild-type TP53 
and a mutated FLT3 gene [52–54]. This FLT3-ITD mutation leads to the constitutive activation of the FLT3 
tyrosine kinase receptor, driving uncontrolled cell proliferation and resistance to apoptosis [55, 56]. As a 
result, AML patients with this mutation often experience poor survival rates. First-generation tyrosine 
kinase inhibitors targeting the FLT3 pathway have been evaluated in clinical trials; however, their low 
specificity limited their therapeutic efficacy [57, 58]. To overcome this, second-generation FLT3 inhibitors, 
such as gilteritinib and quizartinib, were developed and demonstrated significant clinical benefits, leading 
to their approval for AML treatment in the USA, Japan, and Europe. Nevertheless, treatment resistance 
remains a challenge, as AML cells can acquire additional mutations in FLT3 or related genes, ultimately 
reducing the effectiveness of FLT3 inhibitors [56, 59, 60].

Different studies have shown the antiproliferative effect of 1,2,3-triazoles-hybrids against leukemia cell 
lines. Ashwini et al. [54] synthesized a series of 1,2-benzisoxazole tethered 1,2,3-triazoles with preeminent 
anticancer activity in vitro. The lead compound PTB presented IC50 ranging from 1–2.5 μM after 96 h 
exposure in the following cell lines, MOLM-14, MOLM-14 and MV4-11. In another study, novels 1,4-diaryl-
1,2,3-triazolo-based ureas compounds were developed as FLT3-ITD inhibitors and tested against cancer 
cell lines FLT3-ITD dependent (BaF3, MV4-11, and MOM-13) and FLT3-WT cell line. The results showed 
that different compounds were highly cytotoxic and selective towards FLT3-ITD cell lines compared to the 
wild-type one. In addition, the molecular docking evaluation indicated that the binding of one of the 
derivatives was mainly due to the triazole ring [55].

The observed cytotoxicity of bromine-containing fluorene-triazole and biaryl hydroxy-triazole 
derivatives, particularly LSO258, LSO272, LSO276, and LSO278, aligns with the well-established role of 
bromine in enhancing drug-target interactions through halogen bonding (X-bonding) [56]. Bromine’s 
moderate electronegativity, polarizability, and ability to form directional halogen bonds likely contributed 
to the increased potency of these compounds, particularly against MOLM-13 cells. Halogen bonds with 
carbonyl oxygens, amides, and π-stacking with aromatic residues may have improved ligand-protein 
interactions, enhancing selectivity and binding affinity to biological targets [57, 58]. Furthermore, 
bromine’s lipophilic nature may have facilitated better membrane permeability and cellular uptake, 
contributing to the observed cytotoxic effects [59].

Additionally, the structural influence of bromine within rigid fluorene-triazole scaffolds suggests that 
the conformational constraints imposed by this framework may have minimized entropic losses during 
binding, resulting in more favorable protein-ligand interactions. Interestingly, LSO278, a flexible biaryl 
hydroxy-triazole bearing two bromine atoms, demonstrated broad activity across multiple cancer cell lines, 
suggesting that in certain cases, enhanced electronic interactions provided by multiple bromine 
substituents can compensate for flexibility-related entropic penalties. These findings reinforce the 
importance of bromine in medicinal chemistry, highlighting its potential to fine-tune molecular recognition, 
optimize pharmacokinetic properties, and enhance cytotoxicity in drug discovery efforts [60, 61].
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In conclusion, we successfully synthesized 13 new biaryl hydroxy-1,2,3-triazoles using a one-pot 
reaction that eliminated the need for isolating intermediates, achieving yields ranging from 16% to 89%. 
These triazoles served as precursors for 9H-fluorene-triazole hybrids, resulting in the formation of novel 
compounds with yields between 20% and 97%. The synthesized structures demonstrated significant 
potential for inhibiting the growth of several cancer cell lines. Among the compounds evaluated, most 
exhibited higher potency against MOLM-1, with LSO258, LSO272, LSO276, and LSO278 showing IC50 
values of 25.5, 12.5, 24.8, and 18.7 µM, respectively. Notably, LSO278 displayed versatility, exhibiting 
additional activity against HCT-116 (IC50 = 23.4 µM) and MDA-MB-231 (IC50 = 34.3 µM). While a direct 
correlation between flexible ligands and rigid scaffolds could not be established, the presence of a triazole 
moiety and bromine substitution on the blue ring (derived from aryl azide) consistently emerged as key 
features, as all active compounds shared this structure.
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