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Abstract
Microbial biotransformations are valuable tools from “green chemistry” and involve converting parental 
molecules into new daughter ones with unique physical, chemical, or pharmacological properties. These 
reactions are often carried out by cells grown under a planktonic phenotype. However, microbial cells 
grown under a phenotype of biofilm can improve biotransformation bioprocesses once they form more 
biomass per volume, are more resistant to extreme conditions (pH, temperature, and toxic substances), 
remain active for extended periods, are less prone to cell washouts, and reduce re-inoculation demands, 
leading to increased production rates due to their unique physiological features. In addition, experience has 
shown that biofilms may furnish a broader array of new daughter molecules. This review highlighted the 
benefits of using biofilms in microbial biotransformations to obtain a variety of bioactives.

Keywords
Microbial biotransformation, biofilms, pharmaceuticals, fine chemicals

Introduction
High-value molecules such as pharmaceuticals, cosmeceuticals, and other fine chemicals had their needs 
increased in recent decades. To attend to such an increasing demand, academia and industry enrolled in a 
rat race toward discovering new molecules. Although large molecules such as recombinant proteins, 
monoclonal antibodies, antibody-drug conjugates, fusion proteins, and vaccines received significant 
attention, small molar mass molecules were in the sight of many companies [1].
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Graphical abstract.  Comparison between planktonic and biofilm biotransformation rates of a hypothetical parental 
molecule

The industrial production of small molecules that respond to more than 90% of therapeutic drugs 
involves their discovery, design, and development [2]. Biotransformations are energy-efficient, 
environmentally friendly processes that yield high-value molecules [3], attending to most of the Green 
Chemistry principles for sustainable pharmaceutical production [4].

When microbes carry out biotransformations in two-stage fermentations, significant amounts of final 
products can be achieved [5], even overcoming restrictions associated with microbial strains [6].

Microbial biotransformations
In microbial bioprocesses, cells can be presented in various phenotypes, free or immobilised, growing or 
resting [7]. As living organisms, they must transform the surrounding matter to produce biomass [8] and 
energy [9, 10] or to detoxify growth-limiting molecules [11]. All these targets are achieved by simple or 
intricate chemical reactions arranged in pathways. Such microbial cellular reactions involve metabolic 
reactions or biotransformations.

Metabolic reactions are multi-step coupled reactions that convert a particular molecule into some 
others to produce energy and biomass (primary metabolism) or additional advantageous molecules 
(secondary metabolites) [12]. The production of acetone using Clostridium acetobutylicum or C. beijerinkii 
[13], the growth of the edible mycelium of Rhizopus microsporus var. oligosporus [14], and bacterial 
enzymes used for therapeutical (e.g., L-asparaginase and nattokinase) [15–17] or nutraceutical (e.g., 
phytases) [18] purposes are examples of metabolic end-points of sequential reactions from primary and 
secondary metabolisms.

In turn, biotransformations are one-step reactions (eventually, few-step reactions) that modify a 
specific molecule that is not a growth substrate, neither involved in energy or biomass production nor 
secondary metabolites by a biological agent [19]. Indeed, the reactions involved in biotransformation 
phenomena attempt to detoxify xenobiotics so those already grown living cells are exposed [20, 21]. 
Figure 1 shows the dynamics of metabolic and biotransformation reactions considering the growth curve of 
a microorganism. Notice that cells produce energy and biomass immediately required for cell divisions 
during previous phases. Secondary metabolites (e.g., pigments, antibiotics, etc.) are molecules produced 
early in the log phase and prolonged throughout the following phases, conferring some advantages to 
environmental challenges. Biotransformations are carried out only after reaching or quasi-reaching 
stationary growth phase when the central metabolism is reduced, and the production of biotransformed 
molecules (daughter molecules) may demand several days to get a beneficial amount. Metabolically 
engineered strains have changed such a scenario with considerably reduced overall production time [22].
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Figure 1. Microbial growth curve presenting when primary, secondary, and biotransformed xenobiotics are produced
Note. Adapted with permission from [23], © 2021 Springer Nature Switzerland AG

Biotransformation reactions are an interesting way to obtain high-value molecules, such as 
pharmaceuticals and fine chemicals, under mild operational and environment-friendly conditions [24]. 
Redox reactions such as hydroxylations, dihydroxylations, and epoxidations with significant demand for 
oxygen in the late logarithmic-to-stationary transient phase are the most commonly occurring during 
xenobiotic biotransformations [25, 26].

In some circumstances, using whole microbial cells to carry out biotransformations seems more 
efficient and cost-effective than using isolated enzymes. This is because the latter requires expensive 
cofactors to be recycled and renewed biocatalysts necessary for extended periods. Additionally, changes in 
environmental conditions, such as pH, can have a negative impact on enzymatic activity [27].

Using living microbial cells for biotransformations has many benefits, such as a high surface-volume 
ratio, fast processing times, fast rate of metabolic transformation, and easy control over the process [28]. 
Not only does it eliminate the need for multiple enzyme extraction and purification steps, but it also has 
positive effects on activity and stability [29].

Numerous articles have explored the potential of microorganisms to convert parental molecules 
(xenobiotics) into therapeutically or fine chemical high-valued daughter molecules, proving that this is a 
reliable manner to obtain such molecules in easy-to-control conditions [30–36].

Nevertheless, bioprocesses using whole cells may involve free-living planktonic cells, cells immobilised 
in a matrix by passive entrapment, and cells self-entrapped in biofilms. Cell morphology, adherence 
mechanisms, surface properties, and bioreactor flow patterns drive microbial growth to planktonic or 
sessile lifestyles [37].

The most common bioprocesses for obtaining fine chemicals and pharmaceuticals are submerged 
fermentations (SmF) with planktonic bacterial, fungal, actinomycetal, or algal cells [38, 39]. Bioprocesses to 
get metabolites from primary and secondary metabolism tend to use planktonic cells due to the immediate 
consumption of nutrients. On the other hand, when cells are in an immobilised matrix, such nutrient 
consumption occurs slower [30], demanding more time to accomplish.

The advantages of using immobilised over planktonic cells include easy removal and reuse of the 
biocatalyst, decreased operational costs, the ability to use continuous flow reactors, increased biocatalyst 
concentration, and higher reagent flow compared to batch reactors. Additionally, whole cells avoid 
producing secondary reactions that could diminish the reaction yield in a non-growing state. Regarding 
production, a yield comparison between immobilised vs. planktonic cells showed higher production rates of 
the first for some compounds [40]. All these benefits become more attractive for biotransformation ends.
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Cell immobilisation refers to confining cells within a designated space while maintaining their catalytic 
activity and viability. Mass transfer of substrates or reaction products is often the rate-controlling 
contributing factor, and immobilisation may also cause reaction inhibition by initial or end products [41].

Various methods for immobilising whole cells include passive adsorption onto solid surfaces, covalent 
binding to solid surfaces, crosslinking between the cell and polymers, and whole-cell trapping by 
membranes [42], as presented in Figure 2. A common characteristic of all those methods is that the cells are 
“put” in contact with the immobilising surface and become attached by simple surface interactions. In none 
of them, microbial cells act to favour such binding by producing a colonisation factor that enables the active 
establishment of an adherent microbial community.

Figure 2. Different manners to immobilise microbial cells. EPS: extracellular polymeric substance
Note. Adapted with permission from [42], © 2001 Springer Nature Switzerland AG

When whole cells adhere and grow entrapped within an extracellular polymeric substance (EPS), the 
resulting community is known as a biofilm [43]. Figure 3 presents some features of bacterial and fungal 
biofilms. In both cases, microbial cells are surrounded by a variable mixture of substances (the EPS), such 
as insoluble polysaccharides, proteins, nucleic acids, and a significant amount of solvating water.

Productive biofilms
Unlike planktonic and passively immobilised cells, EPS protects biofilm-grown cells against extreme pH, 
temperature, and toxic substances [44, 45]. Also, these protected cells remain active for extended periods 
[46]. These characteristics make biofilms more effective in overcoming common challenges in biotrans-
formations, including the toxicity of substrates and products and shorter biocatalytic stability when under 
planktonic phenotype [47]. Other positive points in favour of biofilms are the ability to allow the obtaining 
five to ten-fold more biomass per unit volume of the bioreactor, reduced risks of cell washout at high 
dilution rates in continuous processes, and the elimination of the need for re-inoculation during repeated 
batches were presented as determinants for the best results obtained with this growth phenotype [48, 49].

Regarding the last supposed advantage, although some studies indicated that the production of bio-
products and bioremediation could be carried out using pre-formed biofilms by renewing nutrients [50–
52], even with fluctuation of yields amongst batches [53], to our knowledge, such revitalisations for new 
biotransformations were not addressed yet. It is likely that during the late stationary phase in which 
biotransformation reactions generally occur, the culture would experience inhibition, thus reducing 
productivity.

Downstream processes involve capturing and purifying a target molecule, accounting for anywhere 
from 50% to over 90% of the overall production cost [54]. As biofilm cells are entrapped within the matrix, 
cell separations are unnecessary, reducing expenses in continuous and even batch biotransformation 
processes.
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Figure 3. Steps of microbial biotransformation of xenobiotics in microbial (fungal and bacterial) biofilms. EPS: 
extracellular polymeric substance; CYPs: cytochrome P450; CPR: cytochrome P450 reductases

Figure 3 shows the path of xenobiotics from the bulk fluid to the bacterial cytosol or the fungal smooth 
endoplasmic reticulum and the inverse return to liquid bulk and to EPS, where a significant amount of 
biotransformed molecules become entrapped. At first sight, this retention in EPS may appear to be a trouble 
once separations in liquid bulk are relatively easy to carry out [55]. However, as most EPS is formed by 
solvating water, it may act as a concentrator of biotransformed molecules, demanding no complex 
procedures of filtration or centrifugation to recover such molecules.

Much experience has been acquired with planktonic-growing cells, but only a few studies have 
evaluated the bioconversion ability of biofilms, probably due to methodological constraints [56].

Table 1 briefly compiles manuscripts published in the last ten years (2013–2023) involving 
biotransformations conducted using fungal and bacterial biofilms. Others have already compiled older 
published papers of the same nature [57–59]. The present compilation solely focused on immobilised 
microbial communities for high-value production. It did not cover topics such as biodegradation, 
bioremediation, effluent treatment, biofuel production, and host/microbiota-related issues concerning 
microbial biotransformation and biofilms.

Table 1. Compilation of ten years (2013–2023) of published studies concerning microbial biotransformations conducted 
by biofilms to produce high-value molecules

Group Strain Parental 
molecule(s)

Daughter 
molecule(s)

Use Scaffold Reference

Candida viswanathii 
NBRC10321

Citronellal Citronellic acid Ingredient used in 
perfumes

Microspheres 
of PMMA

[60]

Cunninghamella 
echinulata ATCC9244

Hesperetin Hesperetin 7-O-
glycoside

Arome of sweet 
orange

Stainless steel 
wool

[61]

Cunninghamella 
echinulata ATCC9244

LQFM-021 N-glycosylated 
LQFM-021

Phosphodiesterase-
3 inhibitor

Stainless steel 
mesh

[62]

Cunninghamella elegans 
DSM1908

Diclofenac 4’-Hydroxydiclofenac Cox-2 inhibitor Stainless steel 
springs

[63]

Cunninghamella elegans 
DSM1908

Diclofenac 4’-Hydroxydiclofenac Cox-2 inhibitor Stainless steel 
mesh

[57]

Fungi
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Table 1. Compilation of ten years (2013–2023) of published studies concerning microbial biotransformations conducted 
by biofilms to produce high-value molecules (continued)

Group Strain Parental 
molecule(s)

Daughter 
molecule(s)

Use Scaffold Reference

Cunninghamella elegans 
DSM1908

Flurbiprofen 4-
Hydroxyflurbiprofen

Standart for purity 
assays

Stainless steel 
springs

[64]

Lasiodiplodia 
(Botryodiplodia) 
theobromae 1368

(+)-
Valencene

(+)-Nootkatone Arome of grapefruit Permeable 
silicon rubber

[65]

Mucor circinelloides 
URM4182

Babassu oil 
lipides

Ethyl esters (various) Diverse applications Polyurethane 
foams

[66]

Pichia kluyveri NBRC1165 Citronellol Citronellyl acetate Mosquito repellent Microspheres 
of PMMA

[60]

Yarrowia lipolytica W29 
(ATCC 20460)

Methylricinol
eate

3-Hydroxy-γ-
decalactone

Aromatic compound Groupons of 
PMMA

[67]

Lactobacillus brevis RK03 Monosodium 
glutamate

γ-Aminobutyric acid 
(GABA)

Anti-seizure and 
anti-anxiety drug

Groupons of 
HEMA/PEGDA

[68]

Bacillus subtilis BS-7 Ferulic acid Vanilin Aromatic compound Carbon fiber 
textiles

[69]

Bacillus subtilis BS-7 S Ferulic acid Vanilin Aromatic compound Active carbon 
fiber

[70]

Escherichia coli BL21 5-
Nitrononane-
2,8-dione

(R)-syn/anti-
hydroketone

Diverse applications PDMS [71]

Escherichia coli 
BL21(DE3)

Indole Tryptophan Amino acid Cellulose 
sponge 

[72]

Escherichia coli MG1655 5-Haloindole 5-Halotryptophan Pharmaceutical 
intermediary

Glass slides 
with poly-L-
lysine

[73]

Pseudomonas diminuta 
ATCC19146

Ethylene 
glycol

Glycolic acid Anti-aging agent Stainless steel 
structured 
packing

[74]

Pseudomonas putida GS1 (R)-(+)-
Limonene

(R)-(+)-Perillic acid Antineoplastic agent Silicon 
membrane

[75]

Pseudomonas taiwanensis 
VLB120 B83 T7

Glucose (S)-3-
Hydroxyisobutyric 
acid

Intermediate in the 
metabolism of 
valine

Silicon tubing [75]

Bacteria

Rhodococcus hoagii 
NBRC3730

2-Octanol 2-Octanone Ingredient used in 
perfumes

Microspheres 
of PMMA

[76]

Synechocystis sp. PCC 
6803 plus

[77]Associati
ons

Pseudomonas sp. VLB120

Cyclohexane Cyclohexanol Plasticizer agent Borosilicate 
glass

[78]
LQFM-021: 5-(1-(3-Fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole; PMMA: methyl-polymethacrylate; HEMA/PEGDA: hydroxyethyl 
methacrylate/polyethylene glycol diacrylate; PDMS: polydimethylsiloxane

It is noticeable that the studies have been centred on a few microbial species. In the case of fungi, the 
genera employed belong to divisions Ascomycota (Candida, Lasiodiplodia, Pichia, and Yarrowia) or 
Zygomycota (Cunninghamella and Mucor). Biofilm-driven bacterial biotransformations were carried out by 
Bacillus subtilis, Escherichia coli, Lactobacillus brevis, Pseudomonas spp., and Rhodococcus hoagii.

Biotransformations involved one [57, 60–65, 69–73, 77, 78], two [66, 68], three [74, 75], or multiple 
reactional steps [67, 76].

Scaffolds used for biofilm formation varied from glass without any treatment [77, 78] to diverse 
presentations of stainless steel [57, 59–63, 73] and intricated polymers such as methyl-polymethacrylate 
(PMMA) [60, 67, 69], silicon [65, 71, 75, 76], and polyurethane foams [66].

Although relatively little information is available regarding biofilms and biotransformations to obtain 
high-value goods, the combinations of microbial species/strains, xenobiotics, biofilm scaffolds, and types of 
bioreactors generate many possibilities to prospect.

When selecting a candidate for biofilm-based industrial biotransformations, the microorganism must 
fill in specific criteria. The organism must be non-pathogenic, genetically stable, able to quickly form a well-
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attached biofilm in an inexpensive cultivation medium, and not have an excessive formation of the EPS, 
which can decrease the catalytic rate [24].

Once the biofilm is formed, it should be highly porous to allow for the diffusion of nutrients, dissolved 
oxygen, and biotransformation substrates and products [46, 57, 79]. Failure to do so can lead to 
considerable physiological heterogeneity, negatively impacting conversion rates [80].

Various biofilm bioreactors have been designed for microbial biotransformations. Most biocatalytic 
biofilms demand immersion, quasi-immersion, or temporary immersion in liquid bulks where xenobiotics 
are dissolved; thus, bioreactors designed for solid-state fermentation (SSF) are not practical for obtaining 
ingredients for the biopharma industry. SSF is valuable for obtaining enzymes, antioxidants, biofuel, and 
secondary metabolites [81], but not for strictu senso biotransformations.

High-quality reviews regarding biofilm bioreactors have been published [80, 82–84]. Special attention 
must be paid to Rosche et al. [24] review covering biofilm reactors for biotransformations. Those authors 
depict the various features of many bioreactors, presenting their pros and cons and their applicability to 
produce high-value molecules.

The surface characteristics of supports over which biofilms will be formed drive the success of the 
bioprocess. Fungal biofilms grown on certain surfaces, such as corrugated stainless-steel structures [85–
87] and stainless-steel pads [88], can enhance production. Similarly, bacteria form biofilms on surfaces like 
cellulose acetate, hydrophilic and hydrophobic polyvinylidene difluoride, and polycarbonate membranes 
[89]. These surfaces are often arranged in fixed-bed bioreactors or similar, which experience less shear 
stress than traditional stirred-tank reactors.

Biofilms can improve the production of pharmaceuticals through biotransformation reactions. As 
presented in Table 1, some non-steroidal anti-inflammatory drugs (NSAID) are easily hydroxylated and 
dihydroxylated by Cunninghamella spp. biofilms formed onto stainless steel compression springs [57, 58], 
with bioconversion rates reaching up to 43%. Due to its extreme simplicity, such support does not allow the 
formation of large biofilms, limiting the biotransformation rates, but serves primary screening purposes. 
Scaffolds with an enlarged area improve the biofilm formation. However, surface dimensions and 
corrugation must be considered to obtain productive biofilms [90]. Corrugation increases the colonisable 
area and creates retentive niches in which biofilms become protected from shear forces [91].

Our group recently proposed a low-cost and highly efficient bioprocess that involves a hybrid fixed 
bed-airlift. This process allows fungal biofilms to form onto a stainless-steel screen baffle [57]. Once the 
cells have attached and early biofilm formation occurs (usually within 24 h), the bioreactor mechanically 
functions as an airlift bioreactor. The resulting inner baffle now contains metabolically active cells that 
biotransform xenobiotics, so it can also be considered a fixed-bed bioreactor. Our yield showed that 29.6% 
of biotransformed molecules were free in liquid bulk, while 61.3% were trapped in the biofilm EPS. 
Combined, these parcels generated approximately 91% of 4’-hydroxilated daughter molecules. Combining a 
well-aerated system and appropriate support for biofilm growth improves the biotransformation rates and 
the scalability of the process.

Perspectives in biofilm biotransformations
A promising strategy for enhancing biofilm cells’ productivity through genetic manipulation has been 
proposed [92]. While there are established protocols for obtaining recombinant proteins and fine chemicals 
using planktonic bacteria, yeasts, and fungi, there is limited research on biofilms for this purpose [80]. 
However, it is already known that genetically engineered cells within biofilms can produce daughter 
molecules efficiently and cost-effectively [93]. For instance, Escherichia coli biofilms expressing the 
tryptophan synthase trpBA gene can biotransform 5-haloindoles into 5-halotryptophans, which are 
pharmaceutical intermediates, at a conversion rate three to four times higher than planktonic cells [73].

Biofilm engineering is a comprehensive method that manipulates the growth and functions of biofilms 
to promote biocatalytic processes. This approach includes various aspects such as monitoring intercellular 
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communications using quorum sensing (QS) and quorum quenching (QQ) signalling molecules, regulating 
second inter and intracellular messenger networks, and forming the biofilm matrix [58].

Another feature that is poorly investigated is the possibility of using nanoparticles. Depending on their 
size and net charge, they can penetrate the biofilm matrix composed of highly hydrated exopolysaccharides 
[94, 95] and deliver parental molecules to deep biofilm-resident cells. This could increase the 
biotransformation rate of biofilms.

Differences in bioreactor architectures, bioreactor feedings, biofilm scaffolds, the chemical nature of 
parental and daughter molecules, the type of microorganisms, oxygen demands, and others make 
comparisons among bioreactors challenging. The best combination of parameters must be stated for each 
particular necessity.

The benefits of biotransformations in biofilm reactors are evident. However, more laboratories will still 
need to dedicate themselves to the search for new molecules through microbial biotransformation. Most 
studies are still in the screening phase using conical flasks, with limitations for transferring experiences to 
the industrial sector [96]. More profound obstacles that must be overcome when translating lab 
experiments into industrial reality include population heterogeneity caused by substrate and oxygen 
diffusion, ensuring strain stability and purity across multiple operations, scaling up the process, and 
improving downstream processes [80].

Conclusions
After considering the statements above, we are confident that advances in biotransforming biofilms will 
occur by creating specialised bioreactors, identifying new producing and biotransforming species/strains, 
and manipulating microbial genomes.
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EPS: extracellular polymeric substance

SSF: solid-state fermentation
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