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Abstract
Severe pediatric asthma is a very challenging type of asthma for both physicians and patients. Precision 
medicine in severe pediatric asthma has undergone important developments in recent years. This 
therapeutic approach requires an adequate diagnosis and clinical phenotyping of patients and is useful for 
predicting the prognosis and response to treatment in this type of patient. This article summarizes the 
scientific information of the last five years in the diagnosis of severe pediatric asthma, focusing on topics 
such as genetic markers, biomarkers, lung function, radiological techniques, and bronchoscopy.
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Introduction
Asthma is a common condition in children and adolescents. Recently, the Global Asthma Network (GAN) 
reported an asthma prevalence of 12.8% for children and adolescents [1]. Although most children and 
adolescents have mild-moderate asthma, there is a group of severe asthmatics whose evolution is 
associated with greater morbidity, mortality, health costs, and persistence of the disease into adulthood [2, 
3]. A recent meta-analysis conducted in Europe reported a prevalence of severe asthma in children and 
adolescents of 3% with no significant differences by gender [4]. In 2014, American Thoracic 
Society/European Respiratory Society (ATS/ERS) consensus was published, defining severe asthma for 
children, adolescents, and adults. ATS/ERS consider severe asthma as a condition requiring high doses of 
inhaled corticosteroids (ICS), plus a second controller drug or use of systemic corticosteroids [5]. The latest 
update of the Global Initiative for Asthma (GINA) proposes a retrospective classification to define the 
severity of asthma, which considers the treatment necessary to control symptoms and exacerbations for at 
least two or three months, allowing the identification of patients with asthma refractory to treatment with 
high doses of ICS plus long-acting bronchodilators, and who could benefit from biological therapy [6]. The 
term problematic severe asthma has gained acceptance in recent years, as it allows for a personalized 
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clinical approach. Problematic severe asthma remains symptomatic despite maximum therapy and can be 
divided into severe treatment-resistant asthma (STRA), difficult asthma (DA), and refractory DA (RDA) [7]. 
DA can have multiple causes that can coexist, including poor adherence to treatment and/or poor 
inhalation technique, the presence of untreated comorbidities, exposure to allergens or environmental 
pollutants, and even psychological stress [8]. When all modifiable factors in DA have been identified and 
controlled and the patients remain symptomatic nonetheless, we are in the presence of STRA, which is a 
type of asthma resistant to corticosteroids due to variable mechanisms and which requires further study 
[9]. Figure 1 shows the categories of problematic severe asthma.

Figure 1. Categories of problematic severe asthma

The rapid advancements of precision medicine in pediatric asthma have allowed us to identify 
phenotypes, endotypes, genetic markers, and biomarkers that have helped us better understand the 
mechanisms of severe asthma [10]. This has also allowed the advancement of personalized therapy in 
severe pediatric asthma and the increasingly safe and effective incorporation of biological drugs [11]. This 
article aims to analyze the evidence in the diagnosis of severe asthma in children and adolescents in recent 
years.

Method
A review of the scientific evidence on severe pediatric asthma between October and November 2024 was 
conducted. Studies from the last five years were collected from different scientific databases (Medline, Web 
of Science, EBSCO Host, Science Direct, and SCOPUS databases). Two categories were used for the search: i) 
pediatric or childhood and ii) severe or difficult-to-treat asthma. The articles found were divided into five 
groups: genetic markers, biomarkers, lung function, radiological techniques, and bronchoscopy (BC).

Genetic markers
The study of the human genome has allowed the discovery of new genes involved in pathogenesis, 
interaction with the environment, and response to treatment in pediatric severe asthma [12]. Genome-wide 
association studies (GWAS) performed in children and adolescents with asthma of different ethnicities have 
demonstrated the association between single nucleotide polymorphisms (SNPs) or novel genetic loci with 
severe asthma exacerbations [13–15] and severe early-onset asthma [16, 17]. An investigation conducted in 
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children and adolescents with asthma demonstrated that PRKG1 gene expression is related to variability in 
response to short-acting β2-adrenergic receptor agonists (SABAs) in certain populations such as African 
Americans or Latinos/Hispanics [18]. Another similar study found that the expression of the DNAH5 gene 
(related to the movement of respiratory cilia) is associated with the variability of the bronchodilator 
response (BDR) in Puerto Rican children and adolescents [19]. The relationship between genetics and the 
response to ICS has also been the subject of study in recent years. New age-dependent genetic 
polymorphisms associated with the response to ICS have been identified in adult and pediatric asthmatic 
patients, such as THSD4, HIVEP2, DPP10, and HDAC9, which would be related to asthma susceptibility, 
severity, and exacerbations [20]. In the peripheral blood mononuclear cells (PBMCs) of children and 
adolescents with difficult-to-control asthma, decreased expression of the alpha corticosteroid receptor and 
a lower in vitro corticosteroid response have been found than in easily controlled asthmatics [21]. The 
microRNAs (miRNAs) are small RNAs (20–24 nucleotides) involved in the pathogenesis of some chronic 
pediatric diseases such as asthma [22]. Intercellular communication of miRNAs is carried out through 
exosomes, which are small extracellular vesicles that allow miRNAs to participate in the processes of 
inflammation, hyperreactivity, and airway remodeling in asthma [23]. The CACNA2D3 and WNT5A 
intergenic region has been associated with exacerbations in children and young adults, despite a history of 
treatment with ICS [24]. It has also been shown that blood miRNAs in children and adolescents with asthma 
are associated with a poorer response to treatment with ICS [25]. Another study in children and adults 
created a polygenic machine learning predictive model for corticosteroid response, which could provide 
more information for clinical decision-making [26]. A miRNA sequencing study in children and adolescents 
with asthma identified two circulating miRNAs (miR-1246 and miR-200b-3p) that were associated with the 
prediction of BDR and that were also replicated in cohorts of adult asthmatics, which would help to 
establish differences in response to treatment [27]. Elevated levels of two miRNAs (miR-378a-3p and 
miR-144-3p) have also been found in children and adolescents in patients with increased use of rescue 
bronchodilators, a condition that is associated with uncontrolled asthma with more symptoms [28]. In 
another study, five miRNAs (miR-532-3p, 296-5p, 766-3p, 7-5p, and 451b) were found to be associated 
with severe exacerbations of pediatric asthma and severe exacerbations in chronic obstructive pulmonary 
disease (COPD) in adults, possibly indicating that there are common genomic mechanisms between both 
conditions [29]. A study with miRNAs such as miR-210-3p has been negatively associated with regulatory T 
cells (Tregs), which are cells that participate in maintaining the balance of the allergic response. In addition, 
miR-210-3p proved to be a genetic marker that could be used to predict the severity of pediatric asthma 
[30]. In children with severe asthma, gene regulatory enhancers in leukocytes have been identified as 
different from those in mild asthmatics [31]. Epigenome-wide association study (EWAS) in asthma allows 
medics to analyze the interaction between genetics, environment, and response to treatment. Recently the 
DNA methylation (DNAm) in blood cells, nasal and bronchial epithelium has been related to the variability 
of the BDR in children and adolescents with moderate to severe asthma [32–34]. A study that analyzed the 
rs4986791 polymorphism of the toll-like receptors (TLRs) showed that pediatric patients with moderate 
asthma and heterozygous genotype more commonly developed severe asthma than patients with 
homozygous genotype [35]. In adolescents with severe asthma, the interleukin-10 (IL-10) polymorphisms 
rs3024498 were associated with poor control and IL-17 polymorphism rs3819024 genes with lower BDR 
[36]. Finally, the +2044G>A polymorphism of IL-13 gene was associated with the severity of pediatric 
asthma [37].

Biomarkers
With the advancement of precision medicine, the use of biomarkers is attaining increasing importance in 
the identification of endotypes (type 2 and non-type 2), prediction, and monitoring of response to new 
treatments (e.g., biological) in severe pediatric asthma [38, 39].
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Eosinophils

Eosinophils (EOs) are a type of granulocyte involved in the pathogenesis of asthma, whose role is not yet 
clearly elucidated, since they commonly increase in allergic asthma but may also be present in non-allergic 
asthma [40]. EOs can be measured in blood, sputum, or bronchoalveolar lavage (BAL) and in asthma have 
been used as biomarkers in diagnosis, prognosis, and response to treatment [41]. Blood EOs count is useful 
for identifying patients with severe eosinophilic pediatric asthma (≥ 150 cells/μL) who could be treated 
with mepolizumab (anti-IL-5), dupilumab (anti-IL-4Ra) (both approved for patients over 6 years of age), or 
benralizumab (anti-IL-5Ra) for patients over 12 years of age [42]. A recent study involving adolescents with 
severe asthma treated with mepolizumab (anti-IL-5) identified a subgroup with elevated levels of EOs 
subpopulations (CD62Lint and CD62Lhi) that persist with exacerbations despite receiving this biological 
therapy, indicating that sputum EOs may be another useful biomarker in the response to treatment in 
severe asthma [43].

Fractional exhaled nitric oxide

In children and adolescents with severe uncontrolled asthma, the use of fractional exhaled nitric oxide 
(FeNO) with values less than or greater than 20 parts per billion (ppb) is recommended in conjunction with 
blood EOs levels to determine, based on age (6 to 11 years or ≥ 12 years), the most appropriate biological 
drug [44]. FeNO has been shown to correlate well with asthma control measured by clinical questionnaires 
[Asthma Control Test (ACT) and GINA questionnaire (GINAq)] in severe pediatric asthma. Children with 
low FeNO levels only 87% (with ACT) and 91% (with GINAq) were likely to have uncontrolled asthma [45]. 
Additionally, in this same investigation, it was found that the best cutoff point (Youden cutoff) to detect 
severe uncontrolled asthma with both questionnaires was found with FeNO levels greater than 39 ppb [45]. 
Finally, children with moderate-severe asthma, blood levels of EOs and FeNO have been shown to be good 
biomarkers to identify patients who will have severe exacerbations and predict the response to biological 
treatments such as dupilumab [46].

Cytokines, chemokines, and inflammatory cells

A complex network of interactions between cytokines, chemokines, and inflammatory cells has been 
documented in severe pediatric asthma [47, 48]. In children and adolescents with STRA, the innate 
lymphoid cells (ILCs) and T helper (Th) cells in blood and sputum were found at significantly higher levels 
than in patients with DA or recurrent respiratory infections without asthma. Additionally, the STRA group 
was treated with intramuscular triamcinolone and after 1 month there was a significant decrease in ILC and 
Th2 as well as a decrease in exacerbations and improvement in asthma control [49]. Asthma severity has 
also been associated with deficiencies in antioxidant mechanisms. A study in children and adolescents 
showed that severe asthma had significantly lower levels of serum nuclear factor erythroid 2-related factor 
2 (NRF2) than mild-moderate asthma, so having a low level of NRF2 could be considered a predictor of 
severe pediatric asthma [50]. A retrospective study showed that severe asthmatics with recurrent 
symptoms had significantly higher blood levels of TLR4 and soluble intercellular adhesion molecule-1 
(sICAM-1) than non-recurrent asthmatics. Furthermore, the prediction accuracy was higher when 
combining these two biomarkers than each one separately [area under the curve (AUC) TLR4 = 0.739, 
sICAM-1 = 0.726, and joint detection = 0.83, respectively] [51]. Neutrophil gelatinase-associated lipocalin 
(NGAL) is a molecule with antibacterial potency (siderophage sequestrant) and also a marker of acute 
kidney disease, which could also be related to severe asthma [52]. A study performed in asthmatic children 
of different severity demonstrated that NGAL levels were significantly increased in severe asthmatics 
compared to intermittent asthmatics and healthy controls. Receiver operator characteristic (ROC) curve 
analysis showed a good capacity (AUC = 0.88, sensitivity = 82%, and specificity = 76%) to predict severe 
asthma [53]. Myeloperoxidase (MPO) and NGAL are both molecules stored in neutrophil granulocytes and 
secreted after cellular activation, having significantly higher sputum levels in moderate-severe asthmatics 
than in intermittent asthmatics, and a good correlation with the pulmonary function of these patients [54]. 
Moreover, the interaction between obesity and severe pediatric asthma at the systemic inflammatory level 
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should be mentioned, a concept currently called “meta-inflammation”, resulting in increased cytokines (IL-
1β, IL-6, IL-17, IFN-γ, and TNF-α) and adipokines (cysteinyl leukotrienes, adiponectin, leptin, and resistin) 
[55].

Lung function
The usefulness of lung function in severe asthma monitoring is fundamental. In an observational cohort of 
children and adolescents with asthma, it was shown that males with recurrent exacerbations have a high 
risk of a lower forced expiratory volume in 1 second (FEV1) across childhood [56]. A study conducted in 
children and adolescents compared lung function in severe and non-severe asthmatics and found that the 
maximum response to bronchodilators found more frequently in severe asthma was associated with more 
asthma exacerbations, hospitalizations, worse control, and decreased lung function at one year of follow-up 
[57]. A retrospective study comparing children with severe asthma, non-severe asthma, and healthy 
children showed that the FEV1/forced vital capacity (FVC) ratio was significantly decreased and the lung 
clearance index (LCI) significantly higher in severe asthmatics at the start of treatment, after a year of 
treatment, most severe asthmatics had significantly improved spirometric abnormalities, but the LCI 
remained elevated, reflecting the inhomogeneity of ventilation in this group of patients [58]. LCI was found 
elevated in 20% of children with severe asthma and was negatively correlated with FEV1 z-score. Severe 
asthmatics had significantly higher mean LCI than mild-moderate asthmatics and healthy controls [59]. 
Furthermore, it has been identified that within children with problematic severe asthma, the LCI of those 
with STRA is significantly higher than those with DA or healthy controls, which could suggest that the LCI 
could be a marker of STRA and the 65% of children with STRA registered a decrease in LCI after treatment 
with parenteral triamcinolone, which was only consistent with FeNO, but not with traditional spirometry 
parameters [60]. Table 1 summarizes the clinical utility of genetic markers, biomarkers, and lung function 
in severe pediatric asthma.

Table 1. Utility of genetic markers, biomarkers, and lung function in severe pediatric asthma

Diagnostic 
method

Comments

Genetic 
markers

They help predict the response to β2 agonists and response to inhaled corticosteroids. They can also predict 
asthma that will follow a more severe course and with persistence of exacerbations after treatment.

Biomarkers Blood and sputum eosinophils, FeNO may precede severe asthma, exacerbations, and response to biologics. 
Cytokines, chemokines present in blood, inflammatory cells, or sputum are associated with severe asthma.

Lung function FEV1, FEV1/FVC, and BDR identify severe asthma with higher morbidity. LCI identifies asthma with 
inhomogeneity, which is associated with worse lung function and severe treatment-resistant asthma.

FeNO: fractional exhaled nitric oxide; FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; BDR: 
bronchodilator response; LCI: lung clearance index

Radiological techniques
Computed tomography

Recent advances in chest computed tomography (CT) have opened the door to a better understanding of 
obstructive disease in severe pediatric asthma. The introduction of low-dose CT allows us to objectively 
determine early airway remodeling in severe asthma in a safe and reliable manner [61]. In severely 
asthmatic children and adolescents, bronchial wall thickening (BWT) was found in 80%, air trapping (AT) 
in 60%, and bronchiectasis (BE) in 27%. The extent of BE correlated with greater clinical severity of asthma 
and no alternative diagnoses to asthma were found [62]. A study performed multi-detector CT (MDCT) on 
children and adolescents with severe asthma and a control group, finding that severe asthmatics had higher 
averages of AT index (AT%), higher percentage of airway wall thickness (AWT%), and lower mean lung 
density (MLD) than controls. AT% presented very strong negative correlations with FVC and FEV1 and a 
moderate correlation with forced expiratory flow (FEF) 25–75% [63]. A recent study comparing severe 
asthmatics with healthy controls in pediatric age demonstrated that both bronchial thickening (BT) and 
AWT% provide important information about airway remodeling, but AWT% is more specific in identifying 
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airway narrowing relative to total airway size. In this study, it was established that AWT% ≥ 38.6% (AUC = 
0.99, sensitivity = 90%, specificity = 90%) allows detecting with a high degree of certainty the early 
remodeling of severe pediatric asthma [64]. In children and adolescents with severe asthma, an automatic 
inspiratory and expiratory CT software was evaluated for the diagnosis of structural alterations [65]. In this 
study each bronchial generation, the bronchus-artery (BA) relationship was considered, and the outer 
bronchial wall diameter (Bout), artery diameter (A), BWT, and low attenuation regions (LAR) were 
measured. BE was defined as Bout/A ≥ 1.1, BWT as BWT/A ≥ 0.14. Using the automated method, it was 
found that CT with percentage of BA pairs defined as BE was 24.62% and BWT was 41.7%. Patients with 
LAR on CT and patients with small airway dysfunction (SAD) on spirometry (FEF 75% and FEF 25–75% z-
score < –1.64) had greater BWT than those without these conditions, indicating that peripheral airway 
involvement in severe asthma is associated with greater structural alterations [65]. An aerosol therapy 
evaluation study measured ICS plus long-acting bronchodilator deposition in severe asthmatics with or 
without spirometry-defined SAD (FEF 25–75% and FEF 75% z-score < –1.645 and FVC z-score > –1.645) 
and functional respiratory imaging (FRI) is a validated technique using 3D reconstructed CT was used to 
measure airway aerosol deposition. Patients with SAD were shown to have increased central airway 
deposition and decreased small airway deposition than patients without SAD [66].

Magnetic resonance imaging

In recent years, the development of pulmonary magnetic resonance imaging (MRI) techniques has 
increased. A study with 129Xenon (129Xe) MRI demonstrated that children and adolescents with asthma with 
regional ventilation abnormalities such as ventilation defect percentage (VDP) and number of defects/slices 
can more accurately predict those who develop severe asthma and have greater use of health systems [67]. 
Another study with 129Xe MRI found that the VDP and coefficient of variation (CoV) were significantly 
higher in severe asthmatics before bronchodilator administration than in healthy controls. After 
bronchodilation, the 129Xe MRI VDP and CoV decreased significantly, in contrast to the spirometry values, 
which did not show any changes. The authors attributed these findings to the fact that spirometry only 
reflects global changes in lung function, whereas 129Xe MRI is able to more sensitively detect changes in 
regional ventilation inhomogeneity [68].

Bronchoscopy
In recent years, the use of BC in severe pediatric asthma has had a resurgence, mainly to rule out alternative 
diagnoses, search for germs associated with the persistence of symptoms, or in situ measurement of 
inflammatory markers in patients undergoing treatment with high doses of steroids, or to identify 
candidates for the use of biologics [69]. In some centers where BC is routinely performed in severe 
pediatric asthma for diagnostic and therapeutic purposes, it has been found that persistent bacterial 
bronchitis, trachea or bronchomalacia, and anatomical abnormalities are the most frequently found 
findings [70]. When BAL is added to BC, the diagnostic yield of bacterial diseases increases, but it should be 
used with caution in patients with known tracheobronchomalacia or very symptomatic asthma, conditions 
in which worse tolerance to BAL has been reported [71]. A study in children and adolescents with severe 
asthma found 4 granulocytic patterns on BC with BAL: 52% paucigranulocytic, 22% mixed granulocytic, 
15.9% isolated neutrophilic, and 9.5% isolated eosinophilic [72]. Patients with a mixed granulocytic or 
isolated eosinophilic pattern had greater clinical morbidity with greater use of systemic corticosteroids, 
whereas those with a paucigranulocytic or isolated neutrophilic pattern had less airflow limitation and less 
blood eosinophilia. Furthermore, patients with an isolated neutrophilic pattern had a greater number of 
bacterial pathogens isolated [72]. This last finding could be related to another investigation that BAL 
carried out in children and adolescents with severe asthma, finding that the predominantly neutrophilic 
group had proinflammatory neutrophils with greater survival and dysfunctional macrophages that 
contribute to perpetuating airway inflammation, deterioration of innate immunity, and susceptibility to 
infections [73]. BC with BAL has also helped to better understand bronchial inflammation at the molecular 
level. A study conducted in schoolchildren with severe asthma who used high doses of inhaled and often 
systemic corticosteroids showed that predominantly neutrophilic BAL is associated with a greater 
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expression of a mixed pattern of cytokines and chemokines (Th1/Th2/Th17) in contrast to 
paucigranulocytic BAL, which was associated with a reduced expression of these cytokines/chemokines 
[74]. In schoolchildren and adolescents with severe asthma who underwent endobronchial biopsy, it was 
shown that both submucosal eosinophilic and neutrophilic infiltrations were associated with decreased 
lung function in spirometry [75]. EOs infiltration was associated with better BDR and neutrophilic 
infiltration was related to fixed obstruction. However, the presence of intraepithelial neutrophils was 
associated with better lung function, while bronchial CD8 + T cells were related to better asthma control 
and lower cytokine expression in sputum [75]. Ultimately, a study using BC with BAL in children and 
adolescents with asthma of varying severity found higher levels of thymic stromal lymphopoietin (TSLP) in 
severe asthma than in mild to moderate asthmatics. In the same study, the high TSLP group was found to 
have higher concentrations of cytokines (IL-5 and IL-1β), and lower average of the FEV1/FVC ratio than the 
low TSLP group [76]. Table 2 summarizes the clinical utility of CT, MRI, and BC in severe pediatric asthma.

Table 2. Utility of computed tomography, MRI, and bronchoscopy in severe pediatric asthma

Diagnostic 
method

Comments

Computed 
tomography

It can identify structural alterations in severe asthma (air trapping, bronchial thickening, or bronchiectasis) 
early on. It can also detect airway remodeling and small airway dysfunction and monitor the site of 
pulmonary aerosol deposition.

MRI Functional MRI with hyperpolarized gases allows measurement of regional pulmonary ventilation with the 
percentage of ventilation defects and the number of defects per slice found in asthma with a higher 
treatment burden. It also detects improvement in inhomogeneity with treatment that cannot be detected by 
other methods.

Bronchoscopy It allows differential diagnosis with other abnormalities that simulate or coexist with severe asthma. Used 
with BAL, it increases the performance in the diagnosis of bacterial infection. It allows the diagnosis of 
inflammatory cell patterns, endobronchial, and molecular inflammation that is related to severe asthma with 
increased use of corticosteroids or worse lung function.

MRI: magnetic resonance imaging; BAL: bronchoalveolar lavage

Conclusions
Genetic markers, biomarkers, lung function, radiological techniques, and BC are supportive tests and/or 
procedures for pediatric respiratory physicians to identify the endotype and/or phenotype of the child or 
adolescent with severe pediatric asthma.

Personalized medicine in severe pediatric asthma involves having the ability to understand the 
underlying mechanisms of the pathogenesis of each patient to initiate the most appropriate specific 
treatment for their disease. There are important limitations that must be considered when indicating these 
diagnostic studies in severe pediatric asthma. Firstly, the accessibility and cost of certain procedures are 
limited, requiring a rigorous selection process for eligible patients. The group of problematic severe 
asthmatics that have the greatest benefit from these studies is the STRA, which remains symptomatic 
despite maximum treatment and interventions in other modifiable factors. Likewise, another limitation that 
must be considered is the intricacy of carrying out the different studies. For example, performing a blood 
count to quantify EOs has a low degree of complexity, unlike others such as genetic markers, which require 
a specialized laboratory or MRI with hyperpolarized noble gases, which must have a protocol and trained 
personnel to administer the gas doses according to the expected lung capacity of each patient.

Despite all these limitations, diagnostic studies in severe pediatric asthma are useful in patients in 
whom it is necessary to know the phenotype/endotype, monitor disease activity, and select the treatment 
to reduce economic costs and/or adverse effects of unnecessary treatments. Ultimately, the development of 
diagnostic methods opens the way to improve the indication of existing therapies (e.g., biologicals) or the 
development of new therapies in the future.
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BA: bronchus-artery
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BDR: bronchodilator response
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CT: computed tomography

DA: difficult asthma
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FEF: forced expiratory flow

FeNO: fractional exhaled nitric oxide

FEV1: forced expiratory volume in 1 second

FVC: forced vital capacity

GINA: Global Initiative for Asthma

GINAq: Global Initiative for Asthma questionnaire

ICS: inhaled corticosteroids

IL-10: interleukin-10

ILCs: innate lymphoid cells

LAR: low attenuation regions

LCI: lung clearance index

miRNAs: microRNAs

MRI: magnetic resonance imaging

NGAL: neutrophil gelatinase-associated lipocalin

NRF2: nuclear factor erythroid 2-related factor 2

ppb: parts per billion

SAD: small airway dysfunction

sICAM-1: soluble intercellular adhesion molecule-1

STRA: severe treatment-resistant asthma
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