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Abstract
The excessive use of antibiotics to treat bacterial infectious diseases in all living beings has caused a global 
epidemic of bacterial resistance to antibiotics, leading to the emergence of multidrug-resistant and 
pandrug-resistant strains. In 2019, the World Health Organization (WHO) reported that antimicrobial 
resistance causes at least 700,000 deaths per year worldwide. Therefore, in this global war against 
microorganisms, a therapeutic alternative is necessary to help us win this battle. A key in this race against 
the clock could be lactoferrin (Lf), a cationic glycoprotein of the mammalian innate immune system that is 
highly conserved among mammals. Lf is a multifunctional glycoprotein with immunomodulatory, 
anticarcinogenic, wound-healing, antioxidant, antimicrobial, and bone regeneration properties, in addition 
to improving the gut microbiota. Lf limits the growth of microorganisms through the sequestration of iron 
but can also interact directly with some components of the outer membrane of Gram-negative bacteria or 
bind to teichoic acids in Gram-positive bacteria, destabilizing the membrane and resulting in lysis. 
Moreover, cleavage of the Lf molecule could promote the production of lactoferricins (Lfcins) and 
lactoferrampin (Lfampin) from the N-terminal end, which are known to often have stronger antimicrobial 
effects than the native molecule, as well as analogous peptides, such as HLopt2, which have also shown 
enhanced antimicrobial activity. Bovine Lf (bLf) has been approved by the US Food and Drug 
Administration (FDA), and the European Food Safety Authority for its use as a dietary supplement in food 
products. Because of its effectiveness, accessibility, low cost, and nontoxicity, Lf could be a promising 
alternative for preventing or treating infections in animals and humans.
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Introduction
We could currently be experiencing the next world war, a war against microbes because of an increase in 
antimicrobial resistance. This problem causes approximately 700,000 deaths per year, and the projections 
for the following years are discouraging, suggesting 10 million deaths per year, exceeding the current 8.2 
million annual deaths from cancer [1]. Bacterial pathogens with greater resistance to one or more 
antimicrobials represent a severe global health problem.

Bacteria can show resistance to one or more classes of antimicrobials and, on this basis, can be 
classified as follows: multidrug-resistant bacteria (i.e., those resistant to three or more classes of 
antimicrobials), extensively drug-resistant bacteria (i.e., those resistant to all but one or two classes) or 
pandrug-resistant bacteria (i.e., those resistant to all available classes) [2]. Some bacteria acquire or 
develop genes that encode different biochemical mechanisms that protect them from the lethal or growth-
inhibitory actions triggered by antibiotics, causing genetically determined resistance to one or more 
antimicrobial agents. These antimicrobial resistance genes are passed on to subsequent generations and 
can eventually be horizontally transferred to other bacteria in their immediate environment [3]. Because of 
this problem, different alternatives have been sought to continue this fight from the trenches, and a new 
plan is needed. Among what is available, a secret weapon could be lactoferrin (Lf). This review focuses on 
the different reported antimicrobial activities of Lf as a weapon to defeat bacteria. Importantly, to date, no 
resistance to Lf has been reported for any microorganism. The commercially available bovine Lf (bLf) has 
been approved by the US FDA and the European Food Safety Authority as a dietary supplement in food 
products.

Lactoferrin
Lf is a nontoxic cationic glycoprotein that is a component of the milk whey of mammals, with the exception 
of dogs and rats. Lf levels depend on the lactation phase. Compared with bovine mature milk (0.03–0.49 
g/L), bovine colostrum contains high amounts of Lf (0.8 g/L), whereas, human Lf (hLf) levels are 5 g/L in 
colostrum and 2–3 g/L in mature milk [4, 5]. As an essential component of the innate immune system, Lf is 
found in secretions that cover mucosal surfaces and organs such as the lungs, kidneys, pancreas, intestine, 
gall bladder, liver, and prostate, as well as in secretions or fluids such as saliva, tears, sperm, cerebrospinal 
fluid, urine, bronchial secretions, vaginal discharge, synovial fluid, umbilical cord blood, and blood plasma. 
Lf is also produced by cells of the immune system, mainly neutrophils [6–8].

Lf has a molecular mass of 78–80 kDa, depending on its origin, and consists of a bilobal structure (N- 
and C-terminal lobes). Each lobe can be reversibly bound to a Fe3+ ion [9]. The molecule without iron 
remains in an open conformation called apo-Lf; when it binds one or two iron atoms, the molecule adopts 
closed states called monoferric Lf or holo-Lf, respectively. The N-terminal region functions as a serine-
protease domain [10, 11], and this region also has antimicrobial properties [12]. Upon protease digestion, 
Lf provides a series of antimicrobial peptides (AMPs) named lactoferricins (Lfcins). Almost 300 AMPs have 
been isolated from the Lf sequence [13]. Some examples from bLf are Lfcin 1–11, which includes the first 
eleven amino acid residues APRKNVRWCTI, Lfcin B-short sequence (FKCRRWQWRMKKLG), Lfcin B-long 
sequence (FKCRRWQWRMKKLGAPSITCVRRAF) and lactoferrampin (Lfampin) (DLIWKLLSKAQEK-
FGKNKSR) from the N-terminus, which are known for having a stronger antimicrobial effect than the 
parental molecule [14–16]. In addition, an analogous peptide from hLf has been synthesized, named HLopt2 
(CFQWKRAMRKVR), with Gln24 and Asn26 substituted for Lys and Ala, respectively; this peptide has also 
shown antimicrobial activity, causing a loss of membrane potential, followed by irreversible damage to 
bacterial cells. Furthermore, the conjugation of a drug with peptides improves antimicrobial activity, 
highlighting the important role of peptide-drug conjugates in drug delivery [13]. Lf is a multifunctional 
molecule with various effects, including antiinflammatory, immunomodulatory, antioxidant, antibacterial, 
antiviral, antiparasitic, antifungal, anticarcinogenic, neuroprotective, bone-repairing, and wound-healing 
properties, in addition to maintaining the intestinal microbiota and protecting against lifestyle diseases, 
such as obesity, high blood pressure, hyperlipidemia, diabetes, and stress-related emotional disorders [17–
21].
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Lf at the head of the battle against bacteria
The antimicrobial activity of Lf was first related to its ability to chelate iron and, thus, inhibit bacterial 
growth by scavenging this essential nutrient, resulting in a bacteriostatic effect. However, Lf also expresses 
antimicrobial activity via iron-independent pathways through direct interaction with membrane 
components or bacterial virulence factors. Lf and its derived peptides not only have a large repertoire of 
antibacterial effects against Gram-positive and Gram-negative bacteria but can also potentially be used as 
natural therapeutic alternatives in human and veterinary medicine. In Gram-negative bacteria, these 
molecules act on lipopolysaccharides (LPS), whereas, in Gram-positive bacteria, they act on lipoteichoic and 
teichoic acids, triggering a bactericidal effect. In addition, studies have indicated that Lf and its derived 
peptides lead to depolarization of the cell membrane without causing lysis of the cells, exerting their initial 
bactericidal effect by acting on the bacterial cell surface and subsequently on the cytoplasmic content [22–
24]. Importantly, Lf has the ability to synergize with antibiotics and other drugs, allowing us to obtain a 
product with high efficiency in the treatment of patients. Lf could be a perfect adjuvant that helps minimize 
the toxic doses of antibiotics while simultaneously exerting its anti-inflammatory effects [25–27].

Lf against bacterial virulence factors
Bacterial virulence factors contribute to bacterial pathogenicity; they include capsules, toxins, enzymes, 
exopolysaccharides, LPS, adhesins, and other molecules that help bacteria evade host immune responses, 
colonize, persist, and cause disease [28]. A major component of the outer membrane of Gram-negative 
bacteria that confers pathogenicity is LPS (an endotoxin), whose structure consists of lipid A, a core 
oligosaccharide, and an O-antigen/O-polysaccharide. LPS provides structural integrity and permeability to 
the membrane barrier, protecting bacterial cells against antibacterial molecules [29]. Although LPS is a 
potent endotoxin, Lf can affect this virulence factor; for example, the direct binding of Lf to lipid A of LPS in 
clinically relevant bacterial species has been shown [30]. Additionally, human apo-Lf alters the structure of 
the outer membrane and causes LPS release in Escherichia coli and Salmonella enterica serovar 
Typhimurium strains through its iron-chelating activity, as, when iron is added, the effect is reversed [31]. 
This effect has also been shown through the binding of bLf [32] or hLf peptides to LPS in E. coli [33].

Bacteria have developed diverse ways to transport proteins from the cytoplasm throughout bacterial 
compartments and/or outside the cell, as well as to export small molecules such as antibiotics and toxins, 
known as protein secretion systems [34]. However, it has been demonstrated that hLf causes the loss and 
degradation of the type III secretion system in Shigella and E. coli [35] or the type IV secretion system in 
Helicobacter pylori [36]. The secretion of enzymes is a virulence mechanism, for example, bacterial 
proteases help with cell survival, replication, and physiology; secreted proteases can destroy host tissues by 
cleaving host proteins [37]. Lf has been shown to target bacterial proteases with effects such as the 
cleavage of the IgA protease precursor of Haemophilus influenzae [38], the cleavage of a cysteine proteinase 
from Porphyromonas gingivalis [39], the elimination of the Lf proteolytic activity of Actinobacillus 
pleuropneumoniae [22], and the inhibition of a 100 kDa protease of Mannheimia haemolytica [40]. However, 
if bacteria evade host immune responses, they can reach host cells and attach to them.

Once bacteria adhere to host cells, they can colonize and cause disease; the elimination of bacterial 
adhesion is essential; importantly, Lf has a role in inhibiting the adhesion of many bacteria to host cells, 
such as enteropathogenic E. coli (EPEC) to HeLa cells [41], Streptococcus mutans to saliva-coated 
hydroxyapatite beads (using bLf and bLf polypeptides) [42], and Streptococcus gordonii single cells and 
coaggregates to glass slides [43], and titanium surfaces [44]. The importance of avoiding bacterial 
adherence is not only related to inhibiting bacterial colonization, because bacteria that accomplish adhesion 
to host cells are able to persist in a 3D arrangement known as a biofilm, representing another virulence 
mechanism. Biofilms are bacterial aggregates embedded in a self-produced matrix of exopolysaccharides 
that confer protection against harsh environments, such as extreme temperatures and pH, high pressure, a 
lack of nutrients, and the presence of antibodies, bacteriophages, and many antibiotics [45]. Although 
biofilms are difficult architectures to abolish and penetrate for many antibiotics, they are not an obstacle for 
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Lf, as there is much evidence that Lf decreases biofilm formation by inhibiting the initial attachment of 
bacteria such as Bacteroides fragilis and Bacteroides thethaiotaomicron on microtiter plates [46], 
Streptococcus agalactiae to human gestational membrane biopsies [47, 48], Streptococcus sanguinis on 
titanium surfaces [49], Pseudomonas aeruginosa on polyvinylchloride microtiter plates [50] and glass 
coverslips [51], P. gingivalis and Prevotella intermedia on polyvinylchloride microtiter plates [39, 52], and 
Acinetobacter baumanii, and enteroaggregative E. coli (EAEC) on microtiter plates [53, 54]. Furthermore, Lf 
also disaggregates mature biofilms such as in Streptococcus pneumoniae through its DNase activity [55]. 
Figure 1 and Table 1 summarize the effects of Lf on different bacterial virulence factors and mechanisms.

Figure 1. Schematic representation of the effects of Lf on bacterial virulence factors and mechanisms. The iron-chelating 
activity of Lf inhibits bacterial growth (bacteriostatic effect) (1), The binding of Lf to porins (2), or LPS (3) in Gram-negative 
bacteria, and lipoteichoic acid (LTA) (4) in Gram-positive bacteria causes membrane cell permeability (bactericidal effect), Lf 
inhibits the adhesion to host cells (5), biofilm formation (6), proteolytic activity (7), and secretion systems (8) of many bacteria. 
Lf: lactoferrin; LPS: lipopolysaccharides. Created in BioRender. Ruiz, L. (2024) BioRender.com/s75x068

Table 1. Effect of Lf on bacterial virulence factors

Virulence factor Lf Pathogen Effect Ref.

hLf E. coli

K. pneumoniae

P. aeruginosa

Decreases endotoxicity by binding to LPS. [30]

hLf

bLf
Lfcin

E. coli

S. typhimurium

Releases LPS and alters outer membrane (OM) 
permeability.

[31, 32]

LPS

hLf E. coli Destabilizes OM by binding to LPS. [33]
hLf Shigella

E. coli EPEC
Degradation of proteins associated to the type III secretion 
system.

[35]Secretion systems

rLf H. pylori Decreases expression of the oncogenic cag pathogenicity 
island-encoded type IV secretion system.

[56]

hLf H. influenzae Cleavage within the helper region of IgA (IgAβ) domain. [38]
bLf P. gingivalis Inhibits the activity of the cysteine proteases. [39]
bLf A. pleuroneumoniae Inhibits activity of metalloproteases. [22]

Protease secretion

bLf M. haemolytica Inhibits secretion and activity of cysteine and 
metalloproteases.

[40, 57]

https://biorender.com/s75x068
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Virulence factor Lf Pathogen Effect Ref.

hLf E. coli EPEC Inhibits adhesion to HeLa cells. [41]
bLf

bLf 
polypeptides

S. mutans Inhibits adhesion to saliva-coated hydroxyapatite. [42]
Adhesion

bLf
rhLf

S. gordonii Inhibits attachment to glass disks.
Inhibits adhesion to titanium surfaces.

[43]
[44]

rhLf

bLfcinB

B. fragilis

B. thethaiotaomicron

Inhibits binding to laminin and biofilm formation. [46]

hLf S. agalactiae Inhibits adherence to human gestational membranes and 
biofilm formation.

[47, 48]

Adhesion and 
biofilm formation

hLf peptide S. sanguinis Inhibits adhesion to titanium surfaces and reduces early 
stages of biofilm formation.

[49]

bLf P. aeruginosa Inhibits biofilm formation and reduces preformed biofilm. [50]
bLfcin

bLfampin

bLfchimera

P. aeruginosa Decreases biofilm formation. [51]

bLf

hLf

P. gingivalis

P. intermedia

Abolishes biofilm formation and reduces preformed biofilm. [39, 52]

hLf

bLf

A. baumanii Inhibits biofilm formation. [53]

bLf E. coli EAEC Decreases biofilm formation. [54]

Biofilm formation

bLf S. pneumoniae Eradicates form biofilm and disrupts eDNA. [55]
Lf: lactoferrin; LPS: lipopolysaccharides; hLf: human Lf; bLf: bovine Lf; Lfcin: lactoferricin; rLf: recombinant Lf; EPEC: 
enteropathogenic E. coli; rhLf: recombinant human Lf; bLfcinB: bovine Lfcin B; bLfcin: bovine Lfcin; bLfampin: bovine 
lactoferrampin; bLfchimera: bovine Lf chimera; EAEC: enteroaggregative E. coli; A. baumanii: Acinetobacter baumannii; A. 
pleuroneumoniae: Actinobacillus pleuropneumoniae; B. fragilis: Bacteroides fragilis; B. thethaiotaomicron: Bacteroides 
thetaiotaomicron; E. coli: Escherichia coli; H. influenza: Haemophilus influenza; H. pylori: Helicobacter pylori; K. pneumoniae: 
Klebsiella pneumoniae; M. haemolytica: Mannheimia haemolytica; P. aeruginosa: Pseudomonas aeruginosa; P. gingivalis: 
Porphyromonas gingivalis; S. agalactiae: Streptococcus agalactiae; S. gordonii: Streptococcus gordonii; S. mutans: 
Streptococcus mutans; S. pneumoniae: Streptococcus pneumoniae; S. sanguinis: Streptococcus sanguinis; S. typhimurium: 
Salmonella typhimurium

Lf (mainly of bovine origin) is used to combat bacterial infections because it is easily available and 
inexpensive, and has no toxicity; in addition, no bacterial resistance has been reported. This may be related 
to the mechanism of action of Lf, which differs from that of antibiotics, whereby antibiotics need to 
penetrate bacterial cells to exert their effects and can be eliminated by efflux transporters, whereas, in 
addition to its iron-chelating ability, Lf interacts with and alters bacterial cell membranes, as well as block 
efflux transporters [18]. Lf has been administered as formula in infants, where an improvement of iron 
absorption in the Lf-fortified formula group was found compared to the control (no Lf administered) [58]. 
Furthermore, some reports have shown the efficacy of orally administered Lf in patients to combat 
bacterial infections, such as a randomized controlled trial that evaluated the effectiveness of bLf from iron-
fortified formulas on respiratory tract infections [59], a randomized double-blind, placebo-controlled study 
that revealed the ability of bLf to suppress H. pylori colonization (bacterium associated with the 
development of chronic gastritis, peptic ulcer diseases, mucosa-associated lymphoid tissue lymphoma, and 
gastric cancer) [60], and a clinical trial that demonstrated the ability of bLf to decrease group A 
Streptococcus invasion (a pathogen that causes pharyngitis, impetigo, cellulitis, and deeper infections such 
as rheumatic fever, scarlet fever, necrotizing fasciitis, and streptococcal toxic shock syndrome) [61]. No side 
effects were reported when Lf was administered in these clinical trials. Furthermore, it has been designated 
by the US FDA as a food additive that is generally recognized as safe (GRAS) [62].
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Conclusions
We cannot avoid the existence of bacteria and we do not want to; however, the presence of resistant 
pathogenic bacteria is disturbing. Pathogenic bacteria have developed strategies to avoid host immune 
responses and persist as pathogens, but we do have weapons to combat these pathogens. There is much 
evidence that “the miracle protein”, Lf, is one such weapon, as it is able to combat every stage of bacterial 
colonization. Accordingly, Lf has renewed hope that we can win this battle, and we are very close to 
achieving this goal.
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