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Abstract
Premature aging can be partially explained by inefficient autophagy (the process of cellular self-digestion 
that recycles intracellular components) and premature senescence (cease of cellular division without cell 
death activation). Autophagy and senescence are among the basic biochemical pathways in plants and fungi 
suggesting that some of their metabolites have the potential to act as autophagy inducers (AI) and 
senescence inhibitors (SI) and to inhibit inflammation and human aging. Several compounds have already 
been identified: trehalose and resveratrol are natural compounds that act as AI; flavonoids found in fruit 
and vegetables (curcumin, quercetin, and fisetin) are among the first SI discovered so far. New AI/SI can be 
identified using various approaches like hypothesis-driven approach for screening receptor agonists using 
an in-silico library of thousands of natural compounds; cheminformatics studies of phytochemicals using 
docking and molecular dynamics simulation, structure similarities/mimicry in vitro, “blind” high 
throughput screening (HTS) of libraries of natural metabolites against relevant models, and more. This 
article aims to promote the use of plant and fungi novel resources to identify bioactive molecules relevant 
for healthy aging based on the knowledge that plants and fungi use autophagy and senescence mechanisms 
for their own survival and homeostasis. As autophagy and senescence are interconnected, how drugs 
targeting autophagy, senescence, or both could contribute to healthy aging in humans will be speculated.
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Autophagy and senescence as targets for inhibiting inflammation and 
aging
Autophagy is responsible for cellular self-digestion that recycles intracellular components and for 
trafficking events that activate innate and adaptive immunity as well as autoinflammatory diseases [1]. 
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Senescence is the cease of cellular division without cell death activation, and immune-senescence is a series 
of age-related changes that affect the immune system [2], including a decline in coping with 
proinflammatory status [3]. Normally, functioning autophagy protects against neurodegeneration 
associated with intracytoplasmic aggregate-prone protein accumulation, in addition to its other roles, such 
as neuronal stem cell differentiation [4]. Neurodegenerative disorders share common pathogenic 
mechanisms, including the impairment of autophagic flux, which prevents the removal of neurotoxic 
misfolded proteins; effective disease-modifying strategies seek novel molecules exhibiting pro-autophagic 
potential [5].

Senescent cells are a major contributor to age-dependent cardiovascular tissue dysfunction and the 
integration of transcriptomes of senescent cell models representing multi-tissue patient samples has 
revealed that reduced collagen type VI alpha 3 chain (COL6A3) expression is one of the triggers of 
senescence [6]. Senescent cells represent a pharmacologic target for alleviating geriatric decline and 
chronic diseases [7]. Senolytic drugs like dasatinib, quercetin, fisetin, and navitoclax, were discovered using 
a hypothesis-driven approach; early pilot trials of senolytics suggest they decrease senescent cells, reduce 
inflammation, and alleviate frailty in humans [8]. Increased post mitotic senescence in aged human neurons 
is a pathological feature of Alzheimer’s disease; senescent neurons gain an inflammatory senescence-
associated secretory phenotype (SASP) and can be eliminated with senotherapeutics [5]. Microbiota 
sensing—free fatty acid receptor 2 signaling ameliorates amyloid-β induced neurotoxicity—can be 
activated by modulating proteolysis-senescence axis [9].

It has been shown that plants and fungal metabolites possess antiaging properties, and compounds 
isolated from plants and fungi modulate the cellular and physiological pathways that prolong lifespan and 
prevent age-related diseases in model organisms [10]. These compounds act through cellular processes 
such as autophagy and senescence and as such delay aging and prevent chronic diseases [11]. When 
autophagy is impaired, waste derived from tissue damage leads to organ deterioration. Thus, autophagy 
plays a critical role in antiaging processes and mTOR plays an important role in inhibiting autophagy. A 
chemo-informatics study of phytochemicals, using docking and molecular dynamics simulation, identified, 
among other compounds, the cyclo-trijuglone of Juglans regia L. as a potential ATP-competitive inhibitor of 
mTOR [12]. Senolytic compounds that selectively clear senescent cells, such as dasatinib, quercetin, fisetin 
and navitoclax, were discovered using a hypothesis-driven approach [8]; flavonoids quercetin and fisetin 
are found in fruits and vegetables [13] and have the potential to reduce the factors secreted by senescent 
cells (SASP) that lead to chronic inflammation and deterioration of healthy organs [14]. Recent in silico 
analysis of metabolites secreted by senescent cells may serve as tools to identify senescence inhibitors (SI) 
based on the mechanism of action [15].

Autophagy and senescence are interconnected
Autophagy and cellular senescence serve as stress responses to mammalian cells but the interconnection 
between these pathways is complex: autophagy sometimes suppress cellular senescence by removing 
damaged macromolecules or organelles, and in different scenarios, autophagy leads to cellular senescence 
and synthesis of SASPs [16]. Although autophagy and senescence interconnection may influence very 
different processes such as stem cells [17], aging, and cancer [18, 19], autophagy activators could be 
exploited to prevent the induction of senescence and drugs targeting the process of autophagy can 
indirectly contribute to blocking the process of senescence [18]. Autophagy and senescence converge in 
inducing triggers and signaling pathways such as the AMPK signaling pathway [20]. And autophagic 
degradation of the inhibitory p53 isoform Δ133p53α acts as a regulatory mechanism for p53-mediated 
senescence [21].

Autophagy regulates senescence and pathogen-induced cell death in plants [22]. This basic knowledge 
suggests that together, autophagy inducers (AI) and SI can contribute to healthy aging in humans through 
various cellular mechanisms.
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Plants and fungi as resources for AI
Fungi (phytopathogenic or mycorrhizal) that interact with plants depend on autophagy as a mechanism 
that is responsible for recycling cell components, for the interaction of fungus-plant [23], and for affecting 
the pathogenicity potential of plant pathogens [24]. Several examples from the literature will be discussed 
below.

Plants and autophagy

Autophagy, a highly conserved self-degradation mechanism, involves the encapsulation of harmful 
intracellular content by double-membrane autophagic vacuoles for degradation in all parts of the plant, 
including roots, leaves, pollen, and more [25]. Plants must cope with diverse environmental stresses such as 
starvation, oxidative stress, drought stress, and invasion by phytopathogens; autophagy plays a critical role 
during plant differentiation, development, and aging processes [22]. The active ingredient of traditional 
Persian medicine, cyclo-trijuglone of Juglans regia L., regulates autophagy through the mTOR pathway [12]. 
Plant natural compounds such as curcumin, resveratrol, paclitaxel, oridonin, quercetin, and plant lectin 
regulate core autophagic pathways involved in Ras-Raf signaling, Beclin-1 interactome, BCR-ABL, 
PI3KCI/Akt/mTOR, FOXO1 signaling, and p53 [26]. The process of autophagy in plant cells at various stages 
of development is controlled by intracellular signaling pathways TOR kinase activity, hormone signaling, 
ROS levels, and changes in environmental conditions [27].

Fungi and autophagy

The growth of filamentous fungus Aspergillus niger in carbon-starved cultures activates autophagy genes 
that, probably, protect these fungi from cell death in addition to promoting nutrient recycling [28]. It has 
been shown that the autophagy of several fungi involves endoproteases and contributes to their 
pathogenicity [23]. Pathways of autophagy processes play important roles in filamentous fungal 
pathogenicity [24] and regulate fungal virulence and sexual reproduction in Cryptococcus neoformans [29] 
and in both the development and infection mechanisms of Phytophthora sojae [30].

Plants and fungi as resources for SI
Dasatinib, quercetin, and fisetin were identified as the 1st senolytic drugs derived from plants and fungi; 
they activate apoptosis of senescent cells and as such extend lifespan using animal models [31]. They may 
be effective in delaying human aging and treating chronic diseases.

Plants and senescence

Leaf senescence is accompanied by changes in physiological metabolism; regulation of leaf senescence 
improves resistance to biotic and abiotic stresses and delay in leaf senescence of horticultural plants 
improves their yields [32]. Senescence has a role in plant pathogenesis and defense: pathogens often delay 
senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host that 
involve gene transcription and biosynthesis pathways [33]. Extending the shelf-life of fresh produce and cut 
flowers relies on delaying cell death by lowering storage temperatures and modifying the environment to 
slow down metabolism and reduce the senescence and cell death-promoting effects of ethylene [34]. 
Screening of plants with inhibitory activity on cellular senescence showed that fruit of Physalis angulata L. 
and the aerial part of Synurus deltoides (Aiton) Nakai inhibited cell-senescence on HUVEC cell model, and 
water extracted from the root of Polygonatum odoratum var. pluriflorum for variegatum Y. N. inhibited cell-
senescence in human dermal fibroblast (HDF) models. Isatis tinctoria L. leaf extract inhibits replicative 
senescence in dermal fibroblasts by regulating mTOR-NF-κB-SASP signaling [35]. Manipulation of plant 
senescence to improve biotic stress resistance showed that even the application of mycorrhiza can inhibit 
the senescence process of plants and improve their tolerance to stresses [36]. Interestingly, senescence in 
plants is not merely a deterioration process leading to death but rather a unique developmental state 
resembling dedifferentiation [37]. Several epigenetic mechanisms that control plant senescence lead to 
crop improvement [38]. Postharvest research challenges various materials (such as nitric oxide) for 



Explor Drug Sci. 2024;2:361–8 | https://doi.org/10.37349/eds.2024.00051 Page 364

controlling the quality of horticultural products by inhibiting senescence; interestingly, among others, 
hydrogen peroxide (H2O2) and calcium ions (Ca2+) are involved [39]. Peroxidase and phenylalanine 
ammonia lyase are the acting players relevant to inducing senescence in plant-fungus interactions; the 
process is accompanied by raising the concentration of flavonoids and phenolic compounds [40].

Fungi and senescence

Mushroom extracts inhibit ultraviolet B-induced cellular senescence in human keratinocytes through 
augmenting sirtuin-1 (SIRT-1) expression [41]. Senescence has an impact on the growth of fungal colonies 
due to dysfunctional oxidative phosphorylation [42]. Papilla formation and hypersensitive reactions, serve 
as defense mechanisms against infection attempts by Mycosphaerella spp. (M. graminicola), frequently 
occurred in plant leaves, leading to plant senescence [43].

The publications cited here and many more suggest that plants and fungi produce metabolites that 
regulate autophagy and senescence and among these metabolites, there are potential AI and SI.

“The wisdom of the desert”—desert plants as novel AI and SI
Desert plants have adapted to stressful environments by synthesizing secondary metabolites and 
accumulating ions as osmoticum (a substance that acts to supplement osmotic pressure in a cell). Desert 
environments are one of the harshest places on earth due to low precipitation, limited soil nutrients, and 
high irradiation. The predictive metabolomics of multiple Atacama plant species unveils a core set of 
generic metabolites for extreme climate resilience [44]. The mechanisms to survive in harsh conditions 
suggest that these plants have generated unique metabolites, termed here by us “the wisdom of the desert” 
[45]. Studies showed variations in flavonoid metabolites along an altitudinal gradient in the desert 
medicinal plant Agriophyllum squarrosum [46]. Phytochemical analysis of secondary metabolites (alkaloids, 
terpenoids, tannins, saponins, flavonoids, and phenolics) in 26 plants from the desert of Egypt showed that 
flavonoids, phenolics, and tannins were present in all the examined species while saponin and terpenoid 
compounds were detected only in fifteen species. Such a resource of natural metabolites of plants, used 
traditionally for treatment, may be considered a new, biologically active source of medicinal compounds 
[47]. Among them, one can be expected to find AI and SI.

The harsh conditions of the desert also influence the biosynthesis of metabolites in fungi and microbes. 
Bioactive secondary metabolites from endophytic strains of Neocamarosporium betae, Chaetomium 
globosum (Chaetomiaceae), and Rhinocladiella similis collected from desert plants could be a new resource 
for bioactive natural products [48–50].

Filamentous cyanobacteria use unique extracellular polysaccharide-based biosynthetic pathways to 
survive in the desert. In addition to the extracellular polysaccharide, chaperones (to maintain protein 
integrity), oxidative stress protection system, synthesis of compatible solutes and ion channels, and 
upregulation of DNA repair mechanism are examples of the strategies cyanobacteria use for coping with 
desiccation/rehydration cycles in the desert [51]. These metabolites that facilitate the adaptation to 
extremely arid environment may contain potential AI and SI. Analysis of Sonoran desert fungi (Aspergillus 
strains) occurring in the rhizosphere of Ambrosia ambrosoides and in the rhizosphere of Anicasanthus 
thurberi, identified unusual new secondary metabolites terrequinone A, terrefuranone and 4R,5S-
dihydroxy-3-methoxy-5-methylcyclohex-2-enone, 6-methoxy-5(6)-dihydropenicillic acid, respectively, with 
medicinal properties like selective toxicity against cancer cells (and not against healthy cells) [52]. These 
metabolites that enable growth in harsh arid environments may contain potential AI and SI.

Conclusions
Novelty: Many novel AI and SI are waiting to be discovered in plants, fungi, and microbes. As aging is 
characterized by systemic chronic inflammation, which is accompanied by impaired autophagy and by 
cellular senescence (including SASP), elimination of inflammation could be a potential healthy aging 
strategy. Table 1 summarizes the suggested mechanism of action of AI and SI discussed in this Perspective.
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Table 1. Summary of autophagy inducers (AI) and senescence inhibitors (SI) along with their potential target mechanisms

Compounds Target/mechanism References
Resveratrol Sirtuin-1 [53]
Quercetin Ras-Raf signaling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 

signaling, and p53
[26]

Plant lectin Ras-Raf signaling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 
signaling, and p53

[26]

Trehalose Antioxidant and more [54]
Cyclo-trijuglone of 
Juglans regia L.

Inhibitor of mTOR [12]

Resveratrol Ras-Raf signaling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 
signaling, and p53

[26]

Paclitaxel Ras-Raf signaling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 
signaling, and p53

[26]

AI

Oridonin Ras-Raf signaling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 
signaling, and p53

[26]

Curcumin Anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties [55]
Quercetin Selectively clear senescent cells; reduce senescence-associated secretory 

phenotype (SASP); Ras-Raf signaling, Beclin-1 interactome, BCR-ABL, 
PI3KCI/Akt/mTOR, FOXO1 signaling, and p53

[26]

Fisetin Selectively clear senescent cells; reduce SASP [8, 14]
Dasatinib Selectively clear senescent cells [8]

SI

Navitoclax Selectively clear senescent cells [8]

Challenges (before moving to clinical trials in humans): i. Suitable in vitro and in vivo models are 
needed for screening the novel agents for toxicity/safety dosage, mode of application, efficacy, and 
selectivity. ii. Understanding of the underlying mechanisms linking autophagy, senescence, inflammation, 
and aging will enable optimization of therapeutic strategies.

Abbreviations
AI: autophagy inducers

SASP: senescence-associated secretory phenotype

SI: senescence inhibitors
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