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Abstract
Traditional medicine systems worldwide utilize natural products (NPs), including plant-derived 
compounds, minerals, and organisms, harnessing their healing potential. NPs offer a rich source of potential 
drug candidates, driving innovation in drug discovery. Recent breakthroughs have reignited interest in 
harnessing the therapeutic benefits of natural compounds. Clinical applications of NP-based 
immunotherapies, such as curcumin and resveratrol in cancer treatment, highlight their diverse 
pharmacological properties. However, despite these advancements, challenges persist in the clinical 
implementation of NPs. Issues such as standardization, regulatory approval, and supply sustainability 
remain significant hurdles. Overcoming these limitations requires a concerted effort to address the 
complexities of NP drug development. Nevertheless, ongoing research efforts and interdisciplinary 
collaboration hold promise for advancing NP-based therapeutics, paving the way for the development of 
innovative treatments for various diseases. In the world of precision medicine, a new chapter unfolds as 
NPs join the therapeutic journey. The exploration of NPs as sources of bioactive compounds has revealed 
promising prospects for precision therapeutics in medicine. This article explores the therapeutic potential 
of NPs within the context of precision medicine. It examines the intricate pathways through which bioactive 
compounds derived from nature offer tailored therapeutic prospects, emphasizing their role in precision 
medicine interventions. Exploring the synergy between NPs and precision therapeutics at a molecular level, 
this article delineates the exciting prospect of customized treatments, signifying a transformative impact on 
modern medical care. The review article further highlights their potential in tailoring treatments based on 
individual genetic makeup and disease characteristics. Additionally, it discusses challenges and prospects, 
addressing issues of sourcing, standardization, scalability, and regulatory considerations to realize the full 
therapeutic potential of NPs.
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Graphical abstract. Revolutionizing drug development: conventional treatment vs. precision medicine utilizing natural sources
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Introduction
Natural products (NPs) have been used in healthcare systems since ancient times, drawing from the rich 
biodiversity and traditional knowledge of different cultures. NPs, derived from diverse biological sources 
including plants, fungi, and marine organisms, have long served as reservoirs of bioactive compounds with 
profound effects on immune function. Historically, drug discovery has been closely linked to NPs. 
Traditional medicines are effective treatments for various health conditions, such as malaria, pain, and 
cancer [1]. Today, there is a renewed interest in exploring the bioactive compounds found in nature. Over 
the past decades, research efforts have revealed many bioactive compounds from natural sources that 
possess immunomodulatory properties. These compounds exhibit a spectrum of effects, ranging from 
potent immunostimulation to immunosuppression, thereby offering versatile tools for the treatment of 
various immune-related disorders. Notably, the advent of advanced analytical techniques has facilitated the 
identification and characterization of key bioactive constituents, enabling a deeper understanding of their 
mechanisms of action and therapeutic potential. The applications of modern techniques, such as multi-
omics, network pharmacology, and DNA barcoding, help to validate and document the pharmacological and 
phytochemical aspects of traditional medicine [2].

Many NPs have contributed to the development of modern drugs, such as aspirin, artemisinin, and 
vincristine. However, the scientific validation and standardization of NPs are still challenging and require 
interdisciplinary approaches and evidence-based methods. Precision medicine, characterized by tailored 
therapeutic interventions based on individual genetic, molecular, and clinical profiles, has emerged as a 
paradigm shift in healthcare delivery. The complex interplay between the immune system and human 
health has prompted significant interest in harnessing the immunomodulatory properties of NPs for 
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precision medicine applications. This growing field represents a convergence of traditional knowledge and 
modern scientific approaches, aimed at elucidating the therapeutic potential of NPs in modulating immune 
responses with precision and efficacy. By leveraging the diversity and complexity of NP chemistry, 
clinicians can envision a future where personalized immunotherapy strategies are tailored to the unique 
immunological landscape of each patient.

This review aims to provide a comprehensive overview of the current state-of-the-art in harnessing the 
immunomodulatory potential of NPs within the context of precision medicine. Furthermore, we will discuss 
emerging strategies for integrating NP-based immunotherapies into clinical practice, with a focus on 
personalized treatment approaches and future directions for research and development. In summary, this 
review underscores the pivotal role of NPs in shaping the future of precision immunotherapy and tries to 
unlock new avenues for therapeutic innovation and ultimately enhance the management of immune-related 
disorders.

Biological diversity of natural sources
NPs are organic compounds derived from living organisms, such as plants, fungi, and marine organisms. 
They exhibit remarkable structural and functional diversity and have been a rich source of bioactive 
molecules for drug discovery and development. NPs have played a vital role in the treatment of various 
diseases, such as cancer, infectious diseases, inflammation, and neurodegenerative disorders.

Plants are a rich and diverse source of NPs, which have been utilized for healing purposes in various 
traditional medicine systems, such as Ayurveda, Chinese medicine, and Unani medicine for a long time. 
Plants synthesize a variety of secondary metabolites, such as alkaloids, flavonoids, terpenoids, phenolics, 
and glycosides, that exhibit different biological activities and therapeutic potentials (Table 1). Some well-
known drugs derived from plants include aspirin, morphine, quinine, vincristine, and artemisinin. Plant NPs 
can influence the immune system by modulating innate and adaptive immunity, cytokine secretion, 
inflammation, and cell signaling [2–4].

Table 1. Plant-derived natural products (NPs) with immunomodulatory effect

Major source NP Mode of action References
Aloe vera Acemannan Stimulates the production of interleukin-1 alpha (IL-

1α), tumor necrosis factor alpha (TNF-α), IL-6, nitric 
oxide (NO), and prostaglandin E2 (PGE2) by 
macrophages

•

Enhances macrophage phagocytosis•
Exhibits antiviral activity•
Induces tumor cell apoptosis or necrosis•

[5–9]

Withania somnifera Withanolides Comprehensive approach to modulating cellular 
processes

•

Potential for therapeutic interventions across various 
diseases

•

Targeting nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) pathway

•

Targeting signal transducers and activators of 
transcription (STAT) pathway

•

Targeting ubiquitin proteasome pathway•

[10–12]

Astragalus membranaceus Astragalosides Upregulates mRNA and Bcl-2 protein expression•
Downregulates monocyte chemoattractant protein 
(MCP) and NF-κB protein expression

•

Suppresses Bax, cleaved caspase-3, IL-1β, IL-6, and 
TNF-α expression

•

[13–15]

Restricts DNA replication•
Inhibits the cell cycle progression•
Promotes apoptosis•

Berberis vulgaris Berberine [16–18]
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Major source NP Mode of action References
Inhibits inflammatory pathways mediated by NF-κB 
and activator protein-1 (AP-1)

•

Suppresses the expression of chemokines, 
preventing leukocyte migration

•

Betula pubescens and Bacopa 
monnieri

Betulinic acid Modulates key inflammatory modulators including 
cyclooxygenase-2 (COX-2), intercellular adhesion 
molecule-1 (ICAM-1), IL-1β, IL-6, IL-12, MCP-1, 
PGE2, and TNF

•

Inhibits NF-κB and mitogen-activated protein kinase 
(MAPK) pathways

•

Stimulates the production of IL-10•

[19–22]

Boswellia serrata Boswellic acids Induces pro-inflammatory cytokines such as TNF-α, 
IL-1β, IL-2, IL-4, IL-6, and interferon gamma (IFN-γ)

•

Enhances phagocytosis of macrophages•
Modifies antibody production•
Inhibits the classical complement pathway•

[23–25]

Boswellia sacra Frankincense Regulation of metabolic profiling•
Modulation of the MAPK signaling pathway•

[26–28]

Curcuma longa Curcumin Inhibits COX-2•
Suppresses inducible NO synthase (iNOS)•
Blocks lipoxygenase (LOX)•

[29–31]

Camellia sinensis Epigallocatechin 
gallate

Epidermal growth factor receptor (EGFR), Janus 
kinase (JAK)/STAT, MAPK, NF-κB, and PI3K-Akt-
mammalian target of rapamycin (mTOR), influencing 
gene, protein, and enzyme activity in disease 
regulation

•

Interacts with molecules like Toll-like receptors 
(TLRs), NOD-like receptor protein 3 (NLRP3) 
inflammasomes, and gut microbiota, impacting the 
immune system and gut-brain axis

•

[32, 33]

Tanacetum parthenium Parthenolide Inhibits activation of inhibitory kappa B (IκB), 
consequently blocking the activation and release of 
NF-κB from the cytoplasmic IκB complex

•

Directly binds to NF-κB, preventing its interaction with 
DNA

•

[34, 35]

Allium sativum Allicin, S-
allylcysteine

Modulates TNF-α, IL-6, IL-1β, transforming growth 
factor beta (TGF-β), and alpha-smooth muscle actin 
(α-SMA)

•

Prevents inflammation and fibrosis in lung tissue•
Inhibits increases in TNF-α, IL-6, and TGF-β•

[36, 37]

Zingiber officinale Gingerol, shogaol Inhibiting COX-2 and LOX pathways• [38, 39]
Vitis vinifera Proanthocyanidins Modulating the MAPK, Akt, and NF-κB signaling 

pathways
• [40, 41]

Camellia sinensis Catechins Modulating inflammation-related oxidative stress-
related cell signaling pathways

•

Activation or deactivation of key pathways such as 
NF-κB, MAPKs, and transcription factor

•

[42, 43]

Ocimum sanctum Eugenol, ursolic 
acid

Inhibits the expression of COX-2 and iNOS, reducing 
levels of proinflammatory cytokines such as IL-6, 
TNF-α, and PGE2, and modulating NF-κB expression

•

Downregulates oncogenes cellular myelocytomatosis 
(c-Myc) and Harvey rat sarcoma viral oncogene 
(H-ras), modifies p53 expression, and induces 
apoptosis by decreasing the transcription activity of 
E2 promoter binding factor 1 (E2F1)

•

[44–46]

Inhibits inflammatory cell activation and function, 
modulating NF-κB, MAPK, and JAK/STAT pathways

•Glycyrrhiza glabra Glycyrrhizin [47, 48]
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Major source NP Mode of action References
Blocks TLR4 signaling, halting NF-κB activation and 
cytokine production, while suppressing COX-2 and 
iNOS expression

•

Suppresses NLRP3 inflammasome activation, 
reducing reactive oxygen species (ROS), inhibiting 
NLRP3 expression, and preventing caspase-1 and IL-
1β cleavage

•

Olea europaea Oleuropein Attenuates inflammation caused by TNF-α, NO, and 
PGE2, nitrotyrosine, iNOS, COX-2, and poly(ADP-
ribose) polymerase (PARP)

•

Inhibits p65 translocation by blocking IκB 
phosphorylation in signaling pathway studies

•

[49–51]

Citrus fruits, apples, onions, parsley, 
sage, tea, red wine, olive oil, grapes, 
dark cherries, and dark berries such 
as blueberries, blackberries, and 
bilberries

Quercetin Increases peroxisome proliferator-activated receptor 
gamma (PPARγ) activity

•

Antagonizes NF-κB or AP-1 transcriptional activation 
of inflammatory genes

•

Blocks TNF-α-mediated induction of inflammatory 
cascades

•

[52, 53]

Polygonum cuspidatum and Vitis 
vinifera

Resveratrol Activation of sirtuin-1 (Sirt-1) is implicated in 
mediating these effects

•

Sirt-1, acting as a deacetylase, plays a crucial role in 
immune tolerance by inhibiting the TLR4/NF-κB/STAT 
pathway and reducing the production of inflammatory 
factors

•

[54, 55]

Rhodiola rosea Salidroside, 
rosavin

Anti-inflammatory and antioxidant activity•
Modulation of the MAPK/NF-κB pathway, etc.•

[56–58]

Silybum marianum Silybin Inhibition of the IL-6/STAT3 signaling pathway• [59, 60]
Zanthoxylum alatum and Ruta 
graveolens

Skimmianine Inhibits neuroinflammation by targeting the NF-κB 
activation pathway

•

Reduces the production of pro-inflammatory 
mediators in lipopolysaccharide activated BV-2 
microglia, including TNF-α, IL-6, iNOS, and COX-2

•

Neuroprotective effects by preventing neurotoxicity 
caused by microglia-conditioned media, as evidenced 
by increased expression of neuronal microtubule-
associated protein 2 (MAP-2) protein

•

[61–63]

Petroselinum crispum, Melissa 
officinalis, Origanum vulgare, and 
Justicia gendarussa

Apigenin Downregulates inflammatory cytokine expression•
Suppresses AP-1, MAPK, and NF-κB pathways in 
keratinocytes

•

Induces autophagy by decreasing mTOR activity•
Inactivates Akt and protein kinase C (PKC) activities•
Protects cells from oxidative stress-induced cell death•

[64–66]

Panax ginseng Ginsenosides Modulates the immune system•
Influences expression and activity of cytokines, 
chemokines, transcription factors, and signaling 
molecules

•

Targets NF-κB, STAT3, nuclear factor erythroid 2-
related factor 2 (Nrf2), and PPAR pathways

•

[67–70]

Plant-derived NPs encompass a diverse range of bioactive compounds that exert immunomodulatory 
effects, examples include curcumin, known for its anti-inflammatory and immunostimulatory properties 
[71], and quercetin found in fruits and vegetables, which has shown efficacy in autoimmune disease 
management [72]. Additionally, apigenin, present in parsley and chamomile, etc., exhibits anti-
inflammatory and immunosuppressive effects [73], while skimmianine, derived from various plant sources, 
has been studied for its immunomodulatory potential [63].

Other NPs like fungi, insects, marine organisms, etc. stand out as a prolific source of NPs renowned for 
their diverse therapeutic potentials, encompassing antimicrobial, anticancer, antiviral, and 
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immunosuppressive properties (Table 2). Within these categories lies a spectrum of bioactive compounds, 
with well-established drugs such as penicillin, lovastatin, and cyclosporine. Penicillin, derived from 
Penicillium sp., remains one of the most widely used antibiotics worldwide, while lovastatin, sourced from 
Aspergillus sp., boasts cholesterol-lowering capabilities alongside its anticancer effects. Cyclosporine, 
extracted from Tolypocladium sp., serves not only as an immunosuppressive agent but also exhibits 
antiviral properties. Other examples of antimicrobial fungal NPs include griseofulvin, amphotericin B, 
echinocandin, and caspofungin [74, 75].

Table 2. Other natural products (NPs) with immunomodulatory effects

Source Taxonomic species NP References
Fungi Cordyceps sinensis Cordycepin [76, 77]
Insects Apis mellifera Propolis [78, 79]
Various species Lactobacillus, Bifidobacterium Lactobacillus, Bifidobacterium [80, 81]
Algae Spirulina platensis Phycocyanin [82, 83]

Haliotis diversicolor Abalone Haliotis peptide [84, 85]
Sargassum fusiform Fucoidans [86, 87]

Marine 
organisms

Algae, yeast, salmon, trout, krill, shrimp, and 
crayfish

Astaxanthin [88, 89]

Cartilage Shark and bovine cartilage Chondroitin sulfate [90, 91]
Fish Fish oil Eicosapentaenoic acid (EPA), docosahexaenoic 

acid (DHA)
[92, 93]

The antiviral properties and immune-boosting effects of polysaccharides derived from bacteria, fungi, 
and algae have been reported [94]. The mechanisms of action and potential applications of polysaccharides 
against various viruses, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 
causative agent of COVID-19 have been reported and suggest that microbial and algal polysaccharides can 
be used as adjuvants, nutrient supplements, and drug delivery systems to prevent and/or inhibit viral 
infections [95].

Fucoxanthin, derived from brown seaweeds, emerges as a promising natural anticancer compound, 
targeting key pathways involved in cancer development and progression, such as cell cycle regulation, 
apoptosis induction, angiogenesis inhibition, and autophagy modulation [96]. Small molecule-based 
approaches are highlighted as effective means to intervene in critical signaling pathways dysregulated in 
hepatocellular carcinoma (HCC), offering the potential to lessen key aspects of HCC behavior including 
proliferation, migration, invasion, metastasis, and recurrence [97]. The apoptotic activity of plant and 
fungal extracts on cancer cells, isolation of active compounds, their mechanisms of action, and clinical trial 
status, standardization, and bioavailability, emphasize the need for further research to fully unlock their 
therapeutic potential in cancer treatment [98].

The anti-inflammatory properties of Betulinic acid, Apigenin and Skimmianine (BASk), a novel drug 
formulation comprising betulinic acid (B), apigenin (A), and skimmianine (Sk) have been studied and it 
reveals the molecular mechanism underlying the therapeutic effects of BASk, particularly its involvement in 
CD36-mediated activation of the Toll-like receptor 2 (TLR2)-NOD-like receptor protein 3 (NLRP3) signaling 
pathway [99]. Some of the recent studies on NPs are listed in Table 3.

Immunomodulatory effect of NPs
Immunomodulation is the process of altering the immune system by enhancing or suppressing its activity. 
Immunomodulation can be achieved by various agents, such as cytokines, antibodies, vaccines, and drugs. 
However, these agents may have adverse effects, such as toxicity, resistance, and immunosuppression. 
Many NPs have shown significant immunomodulatory and overall health-benefiting effects to humans, with 
no or minimal toxicity. These NPs offer promising alternatives for immunomodulation, as they can 
modulate the immune system and participate in various processes of innate and adaptive immunity [100]. 
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Table 3. Some of the recent studies in natural products (NPs)

Sl 
No

Scientific title Year Source register Web address Countries

1 Evaluate and compare effect of Platelet Rich 
Plasma(PRP) and Nutraceuticals in pain 
management of Post Herpetic Neuralgia

2024 CTRI https://ctri.nic.in/Clinicaltrials/
pmaindet2.php?EncHid=MTAxNjA4&
Enc=&userName=Evaluate%20and%
20compare%20effect%20of%
20Platelet%20Rich

India

2 Evaluation of the safety and the efficacy of a 
novel polyherbal mouthwash containing Emblica 
officinalis,Cinnamomum cassia,Silicate of 
magnesia,Nigella sativa and Eucalyptus 
globulus oil in patients with gingivitis:A 
randomized controlled trial

2024 CTRI https://ctri.nic.in/Clinicaltrials/
pmaindet2.php?EncHid=OTM1NDg=&
Enc=&userName=CTRI/2024/01/
061413

India

3 Beneficial Effects of Specific Natural Products 
on Management of Xerostomia: A Randomized 
Controlled Clinical Trial

2024 ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/
NCT06217614

Egypt

4 Effect of taking foods containing natural 
products on mental and physical health in adult 
women

2023 JPRN https://center6.umin.ac.jp/cgi-open-bin/
ctr_e/ctr_view.cgi?recptno=
R000055834

Japan

5 The impact of dietary fibre supplementation on 
gum disease; A randomised control trial in 
healthy volunteers

2023 ANZCTR https://anzctr.org.au/
ACTRN12623001067662.aspx

Australia

6 Safety, Pharmacokinetics, and Preliminary 
Efficacy of Herbal Products for the Treatment of 
Acute Respiratory Viral Infections Including 
Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) in Uganda; Phase 
2A Open Label Clinical Trial

2023 ClinicalTrials.gov https://clinicaltrials.gov/show/
NCT05897203

Uganda

7 A dietary supplement for the management of 
patients with lumbar osteochondrosis

2021 ISRCTN https://www.isrctn.com/
ISRCTN17230715

Austria

8 Evaluation of the Effects of a Nutraceutical 
Composition Containing Derivatives From 
Natural Products on the Modulation of the 
Endocrine Neuroimmune Axis - Translational 
Study.

2021 ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/
NCT04810572

Brazil

9 A dietary supplement for semen parameters 
quality improvement in low sperm count and 
azoospermia patients

2020 ISRCTN https://www.isrctn.com/
ISRCTN15796121

Egypt

10 Pilot study on the effectiveness of selected 
natural products from traditional Iranian 
medicine sources (Bore armani and Raphanus 
niger Mill. combination/mixture) on the treatment 
of kidney stones

2020 IRCT https://irct.behdasht.gov.ir/trial/49630 Iran

CTRI: Clinical Trials Registry – India; JPRN: Japan Primary Registries Network; ANZCTR: Australian New Zealand Clinical 
Trials Registry; ISRCTN: International Standard Randomized Controlled Trial Number; IRCT: Iranian Registry of Clinical Trials

The relevance of NPs in immunomodulation ideates from their multifaceted effects on immune cells, 
cytokines, and signaling pathways. These compounds can exert their immunomodulatory effects through 
various mechanisms, including:

Direct interaction with immune cells: NPs may directly bind to immune cell receptors or enzymes, 
thereby influencing their activation, proliferation, or differentiation. For example, certain plant-derived 
compounds can interact with TLRs or major histocompatibility complex (MHC) molecules, modulating 
antigen presentation and immune cell activation [101–104].

Regulation of cytokine production: Many NPs possess anti-inflammatory or pro-inflammatory 
properties by modulating the production and release of cytokines, which are key mediators of immune 
responses. NPs like Echinacea extract, curcumin, genistein, eugenol, 6-gingerol, thymoquinone, allicin, 
quercetin, betulinic acid, emodin, and parthenolide have shown pronounced effects on cytokine production 
and secretion in several physiological conditions [105–116].

Induction of regulatory immune responses: Some NPs have been shown to promote the generation of 
regulatory immune cells, such as regulatory T cells (Tregs) or M2 macrophages, which play critical roles in 

https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=MTAxNjA4&Enc=&userName=Evaluate%20and%20compare%20effect%20of%20Platelet%20Rich
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=MTAxNjA4&Enc=&userName=Evaluate%20and%20compare%20effect%20of%20Platelet%20Rich
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=MTAxNjA4&Enc=&userName=Evaluate%20and%20compare%20effect%20of%20Platelet%20Rich
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=MTAxNjA4&Enc=&userName=Evaluate%20and%20compare%20effect%20of%20Platelet%20Rich
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=MTAxNjA4&Enc=&userName=Evaluate%20and%20compare%20effect%20of%20Platelet%20Rich
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=OTM1NDg=&Enc=&userName=CTRI/2024/01/061413
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=OTM1NDg=&Enc=&userName=CTRI/2024/01/061413
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=OTM1NDg=&Enc=&userName=CTRI/2024/01/061413
https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=OTM1NDg=&Enc=&userName=CTRI/2024/01/061413
https://clinicaltrials.gov/ct2/show/NCT06217614
https://clinicaltrials.gov/ct2/show/NCT06217614
https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000055834
https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000055834
https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000055834
https://anzctr.org.au/ACTRN12623001067662.aspx
https://anzctr.org.au/ACTRN12623001067662.aspx
https://clinicaltrials.gov/show/NCT05897203
https://clinicaltrials.gov/show/NCT05897203
https://www.isrctn.com/ISRCTN17230715
https://www.isrctn.com/ISRCTN17230715
https://clinicaltrials.gov/ct2/show/NCT04810572
https://clinicaltrials.gov/ct2/show/NCT04810572
https://www.isrctn.com/ISRCTN15796121
https://www.isrctn.com/ISRCTN15796121
https://irct.behdasht.gov.ir/trial/49630
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maintaining immune homeostasis and tolerance [117–119]. By fostering a tolerogenic immune 
environment, these compounds may be beneficial for managing autoimmune diseases or preventing 
transplant rejection.

Modulation of immune cell trafficking: NPs can influence the migration and homing of immune cells to 
specific tissues or sites of inflammation through chemotactic effects or modulation of adhesion molecule 
expression [120, 121]. This can impact the intensity and duration of immune responses, shaping the overall 
immune landscape in various disease contexts.

Activation of immune cells
NPs can exert immunomodulatory effects by different mechanisms.

Immunostimulatory NPs can activate various immune cells, such as macrophages, dendritic cells, 
natural killer cells (NKs), T cells, and B cells, and increase the production and secretion of various cytokines, 
chemokines, and antibodies. It can also enhance the antigen presentation, phagocytosis, cytotoxicity, and 
proliferation of immune cells. They can be used for the prevention and treatment of infectious diseases, 
chronic inflammatory diseases, and immunodeficiency [122–125].

Immunosuppressive NPs can inhibit various immune cells, such as T cells, B cells, and mast cells, and 
decrease the production and secretion of various cytokines, chemokines, and antibodies. They can also 
inhibit the antigen presentation, activation, differentiation, and migration of immune cells. Such NPs can be 
used for the treatment of autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, type 1 
diabetes, inflammatory bowel disease, and allergic diseases, such as asthma, eczema, and anaphylaxis [126–
129].

Dual-action compounds are NPs with both stimulatory and suppressive effects on immunity. They can 
modulate the immune system in a balanced and context-dependent manner, depending on the type, dose, 
and duration of exposure to the NP, and the status, phenotype, and function of the immune cells. It can 
regulate the immune system by affecting the expression and activity of various receptors, enzymes, 
transcription factors, and signaling molecules involved in immune regulation. Dual-action NPs can be used 
for the treatment of chronic inflammatory diseases, such as atherosclerosis, obesity, and 
neurodegeneration, and the enhancement of vaccine efficacy [105, 130]. Some of the NPs and their mode of 
action are described in Tables 1 and 2.

Synergistic effects of combining NPs with traditional anti-cancer 
treatments
NPs have demonstrated significant potential in enhancing the efficacy of traditional anti-cancer treatment 
strategies. Combining NPs with conventional therapies can result in synergistic effects, leading to improved 
treatment outcomes and reduced side effects. Several studies have highlighted the synergistic effects of NPs 
with chemotherapy agents. For example, the combination of curcumin, a bioactive compound derived from 
turmeric, with doxorubicin has been shown to enhance the cytotoxic effects on cancer cells and reduce drug 
resistance [131]. Similarly, resveratrol, found in grapes and red wine, has been reported to enhance the 
anti-cancer effects of paclitaxel in breast cancer cells [132].

NPs can also potentiate the effects of radiation therapy. For instance, epigallocatechin gallate (EGCG), a 
polyphenol found in green tea, has been shown to sensitize cancer cells to radiation, leading to increased 
apoptosis and reduced tumor growth. Co-treatment with EGCG and tumor necrosis factor (TNF)-related 
apoptosis-inducing ligand (TRAIL), of highly aggressive colon cancer cells, synergistically increased 
cytotoxicity, by upregulation of death receptor 5 (DR5) and activation of caspase 8 demonstrating that 
EGCG can be a potent TRAIL sensitizer [133].

Synergistic effects of EGCG and L-theanine, which are key functional components of green tea, on nerve 
repair and regeneration can inhibit inflammation, promote metabolism, and nourish nerve cells, leading to 
potential benefits in the repair and regeneration of nerve cells. The combination of these compounds 
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promotes nerve cell health and slows down the progression of neurodegenerative diseases like Alzheimer’s 
[134].

The synergistic effects observed when combining NPs with traditional anti-cancer treatments can be 
attributed to several mechanisms, including: enhanced cancer cell death: NPs can induce apoptosis and 
autophagy in cancer cells, thereby enhancing the cytotoxic effects of chemotherapy and radiation therapy 
and reducing the development of drug resistance to chemotherapy agents [135–137].

Understanding and harnessing the synergistic effects of combining NPs with traditional anti-cancer 
treatment strategies can lead to improved treatment outcomes and reduced side effects. Further research is 
needed to explore the optimal combinations, doses, and treatment schedules to maximize the synergistic 
effects and advance personalized cancer therapy.

The synergistic effects of natural compounds with conventional therapeutics against colorectal cancer 
progression and metastasis were well established [138]. Various in vitro and in vivo studies have shown 
that combining NPs with tamoxifen (TAM) results in synergistic anti-cancer effects. This combination 
enhances the inhibition of tumor cell growth, increases TAM sensitivity, and reduces the side effects or 
toxicity associated with TAM. However, some NPs, such as Angelica sinensis (Oliv.) Diels [Apiaceae], Paeonia 
lactiflora Pall., Rehmannia glutinosa (Gaertn.) DC., Astragalus mongholicus Bunge, and Glycyrrhiza glabra L. 
[Fabaceae], exhibit estrogen-like activity. This estrogenic activity might diminish the anti-cancer efficacy of 
TAM. On the other hand, certain NPs like morin, silybin, EGCG, myricetin, baicalein, curcumin, kaempferol, 
and quercetin have been found to enhance the bioavailability of TAM and its metabolites in vivo. 
Nevertheless, there is a lack of extensive clinical studies investigating the combined use of NPs and TAM 
[139].

The synergistic effects of the herbal mixture C5E in combination with the chemotherapeutic drug 
gemcitabine on the pancreatic cancer cell line PANC-1 notably decreased the SP cell percentage from 8.2% 
(control) to 5.1%, and more effectively induced early apoptosis compared to individual treatments. 
Additionally, the combination treatment led to a greater downregulation of sonic hedgehog mRNA 
expression, a protein associated with certain cancer types, compared to individual treatments [140].

The synergistic effects of Clinacanthus nutans Lindau (C. nutans) extracts when combined with 
gemcitabine, a conventional chemotherapy drug for pancreatic cancer. The research revealed that the non-
polar stem extracts of C. nutans (SN extracts) synergistically enhanced the efficacy of gemcitabine, allowing 
for a dosage reduction of gemcitabine by 2.38 times to 5.28 times while maintaining its therapeutic effects. 
The combination treatment more effectively induced apoptosis in pancreatic ductal adenocarcinoma cells 
compared to either treatment alone, as indicated by the upregulation of Bax and downregulation of anti-
apoptotic markers like Bcl-2, cIAP-2, and XIAP. The study concludes that although C. nutans extracts are not 
effective as a standalone cancer treatment, they can enhance the anti-tumor mechanism of gemcitabine 
[141].

In a study conducted by Kapadia et al. [142] (2013), B. vulgaris was co-administered with doxorubicin 
to pancreatic, breast, and prostate cancer cells. The combination of B. vulgaris and doxorubicin resulted in 
synergistic cytotoxic effects on pancreatic and breast cancer cells, but not on prostate cancer cells. This 
combined treatment approach with B. vulgaris has been reported to allow for a reduction in the dosage of 
anticancer drugs, thereby reducing adverse effects.

Collectively, these studies suggest that integrating NPs into cancer treatment protocols can enhance 
efficacy and reduce side effects, warranting further exploration to optimize treatment outcomes.

Role of NPs in managing tumor microenvironment
The potential of NPs to remodel the tumor microenvironment and overcome drug resistance in cancer 
immunotherapy by targeting and regulating immune cells, such as T cells, macrophages, and mast cells, as 
well as inflammatory cytokines within the tumor microenvironment has been well established [143].
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Natural compounds function as metabolic modulators of the tumor microenvironment by modulating 
the metabolism of cells within the tumor microenvironment and their metabolic crosstalk as a promising 
strategy in anticancer therapies [144].

The study by Deng et al. [145] provides an overview of NPs and their derivatives as promising 
modulators of tumor immunotherapy. It discusses how these compounds can target various components of 
the immune system, including T cells, macrophages, B cells, NKs, Tregs, and myeloid-derived suppressor 
cells, and affect key pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB), PI3K/Akt, mitogen-activated protein kinase (MAPK), and Janus kinase (JAK)/signal transducers and 
activators of transcription (STAT). These studies suggest that NPs can enhance the therapeutic outcome of 
cancer immunotherapies by remodeling the tumor immunosuppressive microenvironment.

Precision medicine
Precision medicine represents an emerging approach in healthcare, aiming at tailored treatment solutions 
uniquely suited to each patient’s genetic, molecular, and clinical makeup. This innovative approach holds 
promise for enhancing the diagnosis, prognosis, prevention, and treatment of a wide array of diseases, with 
a particular focus on immune-related disorders like diabetes, arthritis, atherosclerosis, cancer, autoimmune 
conditions, and allergies [146]. These disorders, characterized by complex and diverse manifestations, 
involve disruptions in the body’s immune system, its crucial defense mechanism against external threats, 
and abnormal cellular activity [147, 148]. Through precision medicine, the underlying triggers and 
pathways of immune-related disorders can be differentiated, enabling the customization of treatment 
strategies to address individual patient needs effectively.

NPs and personalized medicine

Personalized therapy is one of the most promising applications of precision medicine in immune-related 
disorders. NPs can be used as potential sources of personalized immunotherapy, as they can target specific 
genes, proteins, and pathways involved in immune regulation, and induce specific immune responses 
against diseases. It plays a significant role in personalized immunotherapy, offering diverse compounds 
with potential therapeutic benefits in combating immune-related disorders. For example, EGCG from green 
tea has been found to inhibit certain immune checkpoint molecules, offering potential therapeutic benefits 
in cancer immunotherapy [149].

NPs can also be used as adjuvants, supplements, or delivery systems to enhance the efficacy and safety 
of immunotherapy. NPs can enhance the efficacy of immunotherapy when used as adjuvants or in 
combination with conventional treatments. Compounds like quercetin, found in fruits and vegetables, have 
been shown to improve the effectiveness of immunotherapy by sensitizing cancer cells to immune-
mediated destruction [150, 151].

Many NPs exhibit minimal toxicity compared to synthetic drugs, making them attractive candidates for 
personalized immunotherapy. For example, compounds like apigenin, found in parsley and chamomile, 
have shown promising anti-inflammatory and immunomodulatory effects with few adverse reactions [152, 
153].

Extensive preclinical and clinical investigations have explored the therapeutic potential of these 
compounds in personalized immunotherapy, shedding light on their efficacy, safety, and mechanisms of 
action in immune-related disorders [154]. Precision medicine emphasizes individualized treatment tailored 
to each patient’s unique genetic, molecular, and clinical profiles. In the context of NPs, personalization can 
be based on, disease pathophysiology, multiomics-screening of biomarkers, the patient’s age and health 
status, and interactions with other medications. However, recent advancements in genomic technologies 
have enabled rapid diagnosis and interpretation of genetic variations influencing therapy response, paving 
the way for targeted therapies that address specific disease features [155, 156]. Initiatives like the Human 
Genome and The Cancer Genome Atlas (TCGA) projects strive to elucidate the role of genetics and gene 
expression in disease progression and therapy response. These developments offer promise in 
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transforming drug discovery by leveraging genomic insights to identify new therapeutic targets and 
optimize treatment strategies. The “gene to screen” approach, focusing on genes as determinants of cellular 
phenotype, has emerged as a promising strategy in drug discovery, facilitating the identification of novel 
drug targets. Additionally, genome-wide association studies (GWAS) provide a cost-effective and unbiased 
method for identifying genetic determinants of diseases and elucidating underlying disease mechanisms 
[156, 157]. Through these approaches, the integration of NPs and genomic insights holds significant 
potential in driving innovative drug discovery and advancing personalized medicine.

Precision medicine and AI: revolutionizing personalized healthcare

Precision medicine tailors treatments to individual variations by identifying unique patient phenotypes. 
Artificial intelligence (AI) analyzes complex healthcare data to empower clinician decision-making and 
develop personalized treatment strategies. However, challenges like data integration, security, and bias 
exist. Successful AI adoption requires robust data governance, advanced analytics, and collaboration among 
healthcare professionals and data scientists. Despite challenges, AI’s integration with precision medicine 
holds great promise for revolutionizing personalized healthcare and improving patient outcomes [158].

Clinical applications of NP-based therapy

NPs have gathered significant attention in clinical practice due to their diverse immunomodulatory 
properties and potential therapeutic benefits. For instance, curcumin has been studied for its ability to 
modulate immune responses, inhibit tumor growth, and enhance the efficacy of conventional cancer 
treatments [159–161]. EGCG, found in green tea, has been shown to inhibit immune checkpoint molecules, 
potentially improving the effectiveness of cancer immunotherapy [162, 163]. Compounds like quercetin, 
apigenin, and licorice extract have shown promising results in preclinical and clinical studies. Quercetin, 
abundant in fruits and vegetables, exhibits anti-inflammatory and immunomodulatory effects, making it a 
potential therapy for autoimmune conditions [72, 164]. Apigenin, found in parsley and chamomile, has 
demonstrated anti-inflammatory and immunosuppressive properties, suggesting its potential in 
autoimmune disease management [73, 165]. Licorice extract, containing glycyrrhizin, has been investigated 
for its immunomodulatory effects and potential therapeutic applications in autoimmune diseases [49, 166].

Challenges and considerations for clinical implementation
The clinical integration of NPs is promising but encounters numerous hurdles and factors to consider. 
These include grasping the intricate chemistry of herbal products and their formulation for therapeutic 
purposes in humans, ensuring the translation of fundamental scientific findings into clinical safety and 
effectiveness, establishing a framework for gathering evidence to validate traditional herbal medicines, and 
establishing a regulatory system that supports research funding and safeguards intellectual property rights. 
Additionally, there’s a need to develop standard operating procedures for conducting clinical trials on 
herbal medicines. The integration of NPs into clinical practice offers promising opportunities for enhancing 
immune-related disorder management. However, addressing challenges such as standardization, safety 
concerns, regulatory approval, and patient education is essential for realizing the full potential of NP-based 
therapies in personalized medicine.

The journey from preliminary findings on the immunomodulatory capabilities of NPs to their 
formulation into evidence-based targeted therapeutics is fraught with challenges. A significant impediment 
is the lack of uniform research protocols to assess efficacy, safety, and action mechanisms, leading to 
inconsistent outcomes. Additionally, the inherent complexity and heterogeneity of NPs hinder the 
identification of specific bioactive constituents responsible for immunomodulatory actions, obscuring 
pharmacological profiles and optimal dosing. Further complicating the translation process is the 
incomplete understanding of the mechanisms of action in immunomodulation, necessitating detailed 
investigations to lay down a robust scientific groundwork. Moreover, navigating the intricate regulatory 
framework and ensuring stringent quality control are pivotal in the drug development process to guarantee 
safety, efficacy, and consistent quality. In summary, while the potential of NPs in immunomodulation is 
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promising, their development into targeted drugs requires meticulous research, standardization, and 
regulatory compliance for successful integration into evidence-based medicine [167–169].

NPs, continue to play a dominant role in modern drug development. Nobel laureate Youyou Tu’s 
research on artemisinin [170] sparked renewed interest in traditional medicine and NPs, leading to 
groundbreaking developments such as the Moringa oleifera tablets for type 2 diabetes [171] and icariin 
softgels for HCC [172]. However, challenges persist, including issues with solubility, bioavailability, and 
stability, driving research in nanotechnology for novel dosage forms. Understanding drug targets is crucial 
for innovative drug discovery, particularly in the context of NPs which pose unique challenges in target 
identification.

The technological advancements in clinical research hold significant promise for revitalizing NP-based 
drug discovery across various domains. NPs have historically been used in combating infectious diseases, 
particularly as antibiotics. Leveraging cutting-edge techniques, such as harnessing the human microbiome 
for novel NPs, promises to unearth potent antimicrobial compounds. Given the pivotal role of gut 
microbiota in health, NP-based drug discovery targeting the gut microbiome emerges as a promising 
frontier [173, 174]. However, this area is still in its nascent stages, with many unanswered questions. 
Computational tools play a crucial role, in facilitating NP discovery through omics, chemical, and 
pharmacological analysis, as well as the integration of diverse datasets for NP-based drug discovery and 
development.

Conclusions
In conclusion, NPs persist as a fertile ground for discovering different formulations with diverse 
bioactivities, serving as both direct candidates for drug development and starting points for optimization 
into novel therapeutics for various diseases. Despite the ongoing challenges in drug development, NPs face 
additional hurdles related to accessibility, sustainable supply, and intellectual property constraints. 
However, scientific and technological progress lays a strong foundation for NP-based drug discovery to 
continue making significant steps in enhancing human health and longevity.
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