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Abstract
Over the last 60 years, only four new classes of antibiotics have been introduced, while the prevalence of 
antibiotic-resistant Gram-positive and Gram-negative bacteria has risen. This underscores the urgent need 
for new antibacterial therapeutics. This commentary leverages the recent exploration of γ-substituted-N-
acylated-N-aminoethyl amino acid peptides (γ-AApeptides) to mimic the structures and function of natural 
antimicrobial peptides (AMPs), highlighting the promise and limitations for developing a new, effective 
treatment for antibiotic-resistant bacteria.
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Introduction
In 1939, gramicidin A as a peptide was discovered from the soil bacterium Bacillus brevis, marking the first 
commercially available antibiotic and a cornerstone for the development of antimicrobial therapeutics [1]. 
According to the Database of Antimicrobial Activity and Structure of Peptides (DAASP), over 22,000 
peptides with antimicrobial properties have been identified to date [2]. Antimicrobial peptides (AMPs) are 
evolutionary biomolecules formed as part of the defense mechanisms of numerous organisms [3]. Despite 
their prevalence and diversity, AMPs typically contain fewer than 50 amino acids with positive charges 
ranging from +2 to +11, enabling interaction with negatively charged bacterial membranes through 
electrostatic interactions and hydrophobic residues for membrane disruption and penetration. AMPs could 
be characterized by their secondary structures, predominantly α-helix or β-sheet [4]. Through careful 
manipulation of hydrophobic and hydrophilic residues, AMPs exhibit broad-spectrum antimicrobial activity 
and immunomodulatory properties with negligible bacterial resistance and low toxicity [5]. However, AMPs 
face several limitations, including high manufacturing costs, high in vivo toxicity, low in vivo efficacy, 
susceptibility to proteolytic degradation, and rapid clearance [6].
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Researchers are exploring various strategies to overcome these challenges. For instance, Nazeer et al. 
[7] reported the stabilization of macrocyclic AMPs through cross-linked swapping, enhancing conformation 
rigidity and antimicrobial activity via side chain-to-side chain lactam cross-links. Other approaches include 
transdermal delivery methods, such as incorporating nanoparticles to encapsulate AMPs, allowing for 
controlled release and resistance to enzymatic degradation [6]. The limitations of naturally occurring AMPs 
have driven the development of synthetic AMP mimetics, including small molecule AMP mimics, cyclic 
peptides (including stapled peptides), and peptidomimetics like γ-substituted-N-acylated-N-aminoethyl 
amino acid peptides (γ-AApeptides) developed by our lab (Figure 1). Among these, sulfonyl-γ-AApeptides 
are notable for forming α-helical secondary structures and exhibiting enhanced proteolytic degradation 
stability and cell permeability [8]. It could be a viable strategy to employ sulfonyl-γ-AApeptides to address 
the barriers surrounding AMPs and meet the growing need for therapeutics against drug-resistant bacteria. 
Alternatively, there have been several successful reported cases of synthetic peptidomimetics with potent 
antimicrobial activity, for example, Zhang et al. [9] demonstrated the eradication of Staphylococcus aureus 
from the incorporation of β-peptides. In 2022, Tallet et al. [10] reported a series of oligourea inspired 
peptides consisting of strategically distributed histidine arginine, tryptophan, and γ-valine residues to 
mimic the amphiphilic nature of AMPs. Very recently Firdous et al. [11] developed a series of short lipidated 
urea-containing α/β hybrid peptides which showed excellent antibacterial activity against both Gram-
positive and Gram-negative bacteria.

Figure 1. Structures of different peptidomimetic backbone scaffolds. γ-AApeptide: γ-substituted-N-acylated-N-aminoethyl 
amino acid peptide

Peptidomimetics as synthetic AMPs
Derived from feleucin-bombinin-1 (BO1), the cationic nonapeptide feleucin-K3 exhibits an amphiphilic α-
helical structure with potent antimicrobial activity but fails to meet clinical therapeutic requirements due 
to low selectivity and poor stability. To this end, sulfonyl-γ-AApeptide building blocks were introduced at 
either the C or N terminus of the sequence with varying hydrophobic side chains to develop analogs. It was 
discovered that substituting the first two hydrophobic side chains of K3 with a sulfonyl-γ-AApeptide 
containing more hydrophobic side chains resulted in more potent antimicrobial activity, particularly 
against Gram-positive bacteria, K122 (Figure 2A). The addition of a sulfonyl-γ-AA unit led to negligible 
hemolytic activity, enhanced stability against mouse serum, and improved selectivity compared to K3 [12].

Within the world of medicinal chemistry, it is well known that by incorporating fluorine or fluorinated 
groups, one could potentially overcome protease degradation as well as substantially improve 
pharmacokinetic properties through its modulation of pKa influencing the bioavailability of a compound 
[13]. To this extent, authors theorized that by introducing fluorinated groups to sulfonyl-γ-AApeptide, a 
further enhanced feleucin-K3 inhibitor was developed. As seen in the structure of CF3-K11, it bears vast 
similarities to K122; however, it contains a fluorocarbon residue in the para position of a benzene ring 
(Figure 2B). This resulting influence of such a modification leads to the facilitation of hydrogen bonding 
stabilizing the secondary structure, as well as enhancing salt stability while maintaining its potent 
antibacterial activity [14].
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Figure 2. Structures of discussed antimicrobial peptides. (A) Structure of K122; (B) structure of CF3-K11; (C) structure of 
YW-11; (D) structure of compound 17
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A subclass of γ-AApeptides explored recently as potential antibacterial agents are short lipidated 
dendrimeric γ-AApeptides. We hypothesized that introducing a positively charged γ-AA building block to a 
lipidated hydrophobic γ-AA building block could mimic the amphiphilic nature of canonical AMPs. It was 
found that building blocks conjugated with C16 tails exhibited effective antimicrobial activity, particularly 
YW-1, which demonstrated the ability to disrupt cell membranes with good selectivity and low hemolytic 
toxicity (Figure 2C) [15]. The addition of a long hydrophobic tail on γ-AApeptides, a method our group first 
employed in 2012, showed unprecedented potential as a novel antibiotic therapeutic due to its large 
diversification potential, ease of synthesis, stability in the presence of serum, and potent selective activity 
against fungi and clinically relevant Gram-positive and Gram-negative bacteria [16]. Since then, 
functionalized γ-AApeptides were investigated to mimic not only the antimicrobial aspects of AMPs but also 
the immunomodulatory response, as seen in the cyclic γ-AApeptides we reported in 2014 [17].

To take advantage of the amphiphilic nature of lipidated sulfonyl-AApeptides, we examined the 
influence of dimerization to interact more strongly with the negatively charged surface of bacterial 
membranes. We synthesized a series of multiple dimeric lipo-α/sulfonyl-γ-AA hybrid peptides consisting of 
varying hydrophobic tail lengths, cationic groups, and hydrophobic achiral side chains to assess their 
influence on mimicking AMPs. From this series, we noted lead compound 17 possessed potent antibacterial 
activity with high selectivity towards bacteria cells. Similar to previously reported sulfonyl-γ-AA containing 
peptides, compound 17 exhibited excellent stability with seemingly no degradation after 24 h in the 
presence of serum (Figure 2D). The bacterial resistance was tested against a common antibiotic, 
ciprofloxacin, and revealed compound 17’s reduced susceptibility towards bacterial resistance. These 
promising results allow for further exploration of dimeric lipo-α/Sulfonyl-γ-AA hybrid peptides as potential 
AMP mimics [18].

Future directions
Despite significant advances in the development of AMP mimics, there have been no new FDA-approved 
antibiotic treatments. Our continued efforts to address the challenges associated with AMPs, such as 
toxicity, pharmacokinetic profiles, and low in vivo activity against drug-resistant Gram-negative bacteria, 
through the functionalization of γ-AApeptides are promising. However, our lab has greater success in 
targeting Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and 
methicillin-resistant Staphylococcus epidermis (MRSE), likely due to the ability of amphiphilic 
peptidomimetics to penetrate and disrupt the thick peptidoglycan layer of Gram-positive bacteria. In 
contrast, Gram-negative bacteria, with their thin peptidoglycan layer protected by an outer membrane, 
present a more challenging target. It is our hope that through the fine-tuning of hydrophobic and 
hydrophilic residues, we can design peptidomimetics with potent broad-spectrum antibacterial activity as 
potential therapeutics. Looking forward, our efforts are also geared towards developing AMPs targeting 
specific bacteria such as Clostridium difficile. Overall, we hope to inspire future researchers to aid in the 
development of AMP mimetics as potential therapeutics towards the fight against drug-resistant bacteria.
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