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Abstract
Chemo-select modification of peptides, targeting a handful of the most reactive proteinogenic amino acids 
(AAs), is gradually utilized to address the medical needs of peptide drugs and biopharmaceuticals. Cysteine 
(Cys), one of the less abundant AAs in many biological proteins, plays a vital role in the catalysis, signal 
transduction, and redox regulation of gene expression. In natural AAs (α-AAs) residues, Cys exhibits high 
nucleophilicity and low redox-active potential, making it a primary target for site-selective conjugation. 
This review summarizes several representative Cys-peptide/protein conjugation strategies developed in 
recent years, including polar reactions, radical coupling reactions, and stapling techniques.
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Introduction
Chemo-selective modification of peptides and proteins has been extensively utilized in molecular 
bioengineering, biorthogonality, and drug discovery, with applications in developing peptide drugs, 
antibody drugs, and molecular imaging probes [1]. Given the inherent structural complexity of peptides and 
proteins, chemo-selective modification [2] must not only proceed under physiological conditions (including 
aqueous phases and near-neutral pH) but also often require low reactant concentrations and high reaction 
rates to achieve high chemo-selectivity and site-specific bioconjugation. Although numerous strategies have 
been developed to directly target endogenous natural amino acids (AAs), achieving site-selective 
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Graphical abstract. Chemo-selective modification of Cys residue: synthesis and application in the discovery of potential drug 
candidates. Cys: cysteine

bioconjugation remains challenging due to the lack of significant differences in the activity of AAs at 
different sites within the same protein.

Considering that high-abundance AA residues on the surface of proteins often lead to a modified 
coupling mixture at various protein positions, a common approach is to select natural AAs with relatively 
lower abundance (Figure 1a), such as cysteine (Cys), tryptophan [3], methionine [4], histidine [5], and 
tyrosine [6], for modification. This strategy maintains the structural and functional integrity of the protein 
while ensuring the selectivity and specificity of the reaction. Among these methods, Cys peptide and protein 
bioconjugation protocols [7] have been extensively reported for their demonstrated chemo-selective 
reactivity under the requisite aqueous conditions, owing to its strong nucleophilicity and low redox 
potential (Figure 1b and 1c). Consequently, Cys is usually the primary target for site-selective coupling 
under physiological conditions [8]. Achieving site-selective chemical coupling is challenging due to the lack 
of significant differences in the activity of Cys at various sites within the same protein. Only a few specific 
reagents are utilized to modify N-terminal Cys [9]; most of chemical reagents used to modify this AA target 
the reactivity of the sulfhydryl side chain (-SH).

Early strategies for the chemo-selective modification of Cys residues leveraged their high 
nucleophilicity to directly react with electrophilic reagents (e.g., disulfides [10], α-halogenated carbonyls 
[11], Michael acceptors, etc.) in nucleophilic substitution reactions (Figure 2). These methods have been 
widely used due to their rapid reaction kinetics and robustness. However, these coupling reagents can be 
easily interfered with by other nucleophilic AAs, resulting in poor chemical selectivity. Given the challenges 
associated with these bioconjugation strategies for nucleophilic substitution, some innovative methods 
have also been reported and applied, including rapid and effective Cys-arylation modifications with 
organometallic reagents, high-valent iodine reagents [12], or perfluorocarbons. In recent years, methods 
exploiting differences in the inherent reduction potential [13] of AA residues have been developed to 
achieve chemically selective modification of peptides and proteins, such as S-arylation, thio-ene/-yne 
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Figure 1. Graphical description of abundance of the natural AA residues in vertebrates (a), redox potentials of key proteinogenic 
AAs vs. Na+/H+ exchanger (NHE), at pH 7 [13] (b), and common polypeptide/protein-Cys modification (c). AAs: amino acids; Ala: 
alanine; Cys: cysteine; Ile: isoleucine; Leu: leucine; Met: methionine; Pro: proline; Trp: tryptophan; Tyr: tyrosine; Val: valine

reactions [14], and desulfurization reactions. Each strategy has unique advantages and disadvantages, 
which will be classified and analyzed in detail in the following sections.

Figure 2. Methods for chemo-selective polypeptides/protein-cysteine (Cys) bioconjugation. NCL: native chemical ligation

Polar reaction strategies for Cys-peptides modification
As a promising drug for treating tumors, antibody-drug conjugates (ADCs) [15] covalently bind cytotoxic 
chemicals (known as warheads) to antibodies through linkers using a conjugation strategy. Eight of the 
thirteen ADCs approved by the FDA employ a Cys conjugation strategy, including Adcetris™, and Trodelvy™, 
Zynlonta™, among others [16] (Figure 3a). These marketed Cys-conjugated ADCs are primarily obtained by 
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reacting thiol groups with various maleimide-based linkers [17]. The maleimide-thiol strategy has certain 
limitations, such as the need for a slightly acidic pH to avoid cross-reaction with lysine (Lys) residues and 
the retro-Michael reaction between the adduct and biological thiols in plasma, leading to premature release. 
To inhibit the retro-Michael reaction, although hydrolyzing the maleimide in the adduct can enhance 
conjugate stability and produce a more potent ADC, incomplete hydrolysis limits this strategy. Therefore, 
based on the maleimide-thiol strategy, an increasing number of Michael acceptors are being used as new 
linkers for Cys coupling [18–26], including 3-bromo-5-methylene pyrrolones (3Br-5MPs), α-unsaturated 
compounds, and vinyl/alkyne-phosphonamides, among others (Figure 3b).

Figure 3. Structures of selected maleimide-containing ADCs (a) and selected Michael receptors (b). 3Br-5MPs: 3-bromo-5-
methylene pyrrolones; ADCs: antibody-drug conjugates; TMS: trimethylsilyl

In 2019, Bernardim et al. [18] utilized carbonyl acrylic acid reagents as Michael acceptors to achieve 
chemo-selective and irreversible bioconjugation of Cys residues under biocompatible conditions 
(Figure 4a). The adduct conjugates formed by this strategy not only prevent the retro-Michael reaction with 
biological thiols in plasma but also remain unaffected by competing nucleophilic AAs (e.g., Lys) at slightly 
basic pH. Interestingly, modification of Thiomab LV-V205C with carbonyl acrylic acid reagent 3 resulted in 
a single modification in the light chain while leaving the heavy chain unaffected. The modified bioconjugate 
retained the antibody’s natural binding affinity to the HER2 antigen.
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Figure 4. Graphical description of selective and irreversible bioconjugation of Cys-antibodies (a), 3Br-5MPs as versatile 
reagents for Cys-specific protein modification (b), reactivities of substrates 3Br-5MP and maleimide upon treatment with Cys-
peptide (c), and Cys modification of peptides and proteins with ynamides (d). 3Br-5MPs: 3-bromo-5-methylene pyrrolones; Cys: 
cysteine; MeCN: methyl cyanide; NaBH4: sodium borohydride; PB: phosphate buffer

In 2020, Zhang et al. [21] employed 3Br-5MPs (2), an analog of maleimide, to achieve highly chemo-
selective modification of Cys peptides/proteins, demonstrating labeling efficiency comparable to that of 
maleimide (Figure 4b). Following the initial addition of 3Br-5MPs to Cys peptides/proteins, a second 
addition can occur with thiol or Cys of another protein. Single or double adduct-products can be generated 
under sodium borohydride (NaBH4) reduction. Comparative analysis with different Michael acceptors 
(maleimide and 5MP) revealed that 3Br-5MPs exhibit higher Cys specificity than maleimide and greater 
reactivity than 5MP (Figure 4c).
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Recent progresses in employing diverse Michael acceptors with electron-deficient alkynes, including 
phosphonamide [20] and ynamides [26], have been explored. Expanding their studies on ynamide 
chemistry, Hu and Zhao [27] developed a chemo- and regio-selective Cys modification protocol by taking 
advantage of the less studied β-addition of ynamides under the basic reaction conditions (Figure 4d). 
Ynamides showed unique reactivities owing to three modifiable sites, including the alkynyl moiety, the 
flexible modulation of electron-withdrawing group (EWG), and substituent on the nitrogen atom. Through a 
rational adjustment of three modifiable sites of the ynamide reagent 7, ynamide 7a possessed a stronger 
electron-withdrawing trifluoromethylsulfonyl group [triflyl (Tf)] on the nitrogen atom, which could 
enhance its activity as a Michael acceptor for nucleophiles. The conjugation reaction of ynamide 7a 
proceeded smoothly with an excellent efficiency (up to 95% yield) and stereoselectivity (Z:E > 99:1). 
Compared to those modified by maleimides and other related strategies, ynamide-modified peptide 
conjugate displayed a remarkable stability under a series of conditions in stability studies, such as acidic, 
basic, and oxidative environments. Interestingly, the Z-conjugated peptide could be further functionalized 
via an additional C-C triple bond to undergo click reaction, introducing a biotin tag or other useful 
functional groups.

Considering that Cys bioconjugation reagents need to operate under biomolecule-compatible 
conditions, they must modify the target with high selectivity and exhibit effective reaction kinetics. Reaction 
kinetics is typically an easily adjustable parameter, promoting the development of rapid Cys bioconjugation 
reagents. In recent years, various novel bioconjugation reagents have been reported, including hypervalent 
iodine reagents (8–10) [28, 29], organometallic reagents (11) [30–33], and perfluorocarbons (13) [34] with 
effective loads (Figure 5a).

Figure 5. Graphical description of representative SNAr handles (a) and EBX reagents for selective Cys ethynylation (b). CuAAC: 
copper-catalyzed alkyne-azide cycloaddition; Cys: cysteine; EBX: ethynylbenziodoxolone; PDs: pyridazinediones; TCEP: tris(2-
carboxyethyl)phosphine; TIPS: triisopropylsilyl; TMS: trimethylsilyl

In recent years, the hypervalent iodine reagents have been used as electrophilic group transfer 
reagents in peptides and proteins modification, as they exhibit low toxicity, high functional group tolerance, 
and stability in biocompatible media. Tessier et al. [29] have developed a class of electron-deficient high-
valent iodine alkynyl reagents [ethynylbenziodoxolone (EBX)] to achieve thiol-alkynyl modification of Cys 
under near-physiological conditions. In 2020, Tessier et al. [29] used unstable trimethylsilyl (TMS) to 
design the EBX reagent into a finely tunable TMS-EBX reagent, allowing adjustment of the reaction rate and 
physical properties of the reagent for constructing bioconjugates (Figure 5b). The alkyne-modified Cys can 
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be further functionalized by copper-catalyzed alkyne-azide cycloaddition (CuAAC). Compared to the 
labeling reaction rates of classic iodoacetamide (IAA) or maleimide for trastuzumab antibodies, EBX 
reagents exhibit similar or higher reaction rates and chemo-selectivity.

Radical coupling strategies for Cys-peptides modification
Visible light-induced [35–39] or electrochemically driven [40] Cys residues effectively generate reactive 
thiyl radicals without interference from other nucleophilic residues. This allows thiyl radicals [41] to 
participate in unique bond formations, creating more stable bioconjugates and providing a variety of tools 
for bioorthogonal applications (Figure 6). In addition to utilizing its nucleophilicity, the photocatalytic thiol-
ene reaction has also been applied to Cys-peptides and proteins in recent years. The thiol-ene reaction, 
typically initiated by a free radical initiator or UV light, is considered a new type of click reaction. In 2020, 
Choi et al. [35] employed a water-compatible fluorescent photosensitizer, QPEG, and QCAT itself as 
photosensitizers to undergo hydrogen atom transfer (HAT) with blue LEDs, thereby highly chemo-
selectively activating Cys residues to form thiyl radicals for thiol-ene reactions (Figure 6a). The constructed 
QPEG-Cys-conjugate possesses dual functionality: generating photoluminescence and singlet molecular 
oxygen (1O2), offering potential applications in image-guided photodynamic therapy. Slightly modified QCAT 
can introduce various important biologically relevant molecules (such as affinity tags like biotin, 
bioorthogonal handles like azides, and crizotinib, an ALK inhibitor) into Cys-peptide/proteins, thereby 
achieving efficient photocatalytic Cys-specific bioconjugation.

Figure 6. Graphical description of visible-light induced thiol–ene reactions with Cys (a), nickel-catalyzed Cys-arylation 
technology (b), and radical-initiated phosphine-mediated desulfurizations (c). Ala: alanine; Cys: cysteine; POP: phosphine-only 
photodesulfurization; TCEP: tris(2-carboxyethyl)phosphine; TPPTS: tris(3-sulfonatophenyl)phosphane trisodium salt
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In 2023, Bacauanu et al. [39] reported a nickel/photoredox-mediated bioconjugation of Cys 
peptides/antibodies with aromatic bromides under the aqueous conditions. In the aqueous phase, 
photocatalysis facilitated the formation of low-valent nickel species and aryl-halide oxidative addition 
complexes in situ, while avoiding the oxidation of highly reactive AA residues (Figure 6b). Both native and 
engineered Cys-antibodies could be rapidly and highly chemo-selectively conjugated to a series of aromatic 
scaffolds (such as small molecules, probes, and cytotoxic payloads). All conjugates exhibited potent 
cytotoxic activity proportional to the drug-antibody ratio (DAR) in cell-killing assays, indicating that the 
target-mediated in vitro cytotoxic activity correlates with the stability of the S-arylation in bioconjugation.

In 2023, Venneti et al. [37] reported phosphine-only photodesulfurization (POP) for Cys-peptides using 
near-UV light (Figure 6c). This strategy does not require the addition of thiols to maintain the free radical 
chain and utilizes Cys as a hydrogen atom donor. It is noteworthy that a novel mode of alkyl thiol initiation 
was represented, in which photochemical cleavage of the S-H bond of alkyl thiols was induced by various 
phosphines. Furthermore, under very dilute conditions, one-pot disulfide reduction and multiple 
desulfurizations of linaclotide, aprotinin, and wheat protein were achieved, as well as the desulfurization of 
cyclic peptides and glucagon-like peptide-1 [GLP-1, (GLP-1(7–36))] A12C.

Stapling strategies for Cys-peptides
Many of the aforementioned methods enable rapid and efficient Cys bioconjugation. Despite the great 
potential of these approaches, they are often limited to the modification of a single Cys residue and/or a 
single transformation. Compared with single-Cys residue modification, stapling techniques involving the 
specific modification of two-Cys residues are much more complex. These techniques require a bifunctional 
bioconjugation reagent to react with one Cys while retaining an electrophilic site [42–44], which can then 
rapidly and efficiently couple with a nucleophilic residue of another molecule (such as Lys or Cys) to form a 
stapled peptide. Cys-stapling is a powerful technique for developing protein-protein interactions (PPIs) 
inhibitors for drug discovery [45], as it involves inserting bifunctionalized bioconjugation agents onto Cys 
residues to enhance the helical conformation of bioactive peptides, improve binding to biological targets, 
increase proteolytic stability, and enhance bioactivity/membrane permeability. Therefore, numerous Cys 
two-component stapling [46] techniques utilize alkylation or arylation chemistry of Cys residues. These 
techniques will be analyzed and explained below in terms of the two major categories of symmetric and 
asymmetric bioconjugation agents.

Symmetrical linkers

The use of bifunctional linkers aims to convert conformationally flexible natural peptide precursors into 
constrained and stable cyclic peptides through the formation of chemical bonds. Early methods employed 
various symmetrical dielectrophilic halides (such as allyl or alkyl halides) [47] for efficient and highly 
selective stapling of Cys residues (Figure 7a). Ceballos et al. [48] and Luo et al. [46] further expanded the 
variability of coupling linkers by introducing hypervalent iodine reagents and 1,4-dinitroimidazoles (1,4-
DNIms). In 2023, Yu et al. [49] designed a thioether chloride reagent 14 with adjustable length, angle, 
rigidity, and site to address issues related to α-helix stability and peptide drug delivery for sulfur-
containing peptides (Figure 7b). This reagent can efficiently link with Cys residues of peptides/proteins via 
Cys-Cys-(Cys) double/triple-click stapling in just 1 min constructing a series of 17-membered cyclic 
peptides, 18- to 48-membered macrocyclic peptides, and stapled bicyclic peptides. The stapled Cys-Cys-
peptides were then subjected to tris(2-carboxyethyl)phosphine (TCEP), regenerating the native peptides 
with superb efficiency. The circular dichroism (CD) spectrum of the Cys-Cys-stapled peptides and biological 
characterization of anti-HCT-116 cells in this stapling protocol indicated an enhancement of both the α-
helicity and the biological activity of linear peptides.

Although the symmetrical stapling strategy exhibited high chemical selectivity and orthogonality, these 
bifunctional linkers are limited to symmetrical stapling of two Cys residues. Notably, in 2019, Zhang et al. 
[50] and Cheung et al. [51] utilized o-phthalaldehyde (OPA) as a bifunctional symmetrical handle to achieve 
unsymmetric Cys-Lys stapling in native peptides. In aqueous PBS buffer (pH 7.4), the OPA-mediated cycling 
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Figure 7. Graphical description of representative symmetrical linkers (a), disulfide click reaction for reversible peptide stapling 
(b), and OPA-directed chemo-selective cyclization with unprotected peptides (c). 1,4-DNIms: 1,4-dinitroimidazoles; Cys: 
cysteine; Lys: lysine; OPA: o-phthalaldehyde; TCEP: tris(2-carboxyethyl)phosphine

achieved full conversion within 10 min without any trace of the two-component reaction (2CR) product, 
indicating high chemo-selectivity under physiological conditions (Figure 7c). The OPA peptide cyclization 
product can further react with maleimide analogs in a one-pot manner to introduce additional functional 
motifs, such as fluorophore probes, glycans, and DNA. In the same year, Todorovic et al. [52] employed a 
similar intramolecular OPA-amine-thiol 3CR for kinase probe development.

The intramolecular OPA-amine-thiol reaction on peptides modification exhibits a simplicity, rapidity, 
and chemo-selectivity, hence, Cheung et al. [51] further achieved intermolecular OPA-mediated three-
component conjugation in a single-step operation by suppressing the undesired rapid OPA-amine 2CR in 
2023. This strategy avoided using an excess of thiol and utilized guanidine as an effective additive, which 
enabled the stoichiometric intermolecular OPA-amine-thiol 3CR by reversibly blocking the aldehyde groups 
in the key intermediates. Moreover, a set of peptide-peptide conjugates and peptide-drug conjugates 
(PDCs) have been constructed with excellent conversions and isolated yields in this method. In the same 
year, Li et al. [53] further applied OPA as a potential cross-linking anchor to primary amino groups of 
various AA residues.



Explor Drug Sci. 2024;2:540–54 | https://doi.org/10.37349/eds.2024.00060 Page 549

Unsymmetrical linkers

Unlike the OPA-Lys-Cys stapling, various unsymmetric linkers [54–58] have been gradually reported for 
use in Lys-Cys stapling, including bischlorooxime (BC), N-hydroxysuccinimide (NHS)-activated acrylic ester, 
vinyl thianthrenium (VTT) salts, and vinyl tetrafluorothianthrenium (VTFT) salts, among others 
(Figure 8a). Here, we discuss two notable examples to demonstrate progress in this field. In 2023, Chen et 
al. [59] reported a Cys-directed proximity-driven strategy to achieve bicyclization of native peptides using a 
novel chlorooxime-based multifunctional cross-linker (Figure 8b). The bicyclization of peptides was 
achieved by kinetically controlling sequential residue modifications, which involved rapid Cys conjugation 
followed by proximity-driven intramolecular amide bond formation. This approach efficiently constructs a 
variety of peptide chain/side chain bicyclized peptides under biocompatible reaction conditions, such as N-
terminal-Cys-Cys, Cys-Lys-Cys, and Lys-Cys-Lys cross-coupling. Additionally, site-specific bicyclization of 
peptide-protein [staphylococcal superantigen-like protein 11 (SSL11)] fusions can be achieved, reflecting 
the precise site selectivity of the Cys-directed strategy for site-specific Lys bicyclization in complex protein 
modifications. The model studies of N-terminus-Cys-Cys directed bicyclization on M13 bacteriophage 
indicate that a bicyclic AX3CX7C phage library could be readily constructed using this protocol, providing 
new structure diversity for peptide therapeutics.

Figure 8. Graphical description of representative unsymmetrical linkers (a), biocompatible peptide bicyclization (b), and 
biofunctionalization with VTT reagents (c). AAs: amino acids; BC: bischlorooxime; Cys: cysteine; Lys: lysine; NHS: N-
hydroxysuccinimide; VTFT: vinyl tetrafluorothianthrenium; VTT: vinyl thianthrenium
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In 2024, Hartmann et al. [60] reported a Cys bioconjugation method using VTT/VTFT to convert Cys in 
situ into highly reactive electrophilic episulfonium intermediates, enabling bioorthogonal conjugation with 
various nucleophiles in a single step (Figure 8c). The site-specific bioconjugation of Cys residues with VTT 
exploits the cationic charge of thianthrene which discourages interaction in hydrophobic regions or 
environments with a high concentration of positively charged AAs. In the absence of exogenous 
nucleophiles, intramolecular nucleophilic AA residues can react with the episulfonium intermediate to 
achieve stapled peptides and protein-protein linkages. It is worth that a short two-carbon linker was 
introduced by VTT, which could recognize PPIs that were undetectable with other reagents making it an 
ideal choice for introducing infrared labels, post-translational modifications, or nuclear magnetic resonance 
probes.

Conclusions
Due to the limited abundance of Cys and the unique reactivity of its side chain functional group (-SH), 
chemo-selective bioconjugation of Cys residues plays a crucial role in peptides/protein modification. When 
the linker handle is equipped with a fluorescent group or a drug, it can be used for fluorescent labeling of 
proteins in living cells, aiding in the analysis of protein function, structure, dynamics, and intracellular 
trafficking pathways. Additionally, it can be used to create potential anticancer drugs with enhanced 
efficacy and reduced side effects by coupling potent cytotoxic substances with antibodies. Many FDA-
approved ADCs in recent years are based on Cys site functionalization. Furthermore, various bifunctional 
linker handles are used to construct stapled helical peptides with more stable α-helical conformations, 
improving the pharmacokinetics and therapeutic properties of peptides, and thereby providing a broad 
platform for the development of PPI inhibitors for drug discovery. However, these new strategies still 
require further investigation. For example: 1) an unknown chiral center generated via thio-ene reaction 
results in two configurations of ADC drugs, raising concerns about toxic side effects; 2) site-selective 
coupling of Cys-peptides/proteins; and 3) the development of novel bifunctional linkers that not only 
enhance helicity or binding affinity but also improve cell membrane permeability. The ongoing 
development and advancement of peptide drugs and basic biological research will promote the diversified 
advancement of strategies for bioorthogonal and chemo-selective peptides/protein modification.
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