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Abstract
Aim: The objective of this study was to develop a minimal physiologically based pharmacokinetic (mPBPK) 
model to predict area under the curve (AUC) and maximum plasma concentration (Cmax) of drugs in 
subjects with varying degrees of hepatic impairment and compare this mPBPK model with the whole body 
PBPK model.
Methods: Hepatic impairment classification system, which is based on Child-Pugh score was used. In this 
mPBPK model, 4 physiological parameters [portal and renal blood flow, glomerular filtration rate (GFR), 
and liver size] and 2 biochemical parameters (albumin and bilirubin) were used. Total number of drugs 
analyzed in this study was 52, and the predicted Cmax and AUC values were compared with dedicated 
clinical trials. Out of 52 drugs, the predictive performance of mPBPK was compared with the whole body 
PBPK model for 27 drugs, and the remaining 25 drugs were used to further test the robustness of the 
mPBPK model.
Results: The results of the study indicated that the predictive performance of the mPBPK model was 
comparable with the whole body PBPK model, both in terms of Cmax and AUC. For 52 drugs, there were 120 
data points for AUC (37, 47, and 36 for mild, moderate, and severe hepatic impairment, respectively), and 
from mPBPK model, 92%, 94%, and 89% data points were within 0.5–2-fold prediction error, respectively.
Conclusions: Overall, the results of the study indicated that the proposed mPBPK model, in its predictive 
performance, is as robust and accurate as whole body PBPK model.
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Introduction
The liver is the main site of metabolism for many drugs, leading to the clearance (CL) of these drugs 
through a variety of oxidative and conjugative metabolic pathways (phase I and II reactions) [1]. Hepatic 
impairment may lead to changes in the pharmacokinetic (PK) of drugs due to the reduced capacity of the 
liver to metabolize drugs. As a result, drugs or active metabolites can be accumulated in the body and may 
reach to toxic levels. Furthermore, pro-drugs needed to be converted to active metabolite(s) for therapeutic 
benefits, but hepatic impairment may lead to the reduced formation of active metabolite(s), resulting in the 
reduced efficacy of such products [1].

There can be many liver diseases, such as alcoholic liver disease and chronic infections with hepatitis 
viruses B and C, acute hepatitis D or E, primary biliary cirrhosis, and primary sclerosing cholangitis [1]. In 
hepatic disease, there are changes in the activity of metabolizing enzymes and hepatic transporters [2]. 
Besides liver, reduced duodenal cytochrome P450 3A (CYP3A) activity has also been noted in the hepatic 
disease [3]. Hepatic disease may also alter kidney function, resulting in the accumulation of a drug and its 
active or inactive metabolite(s) even though a drug is not primarily metabolized in the liver [1].

The Food and Drug Administration of the United States of America (US FDA) suggests a Child-Pugh 
score system for the assessment of liver function [1]. The Child-Pugh score system measures several clinical 
tests such as encephalopathy grade, ascites, serum bilirubin, serum albumin, and prothrombin time. Based 
on these tests, the FDA has suggested 3 categories of hepatic impairment. Based on Child-Pugh score, these 
three categories are: category A or mild liver impairment (score 5–6), category B or moderate liver 
impairment (score 7–9), and category C or severe liver impairment (score 10–15).

Modeling and simulation can be helpful in predicting PK of a drug in subjects with hepatic impairment 
and finding a suitable dose for the initiation of a dedicated clinical trial [1]. In order to predict PK of drugs 
in hepatic impairment, whole body physiologically based PK (PBPK) models have been suggested [4–6]. 
However, there are examples in the literature that suggest that the whole body PBPK model can be 
simplified (generally known as reduced or lumped PBPK) to predict PK parameters or dose of a drug [7–
17].

The objective of this study is to propose a minimal PBPK (mPBPK) model to predict PK parameters 
such as maximum plasma concentration (Cmax) and area under the curve (AUC) in subjects with different 
degrees of hepatic impairment and compare the predictive performance of the proposed mPBPK model 
with the predictive performance of the whole body PBPK model as well as with dedicated clinical trials.

Materials and methods
Fifty two drugs were used in this study to predict PK parameters such as Cmax and AUC in subjects with 
hepatic impairment by a mPBPK model. The predicted Cmax and AUC values from mPBPK model were then 
compared with the observed Cmax and AUC values from dedicated hepatic impairment clinical trials. Out of 
52 drugs, 27 drugs were used to compare the predicted Cmax and AUC from mPBPK model with the whole 
body PBPK model. The remaining 25 drugs were used to further strengthen the accuracy of the predictive 
performance of the proposed mPBPK model.

It should be noted that in this study, the whole body PBPK models were not developed rather Cmax and 
AUC values were taken from the published PBPK studies for the comparison of Cmax and AUC values with 
the predicted values from mPBPK model. Hence, in this manuscript, there are no differential equations and 
generated Cmax-time plots for whole body PBPK. References for whole body PBPK model are provided in 
this manuscript so that the interested readers can find the whole body PBPK modeling strategy by the 
respective authors. In order to predict Cmax and AUC values for mPBPK, these values were used from 
healthy subjects from dedicated hepatic impairment clinical trials (Supplementary material). The following 
is the description of the development of the mPBPK model in this study.
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Table 1. Fold change (compared to healthy subjects) in physiological parameters as a function of liver impairment

Parameters Mild Moderate Severe

GFR [4] 0.70 0.58 0.55
Renal blood flow [5] 0.88 0.65 0.48
Portal blood flow [18] 0.72 0.60 0.13
Albumin [18] 0.84 0.69 0.53
Bilirubin [19] 1.10 2.50 3.50
Sum 4.24 5.02 5.19
Functional liver size [18] 0.91 0.81 0.64
The numbers in parenthesis are reference numbers. The values are ratios, therefore, without any unit. Bilirubin values widely 
vary across subjects with mild, moderate, and severe liver impairment. Bilirubin values in Table 1 are based on FDA guidance (< 
2, 2–3, and > 3 mg/dL for mild, moderate, and severe liver impairment, respectively) [1] and severity grading in drug induced 
liver injury [19]. Any value of bilirubin > 1 or < 2 is considered mild liver impairment therefore, a value slightly > 1 (1.1) was 
chosen for subjects with mild liver impairment. According to severity grading, this value will be > 1–1.5. A mid-point of 2.5 was 
chosen for subjects with moderate liver impairment (2–3) [1]. According to severity grading, this value will be > 1.5–2.5. Any 
value can be > 3 for subjects with severe liver impairment therefore, a value slightly > 3 (3.5) was chosen for subjects with 
severe liver impairment [1]. According to severity grading, this value will be > 2.5–5. FDA: Food and Drug Administration; GFR: 
glomerular filtration rate

Development of a mPBPK model

In this study, the mPBPK model consisted of 4 physiological parameters in each category of hepatic 
impairment. The 4 physiological parameters used in this study were portal and renal blood flow, 
glomerular filtration rate (GFR), and liver size in different degrees of hepatic impairment [4, 5, 18] 
(Table 1). These 4 physiological parameters were chosen due to their substantial impact on liver 
impairment. In hepatic impairment, not only liver size is reduced with the progression of the disease but 
liver associated parameters such as portal blood flow are also reduced [18]. Since hepatic impairment 
impacts GFR [4] and renal blood flow [5]. Therefore, GFR and renal blood flow rates were selected. Two 
biochemical parameters such as albumin and bilirubin were also included. In hepatic impairment, albumin 
levels are reduced [18], and bilirubin levels are increased [19]. Hence, these two parameters were included. 
In short, only those parameters were selected which are substantially impacted by the liver impairment.

In this mPBPK model, only log P value was used as a product characteristic. It was noted that log P 
values for some drugs are negative, and the inclusion of negative log P in the model produced a slight 
impact (under-estimation) on the predictive power of the mPBPK model. Therefore, negative log P values 
were not included in the mPBPK model but rather ignored. The log P (experimental) values for mPBPK 
model were taken from DrugBank [20]. If experimental log P values were not available, then the predicted 
log P values were used. Average (all values were ratios) was taken for 3 physiological and 2 biochemical 
parameters (Table 1) as well as log P (if positive). The average value was divided using the liver mass for 
mild, moderate, and severe hepatic impairment to estimate a physiological factor (Table 1). This 
physiological factor was then used to predict Cmax and AUC in subjects with different degrees of hepatic 
impairment, as described in Equation 1 below. An example of calculation of AUC is shown in 
Supplementary example.

For the prediction of CL, the following Equation 2 should be used:

It should be noted that unlike a traditional whole body PBPK model, no differential equations were 
used to develop Cmax-time data for mPBPK model. This step was not needed in this study because Cmax and 
AUC values were available from healthy subjects from dedicated clinical trials and used with the 
physiological factors to predict (as shown in Equation 1) Cmax and AUC in subjects with different degrees of 
hepatic impairment.
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Evaluation of the robustness of the mPBPK model

Initially, the proposed mPBPK model was compared with the whole body PBPK model (n = 27). In order to 
further evaluate the robustness of the mPBPK model, 25 more drugs were taken from the literature and 
analyzed. The criteria for the selection of 25 drugs was the availability of the data in subjects with severe 
hepatic impairment because this is the group where prediction of Cmax and AUC is difficult. All 25 drugs had 
the AUC values in subjects with severe hepatic impairment (22 for Cmax). Overall, 52 drugs were used to 
predict the Cmax and AUC in subjects with different degrees of hepatic impairment to assess the predictive 
performance of the proposed mPBPK model by comparing with the observed (obtained from dedicated 
clinical trials) Cmax and AUC values.

Statistical analysis

Prediction fold errors of 2 (0.5–2), 0.5–1.5 (a 50% prediction error on either side of 1), and a more 
stringent criteria in terms of 0.7–1.3 (a 30% prediction error on either side of 1) were used for the 
assessment of the predictive performance of the proposed mPBPK model. A similar criteria was used for the 
comparison of mPBPK with the whole body PBPK. Considering a high variability in the PK parameters in 
liver impairment, a 30% prediction error was considered accurate and acceptable from clinical perspective. 
The prediction fold error was calculated as follows in Equation 3:

Average fold error (AFE), which is the log-transformed ratio of the predicted and observed Cmax or AUC, 
was calculated in patients with mild, moderate, and severe. For AFE, a value of 1.0 indicates no prediction 
error, and AFE was calculated as follows in Equation 4:

where n is the number of observations.

Results
The fold-change (healthy versus liver impairment) for physiological and biochemical parameters used in 
this study to develop mPBPK model is shown in Table 1. The results of this study are summarized below 
and in Tables 2, 3, and 4. In supplementary Tables S1–S6, the observed and predicted AUC and Cmax values 
in subjects with different degrees of hepatic impairment by the mPBPK model and whole body PBPK model 
are shown. In supplementary Tables S7–S12, the predicted and observed AUC and Cmax values of 25 drugs 
with the observed PK values are presented to further demonstrate the robustness of the proposed mPBPK 
model. In Supplementary example, an example is provided to show how AUC can be predicted from the 
proposed method (same goes for Cmax).

Figures 1, 2, and 3 show the relationship between predicted AUC values by mPBPK and whole body 
PBPK. Figures 4, 5, and 6 show the relationship between predicted AUC values from mPBPK and the 
observed AUC values (for all 52 drugs).

Out of 52 drugs, 27 drugs (53 and 33 data points for AUC and Cmax, respectively) were predicted by the 
proposed mPBPK model compared with the whole body PBPK model (Tables 2 and 3). Overall, from 
mPBPK, 52 drugs with 120 data points for AUC and 93 data points for Cmax were predicted in subjects with 
varying degrees of hepatic impairment (Table 4).

mPBPK versus whole body PBPK

The predicted AUC and Cmax values by mPBPK and whole body PBPK (data from the literature) were 
compared with the observed values (from dedicated clinical trials). Then the comparison between mPBPK 
and whole body PBPK was done by looking at how many predicted values were within a given fold 
prediction error. For example, there were 16 and 17 data points in subjects with mild hepatic impairment 
for AUC within 0.5–2-fold prediction error from mPBPK and whole body PBPK models, respectively 
(Table 2).
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Table 2. Comparison between minimal and whole body PBPK prediction for AUC

mPBPK Whole body PBPKRange

Within the range # Within the range (%) Within the range # Within the range (%)

Mild (n = 19)
0.5–2 16 84 17 89
0.5–1.5 15 79 14 74
0.7–1.3 11 58 10 53
> 2 0 0 1 5
< 0.5 3 16 1 5
AFE 0.84 - 0.96 -
Moderate (n = 23)
0.5–2 20 87 19 83
0.5–1.5 20 87 18 78
0.7–1.3 15 65 11 48
> 2 0 0 3 13
< 0.5 3 13 1 4
AFE 0.79 - 0.94 -
Severe (n = 11)
0.5–2 8 73 7 64
0.5–1.5 7 64 5 45
0.7–1.3 6 54 3 27
> 2 0 0 3 27
< 0.5 2 18 1 9
AFE 0.77 - 1.28 -
n = 27 drugs. -: no data. #: number of drugs. AFE: average fold error; AUC: area under the curve; mPBPK: minimal 
physiologically based pharmacokinetic; PBPK: physiologically based pharmacokinetic

Table 3. Comparison between minimal and whole body PBPK prediction for Cmax

mPBPK Whole body PBPKRange

Within the range # Within the range (%) Within the range # Within the range (%)

Mild (n = 9)
0.5–2 8 89 7 78
0.5–1.5 7 78 6 67
0.7–1.3 2 22 3 33
> 2 0 0 2 22
< 0.5 1 11 0 0
AFE 0.96 - 1.28 -
Moderate (n = 16)
0.5–2 10 63 12 75
0.5–1.5 9 56 9 56
0.7–1.3 8 50 5 31
> 2 4 25 4 25
< 0.5 2 13 0 0
AFE 1.04 - 1.22 -
Severe (n = 8)
0.5–2 3 38 4 50
0.5–1.5 1 13 3 38
0.7–1.3 1 13 2 25
> 2 5 63 4 50
< 0.5 1 13 0 0
AFE 1.66 - 1.71 -
n = 27 drugs. -: no data. #: number of drugs. AFE: average fold error; Cmax: maximum plasma concentration; mPBPK: minimal 
physiologically based pharmacokinetic; PBPK: physiologically based pharmacokinetic
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Table 4. Prediction statistics for AUC and Cmax by mPBPK (n = 52 drugs)

mPBPK (AUC) mPBPK (Cmax)Range

Within the range # Within the range (%) Within the range # Within the range (%)

Mild n = 37 n =25
0.5–2 34 92 24 96
0.5–1.5 30 81 20 80
0.7–1.3 23 62 15 60
> 2 0 0 2 8
< 0.5 3 8 0 0
AFE 1.05 - 1.18 -
Moderate n = 47 n = 38
0.5–2 44 94 34 89
0.5–1.5 41 87 26 68
0.7–1.3 29 62 20 53
> 2 0 0 5 13
< 0.5 3 6 0 0
AFE 0.95 - 1.21 -
Severe n = 36 n = 30
0.5–2 32 89 23 77
0.5–1.5 28 78 16 53
0.7–1.3 19 53 11 37
> 2 0 0 8 27
< 0.5 3 8 0 0
AFE 0.90 - 1.42 -
-: no data. #: number of drugs. The number of observations in Table 4 is the total number of observations from mPBPK 
(Tables 2 and 3) and the additional data analysis of 25 drugs. AFE: average fold error; AUC: area under the curve; Cmax: 
maximum plasma concentration; mPBPK: minimal physiologically based pharmacokinetic

Figure 1. Predicted AUCs comparing whole body PBPK and mPBPK in subjects with mild hepatic impairment (n = 19). 
AUC: area under the curve; mPBPK: minimal physiologically based pharmacokinetic; PBPK: physiologically based 
pharmacokinetic

The results of the study are summarized in Tables 2 and 3 and the observed versus predicted values 
are presented in supplementary Tables S1–S6. There were 27 drugs that were used to compare the AUC 
and Cmax by the proposed mPBPK model with the whole body PBPK model in subjects with varying degrees 
of hepatic impairment. The AUC of 27 drugs was predicted with 19, 23, and 11 data points in subjects with 
mild, moderate, and severe hepatic impairment.
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Figure 2. Predicted AUCs comparing whole body PBPK and mPBPK in subjects with moderate hepatic impairment (n = 
23). AUC: area under the curve; mPBPK: minimal physiologically based pharmacokinetic; PBPK: physiologically based 
pharmacokinetic

Figure 3. Predicted AUCs comparing whole body PBPK and mPBPK in subjects with severe hepatic impairment (n = 
11). AUC: area under the curve; mPBPK: minimal physiologically based pharmacokinetic; PBPK: physiologically based 
pharmacokinetic

For AUC, at least, 80% of observations were within 2-fold prediction error by both models in subjects 
with mild and moderate hepatic impairment (Table 2). In subjects with severe hepatic impairment (n = 11), 
the prediction of AUC was relatively poorer than the subjects with mild and moderate hepatic impairment 
by both models (Table 2).

From mPBPK in subjects with severe hepatic impairment, the percent of data points within 0.5–2-fold 
and 0.7–1.3-fold prediction error was 73% and 54%, respectively (Table 2). From whole body PBPK in 
subjects with severe hepatic impairment, the percent of data points within 0.5–2-fold and 0.7–1.3-fold 
prediction error was 64% and 27%, respectively (Table 2). However, the sample size (n = 11) in subjects 
with severe hepatic impairment is too small to make any comparison between the two models.
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Figure 4. Predicted and observed AUCs in subjects with mild hepatic impairment (n = 37). AUC: area under the curve

Figure 5. Predicted and observed AUCs in subjects with moderate hepatic impairment (n = 47). AUC: area under the 
curve

The Cmax of 16 drugs was predicted with 9, 16, and 8 data points in subjects with mild, moderate, and 
severe hepatic impairment (Table 3). The percent of data points within 0.5–2-fold prediction error was 
89% and 78% in subjects with mild hepatic impairment by mPBPK and whole body PBPK model, 
respectively. The percent of data points within 0.5–2-fold error was 63% and 75% in subjects with 
moderate hepatic impairment by mPBPK and whole body PBPK model, respectively. In subjects with severe 
hepatic impairment, the percent of data points within 0.5–2-fold prediction error was 38% and 50% by 
mPBPK model and whole body PBPK model, respectively (Table 3). A strong relationship (R2 = ≥ 0.89 for all 
three categories of hepatic impairment) for predicted AUC values was found between mPBPK and PBPK 
models (Figures 1–3).

The results of the study indicated that both minimal and whole body PBPK models provided similar 
results for the prediction of AUC in subjects with mild and moderate hepatic impairment. However, the 
prediction of AUC in subjects with severe hepatic impairment was poor in both models (Table 2). The 
percent of data points within 0.7–1.3-fold error was < 50% by both models. The sample size (n = 11) was 
too small to make any definitive conclusion about the predictive power of the two models for AUC in 
subjects with severe hepatic impairment.
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Figure 6. Predicted and observed AUCs in subjects with severe hepatic impairment (n = 36). AUC: area under the curve

The prediction of Cmax was even worse than the AUC in subjects with severe hepatic impairment 
(Table 3). Overall, the prediction of Cmax in subjects with moderate and severe hepatic impairment was poor 
compared with the prediction of the AUC in subjects with mild hepatic impairment. As the degree of liver 
impairment increased, the predictive power of both models decreased. It should not be surprising because 
the physiological complexities increase as the severity of hepatic impairment increases.

The AFE for AUC in subjects with mild, moderate, and severe hepatic impairment by PBPK model was 
0.96, 0.94, and 1.28, respectively, whereas, by mPBPK these values were 0.84, 0.79, and 0.77, respectively 
(Table 2). The AFE for Cmax in subjects with mild, moderate, and severe hepatic impairment by PBPK was 
1.28, 1.22, and 1.71, respectively, whereas, by mPBPK these values were 0.96, 1.04, and 1.66, respectively 
(Table 3).

Overall, the results of the study indicate that the predictive performance of the proposed mPBPK in 
terms of AUC and Cmax is comparable with the whole body PBPK.

Test for the evaluation of robustness of the proposed mPBPK model

Besides comparing the mPBPK model with whole body PBPK (n = 27 drugs), 25 additional drugs were used 
to evaluate the robustness of the proposed mPBPK model. For 52 drugs, there were 37, 47, and 36 data 
points for AUC in subjects with mild, moderate, and severe hepatic impairment, respectively (Table 4). In 
subjects with mild, moderate, and severe hepatic impairment, 92%, 94%, and 89% of data points (AUC) 
were within 2-fold prediction error, respectively (Table 4). As observed previously, as the severity of the 
hepatic impairment increased the accuracy of the prediction decreased. In subjects with mild, moderate, 
and severe hepatic impairment, 62%, 62%, and 53% of data points (AUC) were within 0.7–1.3-fold 
prediction error, respectively (Table 4). The AFE for AUC in mild, moderate, and severe hepatic impairment 
was 1.05, 0.95, and 0.90, respectively. In Figures 4–6, the predicted and observed AUC values by mPBPK 
model are shown. A strong relationship (R2 = ≥ 0.79 for all three categories of hepatic impairment) for 
predicted and observed AUC values from mPBPK model was noted (Figures 4–6).

For 52 drugs, there were 25, 38, and 30 observations for Cmax in subjects with mild, moderate, and 
severe hepatic impairment, respectively (Table 4). In subjects with mild, moderate, and severe hepatic 
impairment, 96%, 89%, and 77% data points (Cmax) were within 2-fold prediction error, respectively 
(Table 4). In subjects with mild, moderate, and severe hepatic impairment, 60%, 53%, and 37% data points 
(Cmax) were within 0.7–1.3-fold prediction error, respectively. The AFE for Cmax in mild, moderate, and 
severe hepatic impairment was 1.18, 1.21, and 1.42, respectively.
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Overall, the results indicated that AUC and Cmax can be predicted with reasonable accuracy by mPBPK 
model in subjects with mild and moderate hepatic impairment. The prediction of AUC and Cmax was not as 
accurate in subjects with severe hepatic impairment as in the subjects with mild and moderate hepatic 
impairment by both mPBPK and whole body PBPK models.

There is high uncertainty in the prediction of drug exposure in subjects with severe hepatic 
impairment. This may be because the morphological and physiological changes in subjects with severe 
hepatic impairment are more complex and severe than the mild and moderate hepatic impairment. This 
complexity and uncertainty cannot be picked up by models. Furthermore, in a modeling exercise, model-
specific limitations due to assumptions in model parameters may be more relevant to severe hepatic 
impairment than mild and moderate hepatic impairment.

Discussion
Whole body PBPK models have been suggested for the prediction of PK parameters for special populations 
such as pediatrics, pregnancy, and renal and hepatic impairment and subsequently for dedicated clinical 
trials in a specific population. However, over the years, comparative studies between whole body PBPK and 
minimal or reduced PBPK models have shown that mPBPK models in their predictive performance are as 
robust and accurate as whole body PBPK models [7–17]. A mPBPK model uses only a few physiological 
parameters (as few as 3–5) and one or two drug-related physicochemical characteristics and is much 
simpler to develop than a whole body PBPK model.

The mPBPK model used in this study differs from traditional whole body PBPK models or even other 
mPBPK models in the sense that no differential equations were developed to generate Cmax-time data but 
retained two basic characteristics of a whole body PBPK or mPBPK models in terms of physiological organs 
or parameters and product characteristics. Four physiological parameters, two biochemical parameters, 
and one product characteristic in terms of log P were used to develop physiological factors for different 
degrees of hepatic impairment. The direct use of Cmax and AUC values from healthy subjects along with 
physiological factors generated in this study made it possible to predict Cmax and AUC in subjects with 
different degrees of hepatic impairment. In other words, the proposed mPBPK model retains the 
characteristics of a typical whole body or mPBPK model (physiological parameters and product 
characteristics) but uses a simpler mathematical approach rather than using differential equations to 
achieve its objective (prediction of Cmax and AUC in subjects with hepatic impairment).

The amount of CYP isozymes such as 3A4, 2D6, 1A2, and 2C9 is substantially reduced in subjects with 
hepatic impairment [4, 5]. Li et al. [18] in their mPBPK model used liver transporter mRNA levels, uptake 
transporter activity, and efflux transporter activity but not the CYP isozymes. It should be noted that the 
authors used the same values for all their transporter parameters in all three categories of hepatic 
impairment. The contents of CYP isozymes, transporter mRNA levels, and transporter activity were not 
included in this mPBPK model, and yet the prediction of exposure by mPBPK and whole body PBPK were 
found to be similar.

In a previous study [15], it was shown that the exposure or CL of renally excreted drugs in subjects 
with renal impairment (from mild to severe) can be predicted with just one single physiological parameter 
(GFR) with similar accuracy as with a whole body PBPK model. The comparable prediction accuracy of 
mPBPK model with the whole body PBPK model indicates (in this study and some previous studies) that 
the extensive number of physiological parameters as well as product characteristics used in a whole body 
PBPK model are unnecessary.

In a real world, a mPBPK model or other simple empirical models are more attractive than a whole 
body PBPK model because a mPBPK model is much simpler and cost- and time-effective, yet as robust and 
accurate as a whole body PBPK model [7–17]. The proposed methods in this study also do not require any 
special software rather the entire calculation can be done on a spreadsheet in a very short period of time.
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There are two limitations of the mPBPK model presented in this study. The application of negative log 
P value may add more errors in the prediction than the positive log P value. This is of mathematical nature 
and the magnitude of prediction error will depend on the negative value of log P (for example, –1 or –3). 
Higher the negative value, higher the prediction error (highly likely). Furthermore, this model can not 
estimate inter-individual variability.

There is high variability in the observed PK parameters in subjects with hepatic impairment especially, 
in severe liver impairment. Therefore, the dose adjustment will require a correct estimate of change in the 
magnitude of exposure to a drug especially, in severe hepatic impairment. A 2-fold prediction error or even 
50% prediction error may not be acceptable for the selection of the ‘right dose’ in subjects with hepatic 
impairment especially, in severe hepatic impairment. A dedicated clinical PK study will provide accurate 
information regarding the impact of hepatic impairment of a drug. Whole body PBPK or mPBPK may be 
used to predict exposure to a drug in subjects with hepatic impairment and the predicted exposure (using 
experience and scientific judgment) can then be used to select a dose to initiate the clinical trial in this 
population. PK study should be conducted in all three types of hepatic impairment because PK can be 
different across three groups especially, in subjects with moderate and severe hepatic impairment than 
healthy subjects.

In conclusion, this study demonstrates that a mPBPK model using 4 physiological parameters, two 
biochemical parameters, and one parameter as a product characteristic can be developed with reasonable 
accuracy for the prediction of drug exposure in subjects with varying degrees of hepatic impairment. More 
accurate prediction was noted in subjects with mild and moderate hepatic impairment as compared to 
subjects with severe hepatic impairment by both models. In order to evaluate the robustness and accuracy 
of the proposed model a study with a larger data set particularly, in patients with severe hepatic 
impairment is needed.

The renowned statistician Box [21] stated that “since all models are wrong the scientist cannot obtain a 
‘correct’ one by excessive elaboration.”. On the contrary, following William of Occam should seek an 
economical description of natural phenomena. Just as the ability to devise simple but evocative models is 
the signature of the great scientist so over-elaboration and over-parameterization are often the mark of 
mediocrity.
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