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Abstract
Atopic dermatitis (AD) represents the most common inflammatory skin disease with a highly intricated 
immune fingerprint. Until recently, AD management mostly relied on topical corticosteroids, calcineurin 
inhibitors, and systemic immunosuppressants, with a range of safety and tolerability concerns including 
toxicity, drug interactions, and contraindications. With the onset of biologics, safer and more targeted 
therapeutics have become available, displaying various degrees of success in treating AD, but not yet able to 
meet all the needs of AD patients. Some of the challenges encountered included variability of responses 
among patients, long-term safety, and limited access due to prohibitive costs. As the pathophysiology of AD 
has been increasingly understood within the last years, new approaches are explored, leading to an 
unprecedented diversification of therapeutic options to address these hurdles. This review highlights 
current immunotherapeutic strategies developed towards AD, whether already in the clinical pipeline or 
still in preclinical exploration.
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Introduction
Atopic dermatitis (AD), also referred to as atopic eczema, is a skin disease that is a very diverse in terms of 
ethnic-based phenotypic variability, age of onset, dynamic course of disease, risk of various cutaneous 
infections, atopic and non-atopic comorbidities [1]. AD, characterized by eosinophilic/spongiotic 
inflammation of the skin with characteristic age-dependent distribution patterns and morphology of 
lesions, is a chronically relapsing and intensely pruritic, Th2-driven skin disease often occurring in families 
with atopic diseases (AD, food allergy, bronchial asthma or allergic rhinoconjunctivitis). Although the 
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etiology of AD is yet to be fully understood, it is commonly accepted that the pathophysiology of AD is 
driven by a combination of factors comprising epidermal barrier defects, genetic predisposition, immune 
dysregulation, imbalance of microbiome, and extrinsic stimuli like allergens, irritants, and microbes [2, 3]. 
According to the latest Global Burden of Disease study [4], AD represents 36.17% of all new immune-
mediated inflammatory diseases reported across the world.

The current therapeutic regimen of AD incorporates different pharmacological approaches including 
topical anti-inflammatory drugs (topical corticosteroids, topical calcineurin inhibitors, phosphodiesterase-4 
inhibitors), immunosuppressants (ciclosporin A, azathioprine, methotrexate, mycophenolate mofetil), 
targeted monoclonal antibodies and oral Janus kinase (JAK) inhibitors [5, 6]. Clinical management of AD is 
generally guided by disease severity (based on scoring); mild AD can usually be controlled with topical 
treatments, whereas systemic immunomodulatory therapies (with topicals as adjuvants) are recommended 
for moderate-to-severe forms of AD. For AD patients whose disease course is not satisfactory or whose 
quality of life is substantially lowered despite appropriate topical therapy, ultraviolet phototherapy might 
be considered alone or in combination with systemic therapy [7–9]. While substantial progress has been 
made to meet the therapeutic needs of AD patients, considerable limitations remain associated to these 
conventional approaches. For instance, the action of existing systemic immunomodulators is hampered by 
poor tolerability, the need for ongoing bloodwork monitoring, and transient relief [10]. The limitations of 
biologics as a class include difficulty in personalizing the dosage, repeated injections, conjunctivitis 
following interleukin IL-13 or IL-4/IL-13 blockade, possible anti-drug antibody formation, and decreased 
potency over time [1, 11]. As for phototherapy, major concerns have arisen including long-term cumulative 
adverse effects (photodamage), skin carcinogenesis, and melanoma induction, particularly for ultraviolet 
A1 radiations [12].

Over the last decade, novel immunotherapeutic strategies have been developed based on upraised 
understanding of AD mechanisms [13–18]. Furthermore, a broad range of immunotherapeutic options is 
currently under investigation for the management of other skin or immune-mediated diseases, with 
increasing evidence of their applicability in AD [19, 20]. This review provides insights upon current 
immunotherapy options, including the latest developments on biologics and targeted therapies by small 
molecules (JAK inhibitors, phosphodiesterase-4 inhibitors, etc.), with emphasis towards emerging therapies 
either at their exploratory phase (antibody-drug conjugates, antibody-cytokine fusion proteins), or in 
clinical development (allergen immunotherapy and cell-based therapy) (Figure 1). The literature search 
was conducted during the month of April 2024 using PubMed, PubMed Central, Embase, MEDLINE, Web of 
Science, and ClinicalTrials.gov. The search terms were specifically related to the fields of “immunotherapy 
of atopic dermatitis”, “allergen immunotherapy”, “cell therapy” and included studies published in English 
from 2000 to 2024.

Immunotherapeutics in preclinical development
Antibody-drug conjugates

Antibody-drug conjugates (ADCs) represent a special class of immunotherapeutics composed of a cell-
specific monoclonal antibody linked to cytotoxic small molecules (toxins or drugs) via a chemical (cleavable 
or non-cleavable) linker [21]. They have been extensively applied in cancer and inflammatory disease 
therapy [21, 22]. To date, 14 ADCs have been approved by the United States Food and Drug Administration 
(US FDA) and approximately 300 ADCs are undergoing preclinical/clinical evaluations for various cancers 
[21, 23]. Aside from cancers, there is a growing interest in the use of ADCs for the treatment of non-
oncological conditions, especially chronic inflammatory and allergic diseases [22] like AD.

ADCs with chemical moieties

In a preclinical study, anti-inflammatory phosphodiesterase 4 (PDE4) inhibitor ADC was generated to 
target CD11a antigen on primary human monocytes and mouse peritoneal cells. The results showed both 
human and mouse αCD11a-PDE4 ADCs significantly inhibit tumor necrosis factor-alpha (TNF-α) secretion 
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Figure 1. Immunotherapeutics developed for atopic dermatitis (AD) treatment. AD is characterized by chronic inflammation, 
immune dysfunction, and severe skin impairment. Several immunotherapeutics developed towards an inflammation/allergic 
reaction resolution include allergen immunotherapy, monoclonal antibodies, antibody-drug conjugates, immunocytokines, small 
molecule inhibitors, and cell-based therapies. These immunotherapy approaches have shown positive preclinical and clinical 
efficacy in AD. Created with Biorender.com

in dysfunctional immune cells in vitro and in vivo [24]. In another preclinical in vitro study targeting 
membrane immunoglobulin E B-cell receptor (IgE-BCR) fragment, an ADC containing a 15c112 antibody 
conjugated to monomethyl auristatin E (2:1) demonstrated highly selective binding and cytotoxicity to 
BCR-positive immune cells, which provides evidence for therapeutic potential in allergic conditions like AD, 
via IgE secretory cells depletion [25]. Furthermore, anti-E Selectin Dex (Dexa-AbhEsel) ADC, anti-TNF-α 
glucocorticoid ADC, and anti-CD163 Dex (Cymac-001) ADC, were each used to deliver dexamethasone as an 
anti-inflammatory payload in vitro and in vivo [23, 26, 27], with all studies demonstrating positive 
preclinical outcomes in depletion of dysfunctional immune cells and proinflammatory cytokines.

ADCs with biological moieties

Aside from chemical moieties, cytotoxic molecules like toxins and cytolytic proteins can be chemically or 
genetically fused to cell-specific antibodies or antibody fragments for the development of recombinant 
immunotoxins (rITs) [28], and targeted human cytolytic fusion proteins (hCFPs) [29]. So far, these cytotoxic 
agents have been explored for cancer immunotherapy and treatment of cutaneous inflammation and 
lesions, including AD [29–31].

A study by Thepen et al. [32] reported the therapeutic potential of a rIT for the treatment of cutaneous 
inflammation in transgenic mice expressing human CD64 receptors. The immunotoxin consisted of an anti-
CD64 single-chain variable fragment [H22(scFv)] chemically conjugated to ricin A and was used to treat 
sodium lauryl sulfate (SLS)-induced chronic skin inflammation in human CD64+ transgenic (hCD64tg) mice. 
The results from intradermal injection at the site of chronic inflammation showed selective elimination of 
activated M1 pro-inflammatory macrophages, downregulation of pro-inflammatory cytokines like IL-1 and 
IL-6, and subsequent resolution of chronic cutaneous inflammation after 24 hours. Also, clinical symptoms 
of inflammation, such as local skin temperature and capillary vasodilation, drastically decreased [32]. 
Another study from the same group later reported that a rIT containing H22(scFv), genetically fused to 
truncated Pseudomonas aeruginosa exotoxin A (ETA’) [H22(scFv)-ETA’], demonstrated selective 
elimination of dysregulated CD64+ pro-inflammatory macrophages and resolution of cutaneous 
inflammation in hCD64tg mice and patient biopsies [33]. In a different study that took advantage of the 
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ability of cross-linked CD64 to rapidly internalize IgG, bivalent H22(scFv)2-ETA’ was constructed and 
evaluated for increased uptake and cytotoxicity in CD64+ monocytic cells in cutaneous inflammation. The 
results demonstrated that H22(scFv)2-ETA’ exerts more cytotoxicity against IFN-γ stimulated CD64+ 
monocytes compared to monovalent H22(scFv)-ETA’, hence providing evidence that increased valency 
could remarkably improve the efficacy of anti-CD64 rIT therapy in cutaneous inflammation [31]. Jiemy et al. 
[34] also developed a rIT containing an anti-CD64 (scFv) antibody fused to the cytolysin HALT-1 (sourced 
from Hydra magnipapillata) at the C- and T- terminus generating both HALT-1-scFv and scFv-HALT-1 rITs. 
The study showed that both rITs demonstrate selective binding and significant cytotoxic killing/potency on 
CD64+ in vitro and M1-like macrophages irrespective of HALT-1 positioning, which provides preliminary 
evidence for HALT-1 potential as a toxin moiety in therapeutic cell targeting for CD64+ chronic 
inflammatory disease models [34].

Besides rITs, humanized enzymes have been used to develop hCFPs that overcome the limitations of 
immunogenicity associated with toxins. A full human microtubule-associated protein (MAP tau) fused to an 
H22(scFv) antibody [H22(scFv)-MAP-tau] efficiently killed proliferating HL-60 pro-monocytic cells in vitro 
and specifically eliminated polarized M1 macrophages in hCD64tg mice in a cutaneous model of chronic 
inflammation [35]. This result further provides evidence that hCFPs specifically targeted CD64+ M1 
proinflammatory macrophages, which are major players in chronic inflammatory diseases, including AD.

Taken together, these preliminary results clearly demonstrate the anti-inflammatory potency of these 
ADCs, making some of them serious candidates for first-in-human clinical trials.

Cell-based therapies

Cell-based therapy explores the use of living cells as therapeutics to combat hard-to-treat diseases. It 
extensively involves the transfer of autologous and/or allogeneic cellular materials into a patient for 
medical purposes [36]. In parallel with pharmacological agents, cell-based therapies are now developed for 
AD treatment. A novel and effective cell-based therapy for AD treatment is mesenchymal stem cells (MSCs) 
therapy [3]. MSCs are multipotent stem cells able to differentiate into different cell lineages. MSCs are 
isolated from different sources and include human umbilical cord blood MSCs (hUCB-MSCs), human 
adipocytes MSCs (hAD-MSCs), and human bone marrow MSCs (hBM-MSCs) [37]. They express cell surface 
markers (CD73, CD90, CD105) but lack CD45 and CD34 available in hematopoietic stem cells (HSCs) [37].

Allogeneic MSCs function as an immunomodulatory therapy (immunosuppressive and 
immunotolerant), hence their use for the treatment of immunopathological disorders like AD [3, 38]. In AD 
treatment, MSC-based therapy inhibited T-cell and B-cell activation, and therefore upregulated the 
production of anti-inflammatory cytokines (IL-10 and TGF-β) and downregulation of proinflammatory 
cytokines (IL-4 and IFN-γ), as well as allergic IgE levels [39]. Some MSC-based therapies investigated in 
preclinical AD models are summarized below (Table 1).

Immunocytokines

Immunocytokines, also referred to as antibody-cytokine fusion proteins, are molecules that consist of a 
cytokine moiety fused to a monoclonal antibody or an antibody fragment [52], with antibody and cytokine 
serving as vehicle and payload, respectively. The development of antibody-cytokine fusion proteins 
emerged as a novel immunotherapy strategy to circumvent the detrimental effects associated with the sys-
temic administration of cytokines as a monotherapy [53]. In fact, while cytokines may display a potent 
therapeutic activity in preclinical models of cancer and other conditions, their clinical use is often limited by 
severe systemic toxicities that prevent a dose escalation to therapeutically active regimes. The antibody-
mediated delivery of cytokines to the site of disease might be a step forward in increasing therapeutic 
activity, while reducing side effects [54]. Immunocytokines have been extensively investigated for cancer 
treatment and a recent review describes their engineering formats and clinical benefits [55]. Immunocyt-
okines also attract huge interest in the field of chronic inflammatory conditions, including inflammatory 
skin diseases.
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Table 1. MSC-based therapies in mouse models of AD

MSC source AD model Mouse 
strain

Route Mechanisms of action References

hBM-MSCs Ovalbumin-induced 
AD

BALB/c or 
C3H/HeN

IV Suppression of T cells function via NO and 
suppression of B-cell function via class switch 
recombination

[40]

hUCB-MSCs Dermatophagoides 
farinae-induced AD

Nc/Nga SC Inhibition of mast cells degranulation through PGE2 
and TGF-β1

[41]

hAD-MSCs Dermatophagoides 
farinae-induced AD

Nc/Nga IV B-cell suppression via cyclooxygenase 2 regulation [42]

hAD-MSCs Dinitrochlorobenzen
e-induced AD

BALB/c IV Regulation of MIP-2 and miR-122a-SOCS1 
expression, as well as Th1/Th2 responses

[43]

hSOD3-MSCs Ovalbumin-induced 
AD

BALB/c SC Suppression of response elicited by keratinocytes, 
mast cells, neutrophils, dendritic cells, and T cells 
through multiple mechanisms

[44]

hUCB-MSCs Dermatophagoides 
farinae-induced AD

Nc/Nga SC Pre-conditioning of MSC with mast cells granules 
optimizes suppression of mast and B cells

[45]

hUCB-MSCs Dermatophagoides 
farinae-induced AD

BALB/c SC Control of both eosinophil-associated Th2 immunity 
and neutrophil-related Th17

[46]

Primed T-MSCs DNFB-induced AD C57BL/6J SC Regulation of B cell-mediated inflammatory 
responses, which are dependent on CD40 
expression on primed T-MSCs mediated through 
the non-canonical NF-κB pathway

[47]

HA-SH/hAD-
MSCs (3D-
Hydrogel)

1-chloro-DNCB-
induced AD

BALB/c SC Immunomodulatory action on immune cells via 
downregulation of major inflammatory cytokines (IL-
13, CCL11, and CCL24), reduced epidermal 
thickness, and mast cell penetration

[48]

hAD-MFSCE Dermatophagoides 
farinae-induced AD

NC/Nga Topical Decrease of IgE and inflammatory cytokines levels. 
Inhibition of epidermal thickness, mast cell 
infiltration, and expression of expression of IL-4, IL-
10, IFN-γ, TNF-α, activation-regulated chemokines

[49]

hAD-MSCs Ovalbumin-induced 
AD

BALB/c SC Decrease of serum IgE levels, and mast cells 
infiltration skin lesions. Suppression of Th17 cells 
proliferation and proinflammatory cytokines (IL-17A 
and RORγT) expression. Upregulation of PD-L1, 
TGF-β and PGE2 levels

[50]

hUCB-MSCs 1-chloro-DNCB-
induced AD

BALB/c SC + IV Anti-inflammatory and Immunomodulatory function 
resulting in amelioration of skin lesions, through 
inhibition of JAK-STAT pathway and different 
cytokines (IL-4, IL-13, IL-17, and IgE) receptors

[51]

CCL11: eotaxin 1; CCL24: eotaxin 2; DNCB: 2,4-dinitrobenzene; DNFB: 2,4-dinitrofluorobenzene; IL: interleukin; IV: 
intravenous; MIP-2: macrophage inflammatory protein 2; NF-κB: nuclear factor kappa B; PGE2: prostaglandin E2; SC: 
subcutaneous; TGF-β1: transforming growth factor beta 1

In inflamed tissue, the lymphatic vasculature undergoes extensive remodeling and expansion, including 
lymphangiogenesis (formation of new lymphatic vessels) and enlargement of preexisting vessels. Vascular 
endothelial growth factor C (VEGF-C) was found to potently reduce inflammation in a mouse model of 
oxazolone-induced psoriasis-like skin inflammation [56]. Later on, Schwager et al. [57] generated and 
intravenously administered a human VEGF-C fused to the F8 diabody (F8-VEGF-C) to two other mouse 
models of psoriasis-like skin inflammation (induced by oxazolone in transgenic VEGF-A overexpressing 
animals or repeated application of imiquimod). F8 antibody is highly specific for the angiogenesis-marking 
extradomain A (EDA) of fibronectin, a protein selectively expressed in inflamed tissues. F8-VEGF-C 
treatment significantly reduced leukocyte infiltration in inflamed tissue, including CD4+ and γδ T cells. In 
addition, the treatment reduced ear skin edema and significantly improved lymphatic drainage function 
[57]. These results were further confirmed by the same group, who investigated the long-term effects of F8-
VEGF-C using the oxazolone-mediated contact hypersensitivity (CHS) model in mice overexpressing VEGF-
A in their epidermis. Authors reported that F8-VEGF-C treatment resulted in a long-term anti-inflammatory 
activity that persisted for more than 70 days, by reducing the severity of edema and immune cell (CD4+ T 
cells, macrophages, and dendritic cells) infiltration upon hapten re-challenge [58]. As psoriasis and AD are 
two inflammatory skin diseases sharing some common features, this promising approach, though at its 
early stage, could be exploited in the near future for AD treatment.
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Immunotherapeutics in the clinical pipeline
Monoclonal antibodies

Targeted monoclonal antibodies were first introduced in dermatology for the treatment of psoriasis [59] 
before their extension to AD.

Th-2 mediated axis

AD involves predominately Th2-mediated inflammation and a key feature of the disease is the upregulation 
of IL-13 and IL-4 in lesional and non-lesional skin [60]. The two key Th2 cytokines, IL-4/IL-13 are 
suggested to drive important pathologic processes in AD including; keratinocyte differentiation, tight 
junction formation, recruitment of inflammatory cells to skin by upregulating Th2-associated chemokines 
(CCL17 and CCL26), antimicrobial peptides activity, and inhibition of important physiological processes like 
lipid synthesis [61]. Dupilumab is a monoclonal antibody targeting both IL-4 and IL-13 receptors, through 
IL-4Rα, and has been the first FDA-approved (March 2017) monoclonal antibody for use in AD [62]. 
Dupilumab’s success paved the way in exploring the individual contribution of IL-4 and IL-13 in AD 
pathophysiology, leading to the development of two monoclonal antibodies targeting IL-13, namely 
tralokinumab and lebrikizumab. Tralokinumab acts by binding to IL-4Rα and IL-13Rα1 (the two subunits of 
the IL-13 receptor), as well as to the IL-13Rα2 decoy receptor [63], whereas, lebrikizumab specifically 
binds soluble IL-13 at an epitope that strongly overlaps with the binding site of IL-4Rα [64]. Thymic 
stromal lymphopoietin (TSLP) is a cytokine produced by keratinocytes that has recently been postulated to 
play a key pathogenic role in AD. In proinflammatory states, damaged keratinocytes produce TSLP that acts 
on myeloid dendritic cells and Langerhans cells, leading to a Th2-skewed inflammatory response with the 
release of IL-4, IL-5, and IL-13 [65]. In a recent phase 2b clinical trial (NCT03809663), tezepelumab (an 
anti-TSLP monoclonal antibody) was investigated for its use as monotherapy in moderate-to-severe AD 
patients but could not achieve the primary endpoints for this patient population.

Th22-mediated axis

AD is not only Th2-centered among various disease subtypes, it also overexpresses Th22-related cytokines 
and chemokines, such as IL-22 which was found to positively correlate with disease severity [66]. IL-22 was 
proven to increase epidermal barrier dysfunction, induce epidermal hyperplasia, downregulate key genes 
(such as filaggrin and loricrin) involved in epidermal differentiation, and drive the epidermal acanthosis 
characterizing chronic AD lesions [67]. Fezakinumab (a fully human monoclonal antibody directed against 
IL-22) was investigated in adults with uncontrolled AD for 20 weeks in a phase 2a clinical trial and SCORAD 
50 (proportion of patients achieving scoring atopic dermatitis improvement of ≥ 50% from the baseline) 
endpoint was achieved, at week 12, in severe AD subpopulation [68].

Th17-related and other axis

Th17-related cytokines, specifically IL-17 and IL-23, are the key drivers of the inflammatory process in 
psoriasis, and their potential use as therapeutic targets in the context of AD is supported by several studies 
[61]. IL-17 synergizes with IL-22 to promote tissue inflammation and barrier defects, while IL-23 activates 
both Th17 and Th22 pathways [69]. Ustekinumab is a fully human monoclonal antibody directed against 
the p40 subunit of IL-12 and IL-23, preventing them from binding to T cell-surface receptors and causing 
differentiation and clonal expansion of naïve T cells into specific Th subtypes [70]. A phase 2 double-
blinded and placebo-controlled study revealed that ustekinumab administration only resulted in a 
numerical improvement of AD clinical scores, without statistical significance [71]. A summary of clinical 
trials investigating monoclonal antibody therapy in AD, irrespective of disease subtypes or immune axis 
explored, has been tabulated (see Table 2).



Explor Asthma Allergy. 2024;2:373–98 | https://doi.org/10.37349/eaa.2024.00052 Page 379

Table 2. Monoclonal antibodies in advanced clinical trials for AD

Target Drug Route Status Global endpoints 
achieved

Reported adverse effects References

IL-1α Bermekimab SC Phase II EASI-75, 
SCORAD-50

Wheezing, injection-site reaction, nausea NCT03496974

Stapokibart SC Phase III Ongoing Ongoing NCT06277765

NCT05265923
Rademikibart SC Phase II IGA 0/1 Headache, vomiting, injection-site reaction, eye 

pruritus
[72]

611 SC Phase III Ongoing Ongoing NCT06173284
AK120 SC Phase I/II EASI-75 Upper respiratory tract infection, headache, 

abdominal pain, mouth ulceration, injection-site 
reaction

[73]

NCT05048056

MG-K10 SC Phase III Ongoing Ongoing NCT06026891

IL-4α

Dupilumab SC Approved EASI-75; EASI-90 Conjunctivitis, injection-site reaction, 
nasopharyngitis, herpes viral infections, viral 
gastroenteritis, dental caries

[62, 74–79]

Tralokinumab SC Approved IGA 0/1; EASI-50; 
EASI-75; EASI-90

Viral upper respiratory tract infection, injection-
site reaction, conjunctivitis

[80–82]

Lebrikizumab SC Approved IGA 0/1; EASI-75; 
EASI-90

Headache, oral herpes, conjunctivitis, 
nasopharyngitis, dry eye, folliculitis, upper 
respiratory tract infection

[83, 84]

IL-13

Eblasakimab SC Phase IIb EASI-75 Not available NCT05158023
IL-5Rα Benralizumab SC Phase II EASI-90 Bronchitis, conjunctivitis, Covid-19, 

nasopharyngitis, upper respiratory tract infection
NCT04605094

IL-12/IL-
23p40

Ustekinumab SC Phase II No significant 
efficacy

Upper respiratory tract infection, 
musculoskeletal pain

[71]

IL-17A Secukinumab SC Phase II No efficacy Orbital cellulitis, upper respiratory infection, 
streptococcal pharyngitis

[85]

Fezakinumab SC Phase IIa SCORAD-50 in 
severe AD 
subpopulation

Viral upper respiratory tract infections, facial 
cellulitis

[68]IL-22

LEO138559 SC Phase IIb Ongoing Ongoing NCT05923099
IL-23 Rizankisumab SC Phase II No efficacy Cellulitis, nasopharyngitis, pruritus [86]
IL-31 Nemolizumab SC Approved 

(Japan)
EASI-90; IGA 0/1 Upper respiratory tract infection, nasopharyngitis [87–91]

Astegolimab SC Phase II No efficacy None recorded [92]
Etokimab IV Phase IIa EASI-75 Headache, upper respiratory tract infection, 

conjunctivitis
[93]

Tozorakimab SC Phase IIa No efficacy Oral herpes, cellulitis, conjunctivitis, 
nasopharyngitis, urinary tract infection

NCT04212169

IL-33

REGN3500 SC Phase IIb No efficacy Peripheral oedema, nasopharyngitis NCT03738423
IL-36R Spesolimab IV Phase IIa No significant 

efficacy
Upper respiratory tract infection, 
nasopharyngitis, depression

[94]

GBR830 SC Phase IIb No significant 
efficacy

Upper respiratory tract, myalgia, headache, 
postprocedural infection, fatigue

[95]

Amlitelimab IV Phase IIa/b EASI-75; IGA 0/1 Nasopharyngitis, Covid-19, headache, 
hyperhidrosis, upper respiratory tract infection, 
pyrexia, increased aspartate aminotransferase 
and iron deficiency anemia

[96, 97]

OX40

Rocatinlimab SC Phase IIb EASI-90 Atopic cataract, small intestine ulcer, pyrexia, 
vertigo, aphthous ulcer, constipation, diarrhea, 
vomiting, nausea, chills, nasopharyngitis, 
arthralgia, oropharyngeal pain

NCT03703102

IgE Omalizumab SC Phase II No significant 
efficacy

Viral infection, stomach pain, sore throat, 
toothache, urticaria, headache

[98–100]

mIgE FB825 IV Phase II Not available Not available NCT04413942
TSLP Tezepelumab SC Phase IIb No significant 

efficacy
Headache, diarrhea, injection-site erythema [101]

NCT03809663
SCF OpSCF SC Phase IIa Ongoing Ongoing NCT06101823
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EASI: eczema area and severity index; EASI 50/75/90: ≥ 50/75/90% improvement in EASI from baseline; IGA: investigator 
global assessment; IGA 0/1: “clear or almost clear” with ≥ 2-point improvement in IGA from baseline; IgE: immunoglobulin E; 
ILα: alpha chain of interleukin; ILRα: alpha chain of interleukin receptor; IV: intravenous; mIgE: membrane-bound 
immunoglobulin E; NCT: national clinical trial identifier consultable on www.clinicaltrials.gov (website consulted last time as of 
April 30, 2024), only clinical trials in advanced phases (Phase II onwards) are listed; SCF: stem cell factor; SC: subcutaneous; 
SCORAD: scoring atopic dermatitis; SCORAD 50: ≥ 50% improvement in SCORAD from baseline; TSLP: thymic stromal 
lymphopoietin

Small molecules

Besides antibody-based therapies that usually target cytokines or their receptors, small molecules exert 
their effects by interfering with specific intracellular signaling pathways. Various small molecules are being 
evaluated as targeted therapeutics for AD and given their potential in blocking several immune pathways, 
these drugs significantly contribute to the expanding toolbox for AD management. Moreover, their action 
can be further potentiated when fused to antibodies targeting specific receptors.

Janus kinase inhibitors

JAK inhibitors are intracellular enzymes mediating the signaling cascade from a cytokine receptor into the 
cell [102]. The JAKs are a family of tyrosine kinases, including JAK1, JAK2, JAK3, and TYK2. The intracellular 
domain of various cytokine receptors is phosphorylated by JAKs, which results in binding and activation of 
the signal transducer and activator of transcription (STAT). The JAK-STAT signaling then mediates a range 
of intracellular immune dysregulations, including robust Th2 responses [61, 103]. Upadacitinib and 
abrocitinib are two recent FDA-approved oral JAK inhibitors with high potency and good safety profiles.

Phosphodiesterase 4 inhibitors

Cyclic adenosine monophosphate (cAMP) was reported to play a role in the regulation of inflammatory and 
immune responses, with increased levels of cAMP being associated with monocytes and T cell suppression. 
PDEs are enzymes that break down cAMP or cyclic guanosine monophosphate (cGMP), with certain 
isoenzymes expressed only in selected tissues [104, 105]. PDE4 is found in immune and inflammatory cells 
(basophils, mast cells, eosinophils, B and T cells, monocytes, macrophages, neutrophils and endothelial 
cells) and PDE4 isoforms (PDE4A, PDE4B, PDE4C and PDE4D) have been observed to be increased in 
dermal fibroblasts of AD patients skin samples compared to dermal fibroblasts from healthy skin [106]. 
PDE4 inhibitors impair cytokine production by elevating cAMP levels, thereby directly or indirectly 
blocking the NFκB pathway and the subsequent cytokine and chemokine synthesis. Moreover, this 
mechanism of immunologic suppression has been suggested to also occur in keratinocytes, indicating a role 
in skin barrier protection [107]. To date, crisaborole and difamilast are the only approved PDE4 inhibitors 
for mild-to-moderate AD in adults and children, and the FDA recently accepted the supplemental new drug 
application (sNDA) for roflumilast cream 0.15% to treat AD in patients aged 6 and up.

Other small molecules

Molecules targeting histamine 4 receptor (H4R) could be exploited for AD treatment, as histamine, in 
addition to inducing pruritus, was found to inhibit the terminal differentiation of keratinocytes and impair 
the skin barrier in AD [108]. Sphingosine1-phosphate (S1P) is a bioactive lipid mediator that impacts 
immunological processes by regulating migration of lymphocytes out of lymphatic tissues and dendritic 
cells migration to lymph nodes [109]. Therefore, S1P receptors (S1PRs) are a promising therapeutic target, 
with several clinical trials evaluating S1PRs modulators for the treatment of multiple inflammatory 
disorders, including AD. Etrasimod is an oral selective S1PR1/4/5 modulator in development for multiple 
immune-mediated inflammatory disorders. Its efficacy and safety have been confirmed in patients with 
moderate-to-severe AD in a Phase 2b clinical trial [110] and Pfizer® has recently announced ongoing Phase 
III clinical development of etrasimod for AD. Other immune pathways still in their exploratory phase for 
small molecules usage include neurokinin 1 receptor (NK1R), liver X receptor (LXR), purinergic receptor 
P2X (P2X3) or kappa opioid receptor (KOR). A comprehensive overview of small molecules in clinical trials 
is captured in Table 3.

http://www.clinicaltrials.gov
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Table 3. Small molecules in advanced clinical trials for AD

Target Drug Route Status Global 
endpoints 
achieved

Reported adverse effects References

Upadacitinib Oral Approved EASI-75; EASI-
90; EASI-100; 
IGA 0/1

Nasopharyngitis, acne, headache, oral 
herpes, diarrhea, eczema, herpes zoster

[111–114]

Abrocitinib Oral Approved IGA 0/1; EASI-
50; EASI-75

Transient decreased platelet count, acne, 
dizziness, nasopharyngitis, acne, headache, 
oral herpes, vomiting, diarrhoea, eczema, 
herpes zoster, nausea, folliculitis

[115–120]

LNK01001 Oral Phase III Ongoing Ongoing NCT06277245

JAK1

SHR0302 Oral Phase II; 
Phase II/III

IGA 0/1; EASI-
75

Blood pressure increased, upper respiratory 
tract infection, folliculitis, urinary tract 
infection, hyperlipidemia, hyperuricemia, 
headache

[121]

NCT04717310

Baricitinib Oral Approved IGA 0/1; EASI-
75

Headache, increased blood CPK, 
nasopharyngitis, herpes simplex, influenza, 
diarrhea, nausea, folliculitis, back pain, acne

[122–128]JAK1/2

Ruxolitinib Topical Approved IGA 0/1; EASI-
75; EASI-90

Nasopharyngitis, headache [129–131]

Tofacitinib Topical Phase IIa EASI-75 Viral upper respiratory tract infection, 
gastroenteritis, bronchitis, nausea

[132]

ATI-1777 Topical Phase IIa/b mEASI-75 Blood CPK increased, headache [133]

NCT05432596

JAK1/3

ATI-502 Topical Phase IIb No significant 
efficacy

None reported [134]

NCT03585296
JAK1/TYK2 Brepocitinib Topical Phase IIb EASI-90 Nasopharyngitis, erythema [135]
JAK1/2/3/TY
K2

Delgocitinib Topical Approved 
(Japan)

mEASI-50; 
mEASI-75; 
mEASI-90

Acne, folliculitis, gastroenteritis, herpes 
simplex, paronychia, nasopharyngitis

[136–140]

Pan-JAK Jaktinib Oral Phase III Ongoing Ongoing NCT05526222
NCT05676242

PDE4 Crisaborole Topical Approved IGA 0/1 Application-site pain, upper respiratory tract 
infection, nasopharyngitis, headache, 
oropharyngeal pain, cough

[141–143]

PDE4 Lotamilast Topical Phase II Not available Not available NCT03394677
PDE4 DRM02 Topical Phase II Not available Not available NCT01993420
PDE4 Difamilast Topical Approved 

(Japan)
IGA 0/1; EASI-
75; EASI-90

Nasopharyngitis, folliculitis, gastroenteritis [144–146]

NCT05571943
NCT05372653

PDE4 Roflumilast Topical Phase III IGA 0/1; EASI-
75

Headache, nausea, application-site pain, 
nasopharyngitis, Covid-19, upper respiratory 
tract infection, diarrhea, vomiting

[147]
NCT04773587

NCT04773600
P2X3 BLU-5937 Oral Phase II Not available Not available NCT04693195
NK1R Serlopitant Oral Phase II No significant 

efficacy
Nasopharyngitis, urinary tract infection NCT02975206

NK1R Tradipitant Oral Phase III WI-NRS ≥ 4; 
IGA 0/1; 
SCORAD 50

Not available [148]

NCT04140695

KOR Difelikefalin Oral Phase II I-NRS ≥ 4 Abdominal pain/discomfort, nausea, dry 
mouth, headache, dizziness, hypertension, 
hyponatremia, nephrolithiasis, 
costochondritis

[149]

S1PR1 Vibozilimob Oral Phase II Ongoing Ongoing NCT04684485
S1PR1 Udifitimod Oral Phase II No significant 

efficacy
Skin mass, depression, upper respiratory 
tract infection, pyrexia

NCT05014438

S1PR1/S1P
R4/S1PR5

Etrasimod Oral Phase IIb EASI-50 Nausea, constipation, back pain, dizziness [110]
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Target Drug Route Status Global 
endpoints 
achieved

Reported adverse effects References

H4R Adriforant Oral Phase II EASI-75 Headache, somnolence, nasopharyngitis, 
eczema, urinary tract infection

[150]

GPCR19 HY209 Topical Phase II Not available Not available NCT04530643
LXR VTP-38543 Topical Phase I/II No significant 

efficacy
Upper respiratory tract infection, fatigue, 
cellulitis, dizziness, pruritus

[151]

LXR ALX-101 Topical Phase IIb Not available Not available NCT03859986
CPK: creatine phosphokinase; EASI: eczema area and severity index; EASI 50/75/90: ≥ 50/75/90% improvement in EASI from 
baseline; GPCR19: G protein-coupled receptor 19; H4R: type 4 histamine receptor; IGA: investigator global assessment; IGA 
0/1: “clear or almost clear” with ≥ 2-point improvement in IGA from baseline; I-NRS: itch numeric rating scale; JAK: janus kinase; 
KOR: kappa opioid receptor; LXR: liver X receptor; mEASI: modified eczema area and severity index; mEASI 50/75/90: ≥ 
50/75/90% improvement in mEASI from baseline; NCT: national clinical trial identifier consultable on www.clinicaltrials.gov 
(website consulted last time as of April 30, 2024), only clinical trials in advanced phases (Phase II onwards) are listed; NK1R: 
neurokinin 1 receptor; PDE4: phosphodiesterase 4; Pan-JAK: multiple janus kinases inhibitor; P2X3: purinergic receptor P2X; 
SCORAD: scoring atopic dermatitis; SCORAD 50: ≥ 50% improvement in SCORAD from baseline; S1PR1/4/5: sphingosine 1-
phosphate receptor 1/4/5; TYK: tyrosine kinase; WI-NRS: worst itch numeric rating scale; WI-NRS/I-NRS ≥ 4: ≥ 4-point change 
in WI-NRS/I-NRS from baseline

Cell-based therapies

Over the last decade, MSCs therapy has grown to a position of serious alternative treatment for AD, 
following successful proof-of-concept preclinical studies.

In 2011, Ra et al. [152] reported case studies where intravenous injections of autologous human 
adipose-derived MSCs (hAdMSCs) where used as a compassionate treatment for 4 AD patients with 
exhausted therapeutic options. Patients were administered 6–10 × 108 hAdMSCs in total and followed up 
for 2 to 5 and half months after treatment. The treatment resulted in significant AD score improvement in 
treated patients with no adverse events recorded during the follow-up period, providing thus, the first 
evidence for clinical benefit of hAdMSCs in AD. The first-in-class clinical trial was published in 2016 [153], 
from a study that enrolled 34 moderate-to-severe AD adult patients with symptoms not adequately 
controlled by topical corticosteroids or systemic immunosuppressants. Patients received subcutaneous 
injections of low dose (2.5 × 107) or high dose (5 × 107) of hUCB-MSCs fortnightly for 4 weeks in Phase 1 
trial, and 12 weeks in Phase 2. Half of the patients receiving the high dose of hUCB-MSCs experienced a 50% 
reduction of EASI score, while the investigator global assessment (IGA) and SCORAD index decreased by 
33% and 50%, respectively. The treatment also reduced serum IgE and blood eosinophils levels, while 
appearing to be globally safe. In another study, conditioned media from hUCB-MSCs was investigated for its 
beneficial effects in 34 patients suffering from mild AD [154]. Topical application of conditioned media 
(contained in a cream formulation) twice daily for 4 weeks on patients’ lesions strengthened the skin 
barrier and reduced the trans-epidermal water loss. This outcome was attributed to the anti-inflammatory 
potency of the conditioned media, as it was found to inhibit the expression of TNF-α and IL-6 cytokines in 
HaCaT cells, as well as IL-4 and IL-13 levels in Th2 cells in vitro. Shin et al. [155] reported the use of 
allogenic bone marrow-derived clonal MSCs (bmMSCs), in a single-center investigator-initiated clinical trial, 
in five adult patients with moderate to severe AD. Patients received intravenous injections of bmMSCs (1 × 
106 cells/kg) three times every 2 weeks during a 4 weeks period and were followed up the next 12 months. 
At week 16, 4 out of the 5 patients (80%) achieved EASI-50 after one or two treatment cycles and two 
patients maintained good clinical response for over 84 weeks, with significant improvement of IGA, 
SCORAD, and BSA. Minor adverse reactions such as cellulitis, otitis, and acute upper respiratory tract 
infection were recorded, but were only transient with full recovery of patients with, and often, without 
symptomatic treatment. Authors surmised that efficacy of bmMSCs would be related to increased levels of 
IL-17, associated to lower blood levels of CCL-17, IL-13, and IL-22. Other human clinical trials still in 
progress or which results are not yet published involve umbilical cord-derived MSCs (NCT01927705; 
NCT05004324; NCT03269773), adipose tissue-derived MSCs (NCT04137562; NCT02888704), bone 

http://www.clinicaltrials.gov
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marrow-derived MSCs (NCT04179760), or induced pluripotent stem cell-derived exosomes 
(NCT05969717).

Not only humans are affected by AD but dogs as well, with a prevalence of 10–15% worldwide [156]. 
The therapeutic use of MSCs has also been investigated in canine AD and to date, a handful of studies 
involving adipose tissue-derived MSCs treatment in canine AD (cAD) have been documented [38, 157–161]. 
Notwithstanding the positive outcomes conveyed, large scale placebo-controlled, long-term studies are 
necessary to further validate these results.

Allergen immunotherapy

Also known as specific desensitization, hyposensitization or allergen-specific immunotherapy, allergen 
immunotherapy (AIT) involves the administration of gradually increasing quantities of relevant allergens in 
order to induce immunologic tolerance. This therapeutic option has yielded evidenced benefits in allergen-
induced conditions like allergic asthma, allergic rhinitis and Hymenoptera venom allergy [162, 163]. Since 
AD is characterized by varied clinical presentations and heterogeneous phenotypes, AIT in AD is a 
controversial issue. Allergen-specific immunotherapy for AD has several indications, including exacerbation 
of symptoms following aeroallergen exposure, aeroallergen sensitization along with positive skin prick test 
(SPT) and/or sIgE production, moderate to severe SCORAD [25] and atopy patch testing (APT) positivity 
against the aeroallergen [164, 165]. Allergen extracts used for AIT primarily consist of allergenic proteins 
derived from grass/tree pollen, pet dander, dust mites, insect venom, and mold. House dust mite (HDM) 
extract, whose main trigger agents are Dermatophagoides pteronyssinus and Dermatophagoides farinae, is 
by far the most used allergen in AIT of AD [166]. Roughly, the proposed mechanism of long-term tolerance 
induction in AIT, even upon treatment discontinuation, involves desensitization of effector cells (basophils, 
mast cells, innate lymphoid cells, dendritic cells) through activation of allergen-specific regulatory T and B 
cells, downregulation of effector type 2 responses, decrease in the production of IgE and increase in 
production of allergen-specific blocking antibodies such as IgG2 and IgG4 [167]. AIT administration 
includes subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), both being well 
established as safe and effective treatments to address allergies to aeroallergens for allergic rhinitis and 
allergic asthma [2]. Since SCIT requires an injection-based administration, SLIT may offer a viable 
alternative to reluctant patients. Furthermore, SLIT reduces the utilization of healthcare resources and staff 
time, does not necessitate specialized expertise or facilities, and can be administered at home, making it a 
suitable option even for young children [166, 168]. However, both SCIT and SLIT can induce local and 
systemic reactions, requiring physicians and patients to be aware of the potential occurrence of such 
adverse events. Fortunately, manifestation of systemic life-threatening reactions, such as severe 
anaphylactic reactions, remains very uncommon [169]. Lately, the clinical efficacy of AIT in AD patients has 
been extensively investigated and the main outcomes of some recent studies are summarized in Table 4.

Strategies for precision healthcare
Besides immunotherapeutic strategies, harnessing improved formulations and delivery systems of existing 
molecules could go a long way to improve their clinical efficacy. Nanocarrier-based formulations for 
enhanced delivery of AD treatments have recently arisen as a promising approach prompted by positive 
deliveries in vivo. These alternate drug delivery systems include nanoemulsions (oil-in-water, water-in-oil, 
oil-in-water-in-oil, water-in-oil-in-water), liposomes, transfersomes, ethosomes, lipid nanoparticles 
(nanostructured lipid carrier, solid lipid nanoparticles), nanocrystals, polymeric nanoparticles 
(nanocapsules, nanospheres) and polymeric micelles [181, 182]. These nanocarriers have significant 
advantages over traditional formulations such as improved skin penetration and retention, controlled 
release, and reduced off-target effects, largely driven by optimized physicochemical features such as shape, 
size, structural design, and surface charge. Nevertheless, major drawbacks, including large-scale 
production, the scarcity of global regulatory guidelines, intellectual property rights, cost effectiveness 
[183], and lack of models that emulate the entire AD complexity, are still to be addressed on the path to 
clinical translation and commercialization.
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Table 4. AIT studies in AD

Study type Allergen Treatment 
duration

Number 
of 
patients 
enrolled

Complementary 
medication

Route Global endpoints 
achieved

Adverse reactions 
reported

References

Open-label, 
controlled, 
randomized trial

HDM 12 months 60 Moisturisers, 
topical and 
systemic drugs

SL Significant 
increase of 
allergen-specific 
Ig4

Oropharyngeal 
itching, localized lip 
swelling

[170]

Randomized 
controlled trial

HDM 36 months 440 Topical 
glucocorticoids, 
skin moisturizers, 
oral 
antihistamines

SL Significant 
improvement of 
SCORAD

Lip swelling, 
numbness, pruritus

[171]

Randomized 
controlled trial

HDM 6 months 14 Moisturizers, 
antihistamine and 
mild-potency anti-
inflammatory 
topical treatments

SL Significant 
improvement of 
SCORAD and 
TEWL

Not available [172]

Randomized, 
double-blind, 
placebo-controlled 
trial

HDM 18 months 66 Topical 
corticosteroids, 
topical 
immunosuppresso
rs, and systemic 
immunosuppressa
nts

SL Significant 
improvement of 
SCORAD

Vomiting, abdominal 
pain, aphthous ulcer, 
alopecia, dyspnea

[173]

Randomized, 
placebo-
controlled, double-
blind trial

HDM 12 months 37 Oral 
antihistamines, 
topical 
medications

SC Significant 
improvement of 
EASI

Mild local reaction, 
transient urticaria

[174]

Multi-centre, 
randomized, 
double-blind, 
placebo-controlled 
study

HDM 36 weeks 239 Mometasone 
furoate cream, 
levocetirizine 
hydrochloride 
tablets, mupirocin 
ointment, 
clarithromycin 
tablets

SL Significant 
improvement of 
SCORAD and 
SLA

Swelling in tough 
and lips, throat pain, 
diarrhoea, itching, 
numb in mouth

[175]

Randomized 
controlled study

HDM 24 months 96 Oral levocetirizine 
hydrochloride 
tablets, topical 
fluticasone

SL Significant 
reduction of 
SCORAD

Transient oral 
itching, 
gastrointestinal 
discomfort

[176]

Randomized 
controlled study

HDM 12 months 107 Oral 
antihistamines 
and topical 
medications

SL Significant 
increase of 
serum-specific 
IgG4 level

Transient oral 
itching, 
gastrointestinal 
discomfort

[177]

Randomized, 
double-blind, 
placebo-controlled 
study

HDM 18 months 56 Short term use 
(3 days) of topical 
fluticasone 
propionate and/or 
oral hydroxyzine

SL Significant 
reduction of 
SCORAD in mild-
moderate patients

Tiredness, oral 
itching, headache, 
mouth, lips, and face 
swelling

[178]

Observational 
study

HDM; 
cat/dog 
dander

2–58 
months

19 Topical treatment 
and/or oral 
antihistamines

SL Significant 
improvement of 
IGA and EASI

Not available [179]

Multi-centre 
randomized, 
double-blind, 
placebo-controlled 
parallel group trial

HDM 18 months 168 Topical and (as 
necessary) 
systemic 
medication

SC Significant 
reduction of 
SCORAD in 
severe AD 
patients

Flare-ups of 
eczematous and 
urticarial lesions, 
symptoms of rhinitis, 
pruritus, transient 
headache, and 
asthma

[180]

AD: atopic dermatitis; AIT: allergen immunotherapy; EASI: eczema area and severity index; HDM: house dust mite; IGA: 
investigator global assessment; SC: subcutaneous; SL: sublingual; SLA: skin lesion area; SCORAD: scoring atopic dermatitis; 
TEWL: transepithelial water loss
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A better stratification strategy of AD patients is also needed in achieving patient-specific treatments 
(precision medicine), by taking into account phenotypical features (as AD varies among different 
subpopulations), disease triggers, genetic hallmarks, and specific biomarkers. This would enable medical 
practitioners to identify AD endotypes more amenable to certain treatments (most probably in the form of 
combinatory therapies), consequently improving therapeutic efficacy while simultaneously limiting the 
issues of adverse side effects. This approach could be exemplified by a genuine use of the patient’s 
molecular profiles to identify appropriate therapeutic approaches for each patient. For instance, 
fezakinumab (an IL-22 antagonist) revealed significant clinical improvement, compared with placebo, 
especially in patients with higher IL-22 levels, through downregulation of Th1, Th2, and Th17-related 
biomarkers [184]. Developing easy-to-use and non-invasive techniques, such as skin tape strip sampling, 
would therefore facilitate diagnosis and then treatment based on the patient’s specific immune pathway 
[185]. Building such a sharp stratification strategy would further require the development of new and 
robust tools able to analyze a tremendous amount of highly complex data. Recent advances in artificial 
intelligence (AI) have shown promise in the diagnosis, classification, and predictive treatment of AD. Ghosh 
et al. [186], identified 89 genes expressed in AD to build a “signature” model, using a support vector 
machine, and achieved an AD predictive accuracy of 98%, compared to normal skin [186]. Furthermore, a 
recent machine learning tool successfully classified infant AD patients into various clusters, based on 
several chemokines and cytokines expression profiles [187]. Beyond diagnostic, scoring, and staging 
purposes, AI-based tools have been very recently applied in AD for drug repurposing, new drug eligibility, 
and prediction of the therapeutic response to biologics [188].

Conclusions
Understanding a complex disorder such as AD in its full phenotypic and mechanistic array remains a 
daunting goal, however, with the ever-increasing pathophysiology insights, improved patient management 
and outcomes are expected. Notwithstanding the limited armamentarium of approved targeted biological 
therapies at present, current trends in alternative diseases, particularly cancer, are certain to pave the way 
to address this unmet need for more well tolerated and narrow-targeted therapeutics. In addition to 
monoclonal antibodies which seem to offer safer effective systemic therapies, compared with the off-label 
use of broad-acting immunosuppressants, small molecules, AIT and cell-based therapy bring additional 
options addressing different causative factors within AD context. ADCs and immunocytokines, albeit still at 
their preclinical exploratory phase, also hold the promise of a possible breakthrough in AD therapeutic 
arsenal.

The advent of immunotherapy in the context of AD has marked a paradigm shift towards personalized 
medicine and has led to remarkable successes. However, major limitations remain, and ongoing efforts to 
further understand the complete picture of the complex pathophysiology of AD are expected to yield more 
effective immunotherapeutic agents. Integration of these immunotherapeutic strategies into a holistic 
approach involving optimized drug delivery systems and AI-based technologies has the potential to 
profoundly change the landscape of AD healthcare, with the promise of more customized treatments and a 
better quality of life for AD patients.
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