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Abstract
Food samples require extensive sample preparations for instrumental analyses due to the complex 
matrices involved. Food safety regulatory agencies also require sample preparation procedures that are 
accurate, sensitive, robust, and, above all, fast, to handle the requirements for determining the safety of the 
massive amounts of foods and food products needed for human, pet and livestock consumption. There is 
also an inseparable interconnection between environmental, agricultural, forensic, cosmetic and industrial 
analytical chemistry involved in this requirement, and advances in analytical methodology are 
simultaneously applicable to all of these realms. As a response to these needs, the quick, easy, cheap, 
effective, rugged, and safe (QuEChERS) method was developed to provide multiclass analysis of agricultural 
products, and remains the basis for regulatory procedures for large scale analyses of food samples 
containing a wide variety of possible contaminants. However, since QuEChERS does not enhance analyte 
concentrations during sample preparation of these complex samples, the methodology also requires very 
expensive, very sensitive final analytical instrumentation, requiring highly trained personnel and continual 
maintenance. Smaller regulatory and field laboratories may also need sample preparation procedures for 
only a limited number of specific pesticides, metals, polycyclic aromatic hydrocarbons (PAHs) or other 
contaminants, requiring much less expensive and labor-intensive preparations and instrumentation. This is 
the role of liquid phase microextraction (LPME) in food sample preparation and analysis. LPME, 
individually or in combination with other sample preparation procedures, such as QuEChERS or traditional 
techniques such as solid phase extraction (SPE), can meet the requirements for sensitive and accurate 
analyses of specific analytes found in complex matrices, providing not only cleanup, but concentration of 
sample extracts, allowing the use of greener, less expensive and low maintenance final determination 
analytical instrumentation. Crucial review and application publications are tabulated to allow analysts 
easier access to appropriate publications to use this information for developing new or improved and 
greener validated methods for plant and animal food analyses.
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Introduction
While reliable, accurate and fast chemical analysis of potential harmful contaminants in agricultural, 
seafood, livestock or other food sources is necessary for the health and welfare of people, they also 
represent some of the most challenging requirements for analytical chemists. Food sources also contain a 
myriad of matrix components which make the extraction, purification and analysis of trace amounts of 
harmful contaminants a difficult process. Agricultural and livestock products may contain sugars, complex 
carbohydrates, tannin, chlorophyll, pigments, terpenes, alkaloids phenols, proteins, acids, bases, salts, 
essential elements, hormones, DNA, proteins, amino acids, and varying amounts of fats and lipids, which 
may need to be removed from a final sample before instrumental analysis [1]. In addition, food 
contaminants may be present at trace concentrations, at low parts per billion or less, requiring sample 
extract concentration and/or use of very expensive and sensitive instrumentation for analytical 
determination [2].

Food analyses originally derived from the need for determination of the identities and amounts of 
natural beneficial components, such as flavorings and volatile aroma components, as well as natural food 
spoilage products, resulting in poor taste or smell. Traditional macro analytical techniques, such as liquid-
liquid extraction (LLE), solid-liquid extraction (Soxhlet extraction) and column chromatography, followed 
by spectrophotometric or chemical analyses were used for this purpose. As concerns have grown over the 
presence of food adulteration, residual hormonal and antibacterial drugs in livestock products, pesticide 
residues in agricultural products, and harmful products produced in cooked foods, more sophisticated 
analytical sample preparation techniques, used for environmental analyses, were applied. However, these 
analytical methodologies also require large amounts of chemicals, time and personnel, and thus expense 
[3].

During the last three decades, efforts have been made to make environmental and food analyses more 
environmentally friendly, with methodology requiring reduced use of chemicals, energy, time and 
personnel, as well as reduction of hazardous waste. These approaches have been incorporated into the 
concepts of green analytical chemistry (GAC), which have been widely accepted by analytical chemists in 
government and industry, and have resulted in the development of microextraction sample preparation 
techniques, including solid phase extraction (SPE), solid phase microextraction (SPME), and liquid phase 
microextraction (LPME) [4, 5]. Analysis of food products has been especially challenging for those 
responsible for ensuring their safety and quality, given the need for fast, reliable, inexpensive and sensitive 
methods for samples potentially contaminated with more than 1,000 possible pesticides, toxic metals, 
natural toxins and metabolites. The development of the quick, easy, cheap, effective, rugged, and safe 
(QuEChERS) by Anastassiades et al. [6] in 2003 (USDA) provided an extraction-purification methodology, 
requiring reduced amounts of sample (5–20 g) and solvents (5–20 mL), for analyte extraction from the food 
matrix. This technique involved two steps: (1) a salting out step to extract analytes into acetonitrile (ACN) 
and (2) dispersive SPE (d-SPE) to remove addition co-extracted lipids, sugars, chlorophyll, pigments, fatty 
acids and water. Originally developed for the sample preparation of fruits and vegetables, QuEChERS has 
been modified and developed for a wide variety of agricultural, aquatic and livestock foods, and further 
refined and validated to provide analytical laboratories with standardized multiclass contaminant 
methodology for the analysis of environmental and forensics samples as well [7, 8]. However, no one 
method can possibly cover all possible sample types and over the last two decades well over 5,000 research 
and application papers using QuEChERS or modified QuEChERS approaches have been published, 
increasing the scope of samples for analysis, making it difficult to determine an appropriate method to 
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adopt for a new sample preparation method [9]. In addition, QuEChERS, alone, is not a microextraction-
sample preparation technique, and suffers from two major flaws. First, QuEChERS extracts do not 
concentrate the analytes of concern: the enrichment factors (EFs) are 1, or even less [1, 8]. Second, a sample 
preparation method should prepare the extract in a format (solvent) appropriate for instrumental analysis. 
To do so, QuEChERS extracts may need to undergo additional preparation steps. Many published methods 
require additional solvent evaporation and solvent changeover steps, as well as cartridge-based SPE for 
further purification and to provide extracts concentrated enough and purified enough for instrumental 
analysis. Most QuEChERS sample preparation requires expensive, very sensitive analytical instrumentation, 
such as gas chromatography-tandem mass spectrometry (GC-MS/MS), high-resolution GC-MS, quadrupole 
time-of-flight (QTOF)-MS or ultra-high performance liquid chromatography (UHPLC)-MS/MS to provide the 
sensitivity needed for trace analysis of the extracts due to the lack of analyte enrichment. However, residual 
matrix components in the extracts can be damaging to these sensitive and expensive instruments, without 
further purification steps. In addition, highly skilled personnel are also required for the operation and 
maintenance of these instruments [8, 10].

QuEChERS, in its many modified formats, has become an indispensable tool, with its “brute force” 
sample preparation approach, for regulatory laboratories to rapidly deal with vary large numbers of food 
product samples containing large number of possible multiclass contaminants. However, with the 
requirements of highly trained personnel, and very expensive instrumentation, this approach may not be 
suitable for smaller laboratories and samples containing fewer contaminants or beneficial natural 
components of interest.

As a result, alternative sample preparation methods involving microextraction techniques, including 
LPME, as replacements or for accompanying QuEChERS have been developed for food analyses. While 
QuEChERS uses much less solvent and sample than traditional macro sample preparation techniques, it is 
generally not considered to be a microextraction technique, LPME typically requires sample sizes of 1 g or 
less of solid, 5 mL or less of liquid, and 400 µL or less of extraction solvent. Reduction in size for QuEChERS 
is possible, however, the micro-QuEChERS (µ-QuEChERS) modification reduces solid sample sizes to 1 g 
and liquid samples to less than 5 mL, with reduction of extraction solvent volumes to 1–2 mL, placing the 
technique in the range of microextraction [11].

This review discusses the role that LPME has in developing green analytical methods for food analyses. 
LPME consists of three distinct sample preparation techniques: (1) single drop microextractions (SDMEs); 
(2) membrane protected microextractions; and (3) dispersive microextractions. These techniques will be 
briefly described, along with their importance for GAC. Selected relevant applications for food methods 
using LPME alone and LPME with QuEChERS and SPE, as well as future directions involving LPME in food 
analysis will be discussed. Rather than providing detailed theory and diagramed instructions for LPME 
modes, crucial review and application publications are tabulated to allow analysts easier access to 
appropriate publications needed for understanding the role of LPME in sample preparations and, in turn, 
use this information for developing new or improved and greener validated methods for plant and animal 
food analyses.

Green analytical chemistry
The 12 principles of GAC have been widely accepted by the industrial, governmental and academic 
communities for developing green analytical methods for environmental, industrial and food analyses [12]. 
More recently, GAC has been refined to include the 10 principles of green sample preparation (GSP), with 
an emphasis on sample preparation techniques for overall analytical methods [13]. The 12 GAC and 10 GSP 
principles can be summarized (Figure 1) into four main categories that need to be adhered to for a green 
analytical method [14].

These four minimization categories reduce the time, cost and hazards for personnel, while also 
minimizing the environmental impact of an analytical method. Converting from a traditional macro-LLE 
(separatory funnel) or semi-micro solid-liquid method (SPE) sample preparation method to a micro 
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Figure 1. GAC and GSP requirements for a green analytical method [14]

extraction technique such as LPME, can reduce solvent, time, and waste requirements, as well as potential 
personnel hazards. Micro extraction techniques also provide sample cleanup and reduced final analyte 
volumes, thus higher extract concentrations, decreasing demands on analytical instrumentation 
requirements [5, 14]. The application of these green microextraction techniques for analytical sample 
preparations, constitutes the role of LPME sample preparations in monitoring the nutritional value and 
safety of food products, as illustrated in Figure 2.

Figure 2. The role of LPME in sample preparation for food analysis

In the past few years, metrics have been developed to aid in assessing the relative greenness of 
analytical methods. Reviews and pertinent references for GAC, GSP and green assessment metrics are listed 
in Table 1 [4, 12, 13, 15–39]. Recently developed metrics [19–24], have become increasingly popular for 
assessing the development of greener analytical methods. Of particular relevance for this review are three 
recent papers by Nowak et al. [25–27], which assess the relative greenness of analytical solvents (ChlorTox 
Scale) [25, 26] and the energy requirements and environmental impact of analytical instrumentation. The 
instrumentation analyses clearly show the environmental impact of instrumentation like UHPLC-MS/MS to 
be up to 10 times higher than less sophisticated instrumentation, such as HPLC/ultraviolet (UV), based on 
energy requirements alone, without counting the expenses involved in their manufacture, purchase, 
operation and maintenance. In the following sections, examples will show that LPME methodology can 
provide sample preparations of sufficient purity and concentrations to allow less the use of greener, less 
expensive, and lower maintenance requirement instrumentation for Food analyses, especially for analyses 
for samples containing only a limited number of potential contaminants of concern. LPME can also provide 
increased clean-up and extract concentration when used in tandem with more comprehensive techniques, 
including QuEChEERS and SPE.

Table 1. Green analytical metrics for LPME

Green analytical 
metrics

Subject Author(s) Year References

National environmental methods index (NEMI) NEMI 2002 [15]
Green analytical methodologies, NEMI applications Keith et al. 2007 [16]
Analytical eco-scale (ECO) Gałuszka et al. 2012 [17]
Green analytical procedure index (GAPI) Płotka-Wasylka 2018 [18]
Summarizing the information in a hexagon (HEXAGON) Ballester-Caudet et al. 2019 [19]
Red-green-blue (RGB) additive color model Nowak, Kościelniak 2019 [20]
Analytical GREEnness (AGREE) Pena-Periera et al. 2020 [21]
White analytical chemistry (WAC) Nowak 2021 [22]
Complementary green analytical procedure index 
(ComplexGAPI)

Plotka-Wasylka, 
Wojnowski

2021 [23]

Analytical greenness metric for sample preparation 
(AGREEprep)

Wojnowski et al. 2022 [24]

Green analytical chemistry (GAC)—theory and practice Tobiszewski et al. 2010 [4]

Green metrics for 
selecting and 
evaluating analytical 
methods
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Green analytical 
metrics

Subject Author(s) Year References

12 principles of GAC Gałuszka et al. 2013 [12]
10 principles of green sample preparation (GSP) López-Lorente et al. 2022 [13]
Total chemical risk-ChlorTox scale Nowak et al. 2023 [25]
Clortox base-chemical hazards, greenness assessment Nowak et al. 2023 [26]
Carbon foot of the analytical laboratory Nowak et al. 2023 [27]
Overview of hexagon and RGB algorithms Nowak et al. 2020 [28]
Impact of green assessment tools in HPLC (NEMI, EOC, 
GAPI, AGREE)

Kannaiah et al. 2021 [29]

Green chemistry metrics (ECO, GAPI, AGREE) Sajid, Plotka-Wasylka 2022 [30]
Green chemistry metrics (GAPI, ComplexGAPI, AGREE, 
AGREEprep)

Martinez et al. 2022 [31]

Reviews of green 
metric assessment 
tools

Software tools for green and sustainable chemistry (ECO, 
GAPI, AGREE)

Derbenev et al. 2022 [32]

Natural deep eutectic solvent (NADES) for vegetable samples 
(NEMI, GAPI, ECO, AGREE, WAC)

Ferreira et al. 2022 [33]

HPLC methods for dyes (HEXAGON) Ballester-Caudet et al. 2022 [34]
Fluorescence detection of ergosterol (AGREE, AGREEprep, 
WAC)

Dazat et al. 2022 [35]

Determination of fatty acids in milk (ECO, GAPI, AGREEprep) Narloch, Wejnerowska 2022 [36]
Sample preparations for anthocyanin samples (AGREE) Mandrioli et al. 2022 [37]
Safety assessment of citrus and olive by-products (AGREE) Socas-Rodríguez et al. 2022 [38]

Research and 
application papers 
using green 
assessment tools

Spectroscopic methods for analysis of betrixaban (ECO, 
GAPI, AGREE)

El-Masry et al. 2022 [39]

Note. Adapted from “Green microextraction methodologies for sample preparations,” by Kokosa JM, Przyjazny A. Green Anal 
Chem. 2022;3:100023 (https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub). CC BY 4.0 Deed; 
adapted with permission from “Principles for developing greener liquid-phase microextraction methods” by Kokosa JM. TrAC 
Trends Anal Chem. 2023;167:117256 (https://www.sciencedirect.com/science/article/abs/pii/S0165993623003436?via%
3Dihub). © 2023 Elsevier B.V.

LPME solvents
LPME extractions which involved extraction of non-polar analytes from aqueous samples have been 
accomplished with several traditional LLE solvents, including 1-octanol, hexane, chloroform, carbon 
tetrachloride and toluene. Other traditional extraction solvents, such as ethyl acetate and diethyl ether have 
been less frequently used because they are too water soluble [40]. A few chlorinated solvents are still used, 
but their use is discouraged, due to their toxicity and environmental impact. Volatile hydrocarbons are also 
discouraged due to their flammability hazards [41]. More recently, new classes of solvents, considered to be 
greener, have been more commonly used. These include bio-derived solvents, ionic liquids (ILs), deep 
eutectic solvents (DESs), natural DESs (NADESs) and magnetic ILs (MILs) and magnetic DESs (MDESs). 
Review articles covering LPME solvents are included in Table 2 [40–72].

Table 2. LPME solvents and solvent selection reviews

Review subject Author(s) Year References

Green solvent selection guides Byrne et al. 2016 [40]
Selection a greener liquid phase microextraction (LPME) mode Kokosa 2019 [41]
Green solvents for LPME using gas chromatography-mass spectrometry (GC-MS) Zhang et al. 2024 [42]
Ionic liquid (IL) toxicity Flieger J, Flieger M 2020 [43]
Deep eutectic solvent (DES) toxicity Martínez et al. 2022 [44]
DESs in food analysis Chen et al. 2019 [45]
Ionic DESs for extraction of natural products Huang et al. 2019 [46]
DESs, dispersive liquid-liquid microextraction (DLLME), foods Lu et al. 2022 [47]
DESs preparations and applications Farooq et al. 2020 [48]

https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0165993623003436?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0165993623003436?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0165993623003436?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0165993623003436?via%3Dihub
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Review subject Author(s) Year References

DESs in food analysis Ortega-Zamora et al. 2021 [49]
Hydrophilic to hydrophobic DESs Tang et al. 2021 [50]
Hydrophobic DESs in food analysis Boateng 2022 [51]
Properties of DESs Omar, Sadeghi 2022 [52]
DESs in LPME Santos et al. 2022 [53]
DESs in microextractions of biologicals Coelho de Andrade et al. 2022 [54]
DESs in microextraction, chromatography Kamal El-Deen et al. 2023 [55]
DESs in LPME, 2017−2022 Andruch et al. 2023 [56]
Natural deep eutectic solvent (NADES) in green extraction techniques for foods Cannavacciuolo et al. 2022 [57]
Surfactants in sample preparation techniques Vakh, Koronkiewicz 2023 [58]
DES solvation Trivedi et al. 2023 [59]
CO2 DES-switchable solvent DLLME (DES-SS-DLLME) Nazraz et al. 2021 [60]
Switchable DESs in DLLME Zhang et al. 2023 [61]
ILs and DESs for LPME of metals Herce-Sesa 2021 [62]
Task-specific ILs in sample preparation Llaver et al. 2022 [63]
ILs in extraction of pesticides in foods Delińska et al. 2021 [64]
ILs in food analysis Fiorentini et al. 2022 [65]
ILs and magnetic ILs (MILs) in microextractions Llaver et al. 2021 [66]
MILs in sample preparations Chatzimitakos et al. 2021 [67]
MILs synthesis, microextractions Alves et al. 2022 [68]
MILs in analytical microextractions González-Martín et al. 2022 [69]
Magnetic DES (MDES) formation and properties Shi et al. 2022 [70]
MDES fundamentals and applications Makoś-Chełstowska et al. 2022 [71]
MDESs in microextraction techniques Aguirre, Canals 2022 [72]

LPME modes
The term LPME is sometimes misused to refer to only one of the LPME modes. As the various modes of 
LPME have developed, LPME nomenclature has been refined, so that LPME is now a general term which 
refers to all of the modes using solvent microextraction. Each mode is given a unique name, with prefixes or 
a suffix to indicate the specific modification of the principle mode. For examples, dispersive liquid-liquid 
microextraction (DLLME) utilizing vortex agitation as an aid for dispersion is abbreviated as vortex assisted 
(VA)-DLLME. This DLLME modification is sometimes referred to in the literature as VALLME. This will not 
be used here so that the nomenclature will be consistent and discriptive. A more complex, but under-
standable mnemonic for DLLME, using a DES, which is solidified in ice-water [solidified floating organic 
droplet (SFO)], after ultrasonic aided dispersion extraction would then be listed as DES-UA-DLLME-SFO. 
The principle LPME modes, prefixes and suffix are listed in the abbreviations section. A number of excellent 
LPME reviews are available, covering the various LPME modes, their theory, and thousands of applications. 
A section of some useful reviews is included in Table 3 [5, 14, 73–85].

Table 3. Key reviews for LPME modes and theory

Review subject Author(s) Year References

Liquid-liquid liquid microextraction (LLLME), theory Ma, Cantwell 1999 [73]
Solvent microextraction (SME) text, modes, applications, theory Ramos 2010 [74]
Single drop microextraction (SDME), theory, applications, trends Jeannot et al. 2010 [75]
SME [liquid phase microextraction (LPME)], theory, applications Kokosa 2015 [76]
LPME principles and configurations Yamini et al. 2018 [77]
LPME review of reviews Rutkowska et al. 2019 [78]
Green miniaturized technologies in analytical chemistry Agrawal et al. 2021 [79]
Overview of LPME modes and applications Câmara et al. 2022 [80]
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Review subject Author(s) Year References

Green microextraction methods and applications Kokosa, Przyjazny 2022 [5]
LPME for polycyclic aromatic hydrocarbons (PAHs) analyses Jalili et al. 2020 [81]
Microextractions of heavy metals Song, Huang 2022 [82]
Green principles for green solvents Nithya, Sathish 2023 [83]
Principles for green LPME methods Kokosa 2023 [14]
LPME for improving greenness of standard analytical methods Tintrop et al. 2023 [84]
LPME method greenness comparisons, 2019−2023 Esteve-Turrillas et al. 2024 [85]

In the following sections, the more commonly used LPME modes used for food product analyses will be 
briefly described. Reviews covering the use of LPME for sample preparations for food analyses are listed in 
Table 4 [2, 86–104]. These reviews cover a wide range of food analyses, including multiple classes of 
pesticides, polycyclic aromatic hydrocarbons (PAHs), mycotoxins, dairy products and toxic metals analyses, 
as well as analyses for beneficial materials, such as essential oils.

Table 4. LPME sample preparations for analysis of food-based products: reviews

Review subject Author(s) Year References

LPME, mycotoxins in food, SDME, HF-LPME, DLLME Alsharif et al. 2015 [86]
HF-LPME, DLLME in analytical toxicology Sharifi et al. 2016 [87]
DI-, HS-SDME, DLLME, HF-LPME, sample preparations, food Demirhan et al. 2017 [88]
DI-, HS-SDME, DLLME, analysis of plant and herbal samples Diuzheva et al. 2020 [89]
DI-, HS-SDME, DLLME, HF-LPME, pesticide residue, food Eticha 2020 [90]
SDME, HF-LPME, DLLME, endocrine disruptives, food Chormey et al. 2020 [91]
SDME, HF-LPME, DLLME, antibiotics in foodstuff Khatibi et al. 2022 [92]
SDME, HF-LPME-DLLME, pesticides in food Jagirani et al. 2022 [93]
DI-, HS-SDME, HF-LPME, EME, DLLME, bio-food analyses Kokosa 2021 [2]
SDME, HF-LPME, DLLME pesticides, environmental, food Jagirani et al. 2022 [94]
SDME, HF-LPME, SBME, DLLME, µ-QuEChERSg, histamine/food Jayasinghe 2022 [95]
SDME, HF-LPME, DLLME, µ-QuEChERS, green preparations Câmara et al. 2022 [96]
SDME, HF-LPME, DLLME, microextractions of cosmetic products Schettino et al. 2022 [97]
SDME, HF-LPME, EME, DLLME, bio-actives in foods Pereira et al. 2022 [98]
QuEChERS/DLLME, DLLME, fruit, vegetables safety Berenguer et al. 2023 [99]
DLLME, green assessments of methods for antibiotic residues in food Vokh, Tobiszewski 2023 [100]
SDME, HF-LPME, DLLME, dairy products Pourali et al. 2023 [101]
EME, DLLME contaminants in plastic, paper food contact materials Chen et al. 2023 [102]
DES, IL based DLLME for analysis of essential oils Zhao et al. 2023 [103]
DLLME, acrylamide in foods Sabastià et al. 2023 [104]
LPME: liquid phase microextraction; SDME: single drop microextraction; HF-LPME: hollow fiber liquid phase microextraction; 
DLLME: dispersive liquid-liquid microextraction; DI: direct immersion; HS-SDME: headspace SDME; EME: electromembrane 
extraction; SBME: solvent bar microextraction; µ-QuEChERS: micro-quick, easy, cheap, effective, rugged, and safe; DES: deep 
eutectic solvent; IL: ionic liquid

Single drop microextraction (SDME) modes
SDME was the first LPME technique developed and has two principle modes: (1) direct immersion (DI)-
SDME (often just referred to as SDME) and (2) headspace (HS)-SDME. Less widely used techniques, 
including directly-suspended microextraction (DSME), liquid-liquid liquid microextraction (LLLME) and 
continuous flow (CF)-SDME, have also been used successfully in food preparations. Representative 
examples of these techniques are also included in Table 5 [105–123].
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Table 5. SDME reviews and application papers

SDME Subject Author(s) Year References

DI-, HS-SDME trends Kokosa 2015 [105]
DI-, HS-SDME Tang et al. 2018 [106]
HS-SDME Mogaddam et al. 2019 [107]
DI-SDME for environmental samples Delove Tegladza et al. 2020 [108]
DI-, HS-SDME Jain, Verma 2020 [109]

SDME modes, reviews

SDME overview of reviews Dmitrienko et al. 2021 [110]
DI-SDME, GC-MS multiclass pesticides in fruit Pano-Farias et al. 2017 [111]
MIL-DSDME, voltametric determination of ascorbic acid Jahromi et al. 2017 [112]
LLLME, UHPLC-MS/MS, patulin in apple joice Li et al. 2018 [113]
DI-SDME, GC/ECD acrylamide in food Saraji, Javadan 2019 [114]
MIL-DI-SDME HPLC/UV, 96-well device, pesticides Mafra et al. 2019 [115]

DI-SDME mode food 
applications

CF-DI-SDME, EDX, Cr, Mn, Ni in vegetable oils Ferreiro et al. 2023 [116]
Microwave distillation, HS-SDME, GC-MS, spices Gholivand et al. 2013 [117]
HS-SDME, GC-MS, 2-phenoxyethanol anesthetic in fish Abreu et al. 2019 [118]
DES-HS-SDME, GC-MS, terpenes in spices Triaux et al. 2020 [119]
DES solvents in HS-SDME GC-FID, pesticides Abolghasemi et al. 2020 [120]
DES solvent HS-SDME GC-MS, PAHs in water Mehravar et al. 2020 [121]
HS-SDME, LLME, Vis, ammonia in foods Jain et al. 2021 [122]

HS-SDME mode food 
applications

CF-HS-SDME, GC-MS, 4-methylimidazole in foods Rafiei Jam et al. 2022 [123]
SDME: single drop microextraction; DI: direct immersion; HS: headspace; MIL: magnetic ionic liquid; GC-MS: gas 
chromatography-mass spectrometry; LLLME: liquid-liquid liquid microextraction; UHPLC-MS/MS: ultra-high performance liquid 
chromatography-tandem mass spectrometry; ECD: electron capture detector; UV: ultraviolet; CF: continuous flow; FID: flame 
ionization detector; DES: deep eutectic solvent; EDX: energy dispersive X-ray spectroscopy; PAHs: polycyclic aromatic 
hydrocarbons; Vis: visible
Note. Adapted from “Green microextraction methodologies for sample preparations” by Kokosa JM, Przyjazny A. Green Anal 
Chem. 2022;3:100023 (https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub). CC BY 4.0 Deed.

DI-SDME

DI-SDME, in its simplest format, involves the immersion of a drop of solvent at the tip of a syringe, into a 
water sample, withdrawal into the syringe and analysis by GC, GC-MS atomic absorption spectroscopy 
(AAS), or HPLC. The theoretical concentrating, or EF can range from 10 to 1,000 SDME, like all LLE 
extractions, is an equilibrium process, with actual analyte extraction amounts ranging from 10% to 100%, 
though it is consistent when all extraction parameters are consistent. It is also possible, however, in some 
cases to achieve nearly 100% recovery, when a complexing, or derivatizing agent or acid/base conversion 
reaction is used to force the equilibrium towards the extraction solvent. Typical sample sizes range from 
0.5–10 mL. Typical solvent volumes range from 0.5–10 µL. Extraction times vary from 5 min to 90 min, 
though typical extraction times are about 15 min. Reverse DI-SDME, where the sample is an oil and the 
extraction solvent is aqueous or very polar solvent (ionic DES, IL) is also possible. DI-SDME suffers from 
drop instability, as well solvent water solubility or evaporation, and the limited solvent volume possible. 
These problems have been addressed, in part, by using magnetic solvents and the simple directly 
suspended droplet microextraction (DSDME) and LLLME methods. Nevertheless, this is an important 
sample preparation technique and has been found useful for food analyses [105–110].

DSDME

DSDME is a technique that eliminates the syringe during the extraction process. In this process, a few 
microtiters low density solvent is added to the vortex of a stirring aqueous sample. After extraction, the 
solvent is removed with a microsyringe and analyzed by GC. Particulates can be a problem with this 
technique, so filtration of the sample is usually necessary. Since larger volumes of solvent can be used in 
this extraction, compared to syringe DI-SDME, recoveries can also be enhanced, without worry about drop 
loss [105, 106, 109].

https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
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LLLME

This technique extends DSDME by using a syringe to place a drop of final aqueous extractant into the 
organic drop in the vortex, to back extract polor or ionized analytes from the sample. The aqueous drop is 
then usually subjected to HPLC, ion chromatography (IC), or AAS determination, though UV-visible (Vis) 
can be used when a derivatizing or complexing agent is present in the extraction drop [105, 106, 113].

DI-SDME, DSDME and LLLME mode applications

The use of more environmentally favorable solvents, such as DESs and ILs, NADESs, bio-derived solvents, 
and supramolecular solvents (SUPRASs) have rapidly displaced traditional solvents, such as CHCl3, hexane, 
and toluene. MDESs and MILs can also be successfully used with 96 well autosamplers, replacing the 
syringe with a neodymium magnet [115]. DI- and HS-SDME can also be completely automated using 
commercial XYZ-autosamplers, as well as 96 well devices [105, 106, 118]. SDME extracts are also 
compatible with a wide range of analytical instruments and detectors, depending on the solvent used. 
Importantly, due to the EFs and cleanups obtained in LPME, these techniques include widely available and 
relatively inexpensive, and low maintenance instrumentation, such as UV-Vis spectroscopy, GC with flame 
ionization detector (FID), HPLC, with diode array detector (DAD), and flame AAS (FAAS).

While most DI-SDME applications involve the analysis of single, or related families of food 
contaminants, DI-SDME can also be useful for multiclass residue analyses as well, while obtaining EFs and 
matrix reduction levels that allow final analytical determinations with standard benchtop GC-MS and 
HPLC/UV instruments. An example by Pano-Farias et al. [111], involved the extraction of 17 pesticides from 
a 3 g samples of mango fruit. The sample was first diluted with 9 mL of 10% ACN, the addition of 10% salt, 
and extracted with 2 µL of toluene for 30 min. The procedure was optimized and in-house validated with 
limits of quantification (LOQs) ranging from 6–124 µg kg-1, recoveries ranging from 69–119%, and linear 
ranges from 5–1,000 µg kg-1. A fourth example by Mafra et al. [115] involved the use of a MIL 
[(trihexyl(tetradecyl)phosphonium chloride: MnCl2 tetrahydrate, 5.5 mg] on the base of a neodymium 
magnet attached to the pin of a 96 well sampler, for extraction of 1.5 mL of pesticides, bisphenol A and 
benzophenone from environmental waters. After a 90 min extraction, the MIL was back extracted into ACN 
and the extract analyzed by HPLC/UV. Limits of detection (LODs) ranged from 1.5–3 µg L-1.

An illustration of the utility of DSDME is a unique and simple extraction and analysis of ascorbic acid in 
aqueous solutions developed by Jahromi et al. [112]. A solution of MIL (Aliquat iodide:MnCl4

2-, 2:1, 8 mg) 
and ethanol (1 µL) was placed in the vortex of a stirring sample (diluted, filtered orange juice) for 
extraction of ascorbic acid for 15 min. A neodymium magnet was used to hold the MIL to the wall of the 
sample tube and the aqueous sample decanted. The MIL was dissolved in 3 µL of ethanol and transferred to 
the surface of a TiO2 coated electrode. Ascorbic acid was then determined by differential pulse 
voltammetry. The LOD for the procedure was 0.43 nmol L-1 (0.076 µg L-1), and the EF was 111. A second 
example by Li et al. [113] involved LLLME for determination of patulin (a toxic fungus metabolite) in apple 
juice. This involved the addition of 1.5 mL of ethyl acetate to the vortex of 5 mL of the stirring sample, and 
then back extraction into 5 µL of water for 20 min. The procedure removed all sugar matrix interference 
from the extract, which was analyzed by UHPLC-MS/MS, with a LOQ of 2 µg L-1, and a linear range from 
2−2,000 µg kg-1.

HS-SDME

HS-SDME involves exposing the solvent drop in the HS of a liquid (aqueous or oil) or solid. This technique is 
much less susceptible to drop instability and has been used successfully for analysis of volatiles in spices, 
wine and other food products [118–123]. Typically, sample temperatures range from 25–40℃, to avoid 
evaporation of the solvents, such as hexane. Less volatile solvents, such as DESs, NADESs, and ILs can be 
used at higher temperatures. Sample sizes range from 10 mg–10 g for solid samples and and 10 µL–10 mL 
for liquid samples. This technique can compete quite effectively with purge and trap for volatiles analysis, 
and the extraction can be fully automated as well and is comparatively economical [108].
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In an example by Abreu et al. [118], HS-SDME analysis for 2-phenoxyethanol (an anesthetic) was 
performed on 2 g tilapia homogenate using 1.8 µL of octane for 30 min at 35℃. The octane extract (0.5 µL) 
was analyzed by GC-MS. The LOQ was 0.56 mg L-1 of sample. The results were comparable to those obtained 
by SPME, but at requiring less extraction time and cost, with no carryover. In a second example, Triaux et al. 
[119], analyzed 6 spices for 29 terpenes. The powdered spices (50 mg were extracted for 90 min with 1.5 
µL of DES solvent (tetrabutyl bromide:dodecanol, 1:2). The DES extract was analyzed by GC-MS, using a DB-
WAX column. LOQs ranged from 0.47 µg/g (borneol) to 86 µg/g (α-farnecene), with most terpenes at less 
than 2 µg/g. In a third example by Abolghasemi et al. [120], HS-SDME was used to analyze the amounts of 7 
triazole fungicides in fruit juices and vegetables. Prepared aqueous samles (10 mL containing 10% salt 
were extracted for 30 min at 85℃ with 2 µL of DES (choline chloride:4-chlorophenol, 1:2) and the extract 
analyzed by GC-FID. The LODs for the fungisides ranged from 0.82−1.0 µg L-1.

Membrane based LPME
Reviews and applications for hollow fiber liquid phase microextraction (HF-LPME), EME and parallel 
artificial liquid membrane extraction (PALME) are listed in Table 6 [124–152]. Membrane based LPME 
techniques, including HF-LPME were developed , in part, to overcome the drop instability of DI-SDME, as 
well as for applicability to biological fluids and environmental samples, which contain proteinaceous and 
particulate matrices [131, 132]. Membrane LPME uses either a so-called hollow fiber-actually a tube 
constructed of a porous polymer, such as polypropylene (HF-LPME), or a flat sheet of porous polymer 
membrane. The membrane usually contains a water immiscible solvent (such as 1-octanol or dihexyl ether) 
separating the aqueous sample, from the extraction solvent in the lumen of the fiber. When the extraction 
solvent and solvent in the membrane [a supported liquid membrane (SLM)] are the same. This 2-phase 
system mode is used to extract relatively non-polar analytes from the sample. When the solvent in the 
lumen is aqueous (acidic or basic), the resulting 3-phase system is used to extract ionized analytes from the 
sample. The membrane also protects the extraction solvent from particulates, salt or proteinaceous matrix 
components in the sample. A flat sheet or envelope can also be used for the extraction to separate sample 
and extraction solvent. This has been used with 96 well and microfluidic systems. When used with a 96 well 
system, the technique is referred to as PALME, which allows multiple extractions to be carried out 
simultaneously [129]. Migration through the membrane can be slow (45−90 min). The extraction of three-
phase HF-LPME of ionized analytes can be increasesd, with decreased extraction times, using electrokinetic 
migration, referred to as electromembrane extraction (EME) [132]. This technique can also be used in the 
PALME mode [parallel EME (pEME)]. As with SDME, EFs for membrane techniques can range from 10 to 
1,000. Given the slow migration through the membrane, and long equilibrium times, typical EFs for most 
membrane-based extractions are arount 25–50. However, these EFs generally allow the use of less sensitive 
instrumentation for analysis than QuEChERS or macro extraction techniques [124].

Table 6. Membrane-based LPME: HF-LPME, EME, PALME review and application papers

Membrane LPME Subject Author(s) Year References

Efficiencies of HF-LPME Alsharif et al. 2017 [124]
HF-LPME, SBME and EME for pesticide analyses Prosen 2019 [125]
Microextraction with supported membranes Pedersen-Bjergaard 2020 [126]
HF-LPME for analysis of metal ions and pharmaceuticals Khan et al. 2020 [127]
HF-LPME with polymer inclusion membrane (PIM) Olasupo, Suah 2022 [128]
3-phase HF-LPME and PALME Gjelstad 2019 [129]
Mass transfer in EME Huang et al. 2016 [130]
EME Huang et al. 2017 [131]
EME overview Druoin et al. 2019 [132]
Conductive vial EME/PALME, drugs Skaalvik et al. 2021 [133]
Environmental applications of EME Shi et al. 2023 [134]
Chemically modified EME membranes Li et al. 2022 [135]
EME, the liquid membrane, review Hansen et al. 2022 [136]

Membrane-based 
LPME reviews
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Membrane LPME Subject Author(s) Year References

EME, fundamentals and applications, review Martins et al. 2023 [137]
HF-LPME, GC-MS, OP pesticides, fish Sun et al. 2011 [138]
UAE, HF-LPME, GC/NPD, OP pesticides, baby foods González-Curbelo et al. 2013 [139]
Automated 3-Phase HF-LPME, HPLC/UV, herbicides, 
water

Tajik et al. 2015 [140]

DES-HF-LPME, GC-MS, phenolics from beverage plastics Afshar Mogaddam et al. 2020 [141]
NADES, SLM, PALME, LC-MS/MS, OP nerve agents, 
urine

Bauchouareb et al. 2022 [142]

HF-LPME, GC-MS, organo-tin compounds in fruit juice González-Domínguez, 
Sayago

2023 [143]

HF-LPME, HPLC, herbicides in soil Moret et al. 2023 [144]
HF-LPME, HPLC-FLD, fluoroquinolones, chicken liver Moema et al. 2023 [145]
HF-LPME, PALME, GC-MS, aromatic amines, urine Lorenzo-Parodi et al. 2023 [146]

HF-LPME food, 
environmental, 
forensics applications

NADES-HD-LPME, HPLC/UV, triazines, water, urine Díaz-Álvarez et al. 2023 [147]
EME, HPLC/UV, caffein, gallic acid, coffee Khajeh et al. 2017 [148]
EME, HPLC/UV, melamine, infant formulae Rezaee et al. 2022 [149]
MAE, EME/PALME, IC, perchlorate in seafood Nsubuga et al. 2016 [150]
ENE-AAS determination of Cr(VI) in food samples Goodarzi et al. 2022 [151]

EME food, forensics 
applications

Chitosan SLM/EME/PALME/HPLC/UV, coffee, tea Román-Hidalgo et al. 2023 [152]
LPME: liquid phase microextraction; HF-LPME: hollow fiber LPME; EME: electromembrane extraction; PALME: parallel artificial 
liquid membrane extraction; SBME: solvent bar microextraction; GC: gas chromatography; MS: mass spectrometry; OP: 
organophosphorus; UAE: ultrasound-assisted extraction; NPD: nitrogen/phosphorus detector; HPLC: high performance liquid 
chromatography; UV: ultraviolet; DES: deep eutectic solvent; NADES: natural deep eutectic solvent; SLM: supported liquid 
membrane; MS/MS: tandem mass spectrometry; FLD: fluorescence detection; UV: ultraviolet; MAE: microwave aided extraction; 
IC: ion chromatography; UHPLC: ultra-high performance liquid chromatography

HF-LPME applications

In HF-LPME extractions, the extraction solvent is contained within the lumen of a so-called porous hollow 
fiber, usually polypropylene, though other polymeric materials can be used. The fiber is prepared to length, 
as needed, and typically contains 5–50 µL of extraction solvent. This technique has been used primarily for 
extraction of polar or ionizable analytes from aqueous solutions. Two-phase HF-LPME is also an 
equilibrium process while three phase can result in nearly exhaustive extraction given long enough time, 
and the use of a complexing, derivatizing or pH sample, receptor solution differential to effectively make the 
extraction irreversible. The major deficiencies of the technique are long extraction times (45–99 minutes) 
and pore plugging of the fiber. The technique can also be used with a flat sheet of membrane, separating 
sample and receiving solution, discussed below [124–129].

An example by Sun et al. [138] illustrates the applicability of HF-LPME for determination of 
organophosphorus pesticides in fish tissue. Samples were first extracted with acetone, and centrifuged. The 
acetone extracts were rotory evaporated, and redissolved in 10 mL 5% methanol/water. After filtration, a 
2-phase HF-LPME extraction with 30 µL of o-xylene for 30 min was followed by GC-MS analysis. LODs 
ranged from 2.1–4.5 µg kg-1 for 8 pesticides. A second example by Afshar Moggadam et al. [141] illustrates 
the ability of HF-LPME to concentrate trace impurities, using a solvent stir bar HF-LPME mode [referred to 
as solvent bar microextraction (SBME)], combined with simultaneous derivatization. The procedure 
involved using a fiber containing a DES extraction solvent (8-hydroxyquinoline:pivalic acid), chloroacetyl 
chloride derivatizing agent and an iron wire inserted into the fiber, with both ends heat sealed. The solvent 
bar was placed in the sample and stirred for 5 min. The derivatized extracts were analyzed by GC-MS and 
the procedure was validated using FDA recommendations for the determination of 12 phenols in fruit juices 
packaged in plastic. The technique had LOQs ranging from 29–76 ng L-1 and EFs of more than 1,000. In a 
third example by Gonzalez-Dominguez et al. [143] a simultaneous derivatization-extraction of organotin 
compounds in a solution of 1 mL fruit juices, 4 mL of buffer solution and sodium tetraethyl borate, and a 
10 min 2-phase extraction with hexane contained in the lumen of the fiber. The extract was analyzed by GC-
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MS, with LOQs of 0.8–1.8 µg L-1. In a fourth example, Lorenzo-Parodi et al. [146] compared 3-phase HF-
LPME and 3-phase PALME for the determination of aromatic amines in the urine of smokers. PALME was 
determined to be faster, less labor intensive, capable of automation and required much smaller volumes of 
sample. GC-MS analyses resulted in LODs ranging from 45–75 ng L-1 for 13 aromatic amines.

EME applications

EME was originally conducted with a three phase HF-LPME system, with electrodes placed inside of the 
fiber lumen and the sample. A potential placed on the electrodes enabled the extraction of ionized drugs 
from biological fluids in much shorter timeframes than HF-LPME alone [130–137]. Both HF-LPME and EME 
have more recently have transposed to a 96 well system, using the PALME methodology, will be discussed 
in section CF, microfluidics and 96 well LPME.

Two examples illustrate the potential of EME for the analysis of foods, Rezaee et al. [149] extracted 
melamine adulterant in infant formulae using EME, with a fiber reinforced with nano graphine oxide (NGO). 
The NGO acted as an adsorbent interface, enhancing the electrical conductivity and migration of analyte 
into the acceptor solution, thus enhancing recoveries of polar analytes. The fiber solvent (SLM) used was 1-
octanol, the sample solution was adjusted to pH 3 and the acceptor solution (20 µL) pH 2 with a 70 V 
potential for 10 min, followed by HPLC/UV. An LOQ of 0.1 µg kg-1 for infant formula was obtained. In the 
second example by Nsubuga et al. [150] seafood samples were microwave digested and the solutions 
subjected to pEME. pEME was performed in polypropylene envelopes containing an electrode, 120 µL of 0.1 
mol L-1 NAOH and 1-hexanol as the SLM solvent. EME was conducted with 25 mL of sample solution (pH 6) 
at 12 V for 10 min. Following EME, the extract was analyzed with IC for an LOD of 40 µg kg-1.

DLLME
DLLME, in its several variations, is the most widely used LPME mode, because extraction occurs almost 
instantaneously or within the 2–5 min needed to form a dispersion of water insoluble solvent in an aqueous 
sample. DLLME reviews and food preparation applications are listed in Table 7 [153–187]. The EFs are 
typically in the range of 50−150, and recoveries 90–119%, and, along with the short extraction times, 
account for the popularity of this LPME technique [154–157]. These results are due to the huge surface area 
of the extraction solvent formed by dispersion formation [155, 156]. Dispersion can be achieved several 
ways, and the technique used depends on the nature of the sample, to some extent, but also on the 
preference of the analyst [165]. These techniques are illustrated below. DLLME has been used successfully, 
alone, in food analyses, or as a further cleanup-concentration technique for SPE and QuEChERS extractions. 
A downside to the technique is the tendency of experimentalists to emphasize minimizing LOD and LOQ by 
using relatively large volumes of sample and extraction solvent. Greener DLLME sample preparations, when 
possible, should limit sample sizes to 5 mL or less and solvent sizes 400 µL or less (preferably less than 50 
µL) to provide an analyte concentration allowing for less sensitive analytical instrumentation and less 
hazardous waste production [157]. In addition, DLLME, as with all extraction techniques, requires a highly 
qualified analyst. Each extraction method must be rigorously developed and optimized, even when based 
on a published method. DLLME can in some cases be automated, but this is not commonly employed [185]. 
After dispersion formation, the dispersion must be broken and the sample and extraction phases separated. 
This can be accomplished by centrifugation, the addition of water soluble solvent or salt, with the use of 
temperature control, or the use of a magnetic solvent (MDES, MIL), as discussed below [66, 72, 159].

Table 7. DLLME and variants, reviews and food application papers

DLLME Subject Author(s) Year References

DLLME classification and terminology Šandrejová et al. 2016 [153]
DLLME with derivatization Sajid 2018 [154]
DLLME applications Teshale, Taye 2019 [155]
DLLME, overview of reviews Dmitrienko et al. 2020 [156]
DLLME, modes and solvents Kokosa 2020 [157]

DLLME reviews
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DLLME Subject Author(s) Year References

Effervescence-assisted (EA)-DLLME Lasarte-
Aragonés et al.

2020 [158]

Magnetic DESs in microextraction techniques Grau et al. 2022 [159]
Coacervation, DLLME strategies in hydrophilic media Pacheco-

Fernández et al.
2021 [160]

DLLME, HLLME with DESs, review Ramezani et al. 2022 [161]
Challenges in DLLME: advanced strategies Faraji 2024 [162]
In situ dispersion formation/decomposition in situ-DLLME Ahmadi et al. 2023 [163]
SS-DLLME Ullah, Tuzen 2023 [164]
Dispersion techniques for DLLME El-Deen et al. 2023 [165]
SA-DLLME, HPLC/DAD, aromatic amines, barbequed meat Barzegar et al. 2019 [166]
SA-DLLME-SFOc, GC/ECD, OCPs, cocoa Mardani et al. 2021 [167]

DLLME food applications: 
surfactant assisted (SA)-
DLLME

SA-DLLME, GC-FID, chlorpyrifos, green tea, GC-FID Tian et al. 2022 [168]
MDES-VA-DLLME, QTOF-MS, PFAS, edible oils Fan et al. 2021 [169]
VA-DLLME with DES for sulfonamides in water Mostafa et al. 2022 [170]
DES-VA-DLLME-SFO, Vis, Fe, food, water Zhang et al. 2022 [171]
High density DES-VA-DLLME, HPLC/UV, herbicides, milk Feng et al. 2022 [172]
MDES-VA-DLLME, HPLC/DAD, fungicides, juice, vinegar Wang et al. 2023 [173]

DLLME food applications: 
vortex assisted (VA)-DLLME

DES, VA-DLLME, HPLC/DAD, flavonoids, vinegar Bai et al. 2023 [174]
UA-DLLME, LC-MS, chloramphenicol, honey Campone et al. 2019 [175]
DES-UA-DLLME-SFO, FAAS, NI, Co, food, water Tavakoli et al. 2021 [176]
DES-UA-DLLME-SFO, HPLC/DAD, antibiotics, food Shirani et al. 2022 [177]

DLLME food applications: 
ultrasound-assisted (UA)-
DLLME

UA-DLLME-SFO of propineb in water, food, water Elik, Altunay 2023 [178]
DLLME food applications: 
air-assisted (AA)-DLLME 

MDES-AA-DLLME, UV, melamine, milk products Elik et al. 2023 [179]

DES-SS-DLLME, GC-FID, phenolic antioxidants, oils Mogaddam et al. 2021 [180]
Octanoic acid, SS-DLLME, flow-Vis, Co, food Santos et al. 2022 [181]

DLLME food applications: 
SS-DLLME

Salicylic acid, SS-DLLME, HPLC/UV, insecticides, honey Wang et al. 2023 [182]
In situ-DLLME, pH induced, antibiotics in water Ma, Row 2021 [183]
MIL-in situ-DLLME, HPLC/UV, sulfonamides in milk Yao, Du 2020 [184]
SUPRAS-in situ-DLLME, HPLC-FLD, PAHs, tea Timofeeva et al. 2021 [185]
DES-in situ-DLLME-SFO, LC-MS, antibiotic, honey Nemati et al. 2021 [186]

DLLME food applications: in 
situ-DLLME

MDES-in situ-DLLME, HPLC/UV, triazine herbicides, rice Piao et al. 2021 [187]
DLLME: dispersive liquid-liquid microextraction; DESs: deep eutectic solvents; HLLME: homogeneous liquid-liquid 
microextraction; DAD: diode array detector; SFO: solidified floating organic droplet; OCPs: organochlorine pesticides; GC: gas 
chromatography; ECD: electron capture detector; FID: flame ionization detector; QTOF: quadrupole time of flight; PFAS: 
polyfluorinated aliphatic solvents; Vis: visible; UV: ultraviolet; FAAS: flame atomic absorption spectroscopy; MIL: magnetic ionic 
liquid; SUPRAS: supramolecular solvent; FLD: fluorescence detector; PAHs: polycyclic aromatic hydrocarbons; MDES: 
magnetic deep eutectic solvent
Note. Adapted from “Green microextraction methodologies for sample preparations” by Kokosa JM, Przyjazny A. Green Anal 
Chem. 2022;3:100023 (https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub). CC BY 4.0 Deed.

Solvent assisted DLLME applications

Solvent assisted (SA)-DLLME involves dissolving a water-insoluble extraction solvent (such as C2Cl4, 1-
octanol, DES, MDES, NDES, IL, or MIL) in a water-soluble solvent (ACN, ethanol, methanol, or acetone) and 
injecting the solution rapidly into the aqueous sample, to obtain a dispersion [72, 156, 157]. The proper 
volumes of sample, extraction solvent and dispersion solvent must be obtained by experiment. Published 
data should be used as guides only. The dispersion is broken up by centrifugation, salt or dispersion solvent 
addition. Chlorinated solvents are sometimes still used, since their high density allows easy removal from 
the bottom of the centrifuge tube. Low density solvent may require using a thin neck tube or removing the 
water with a long needle syringe first [157, 165]. High melting liquids (such as undecanol, some DESs, and 
ILs) can be solidified and physically removed to a sample vial (DLLME-SFO) [157]. MDESs and MILs can be 

https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2772577422000222?via%3Dihub
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retrieved, sometimes without centrifugation, using a neodymium magnet, though this must be followed up 
by back extraction with 10–20 µL of solvent compatible with the analytical instrument. NADES and some 
DESs can be directly used in GC. Ionic DESs and ILs are normally chromatographed with HPLC [155–157].

In a paper by Barzegar et al. [166] barbequed meat was analyzed for aromatic amines. One gram of 
homogenized sample was mixed with KOH, ACN and ethanol and microwave extracted. The resulting 
solution was centrifuged, the pH adjusted to 3 and Carrez I and II solutions (potassium ferricyanide, ZnSO4) 
added to clarify the proteins and derivatize amines in the solution. After changing the pH to 11 and 
centrifugation, the upper liquid phase was used for DLLME. A solution of 100 µL of 1-octanol in 600 µL 
ethanol was injected into the prepared solution and, after centrifugation, 20 µL of the upper layer of 
1octanol analyzed by HPLC/UV. LODs ranged between 0.25–0.71 µg kg-1 for 4 aromatic amines. In a second 
example, Mardani et al. [167] analyzed cocoa powder for organochlorine residues using a DLLME-SFO 
preparation procedure. Cocoa powder (1 g) was mixed with 4 mL of 5% NaCl solution, and 80 µL 1-decanol 
in 1 mL ethanol injected after raising the temperature to 80℃. After refrigerated centrifugation, the 
solidified 1-decanol extract was analyzed with GC/ECD. LOQs ranged from 0.091–0.175 µg kg-1 for 5 
organochlorine pesticides (OCPs), including Aldrin.

VA-DLLME applications

VA-DLLME avoids the need for a dispersion solvent, which, when used in excess, can decrease the yield of 
extraction solvent recovery. Typically, the extraction solvent is rapidly injected by syringe into the sample, 
which is then immediately vortexed for 30–90 s. Vortexing does not always yield a true dispersion, which 
should not immediately separate into separate layers. However, vortexing still results in significant 
extractions. The sample is retrieved as above [157].

Total iron in water and food samples was determined Zhang et al. [171] using reductive-derivatization, 
followed by VA-DLLME-SFO. Solutions containing Fe (II) and Fe (III) were mixed with a DES (thymol:lauric 
acid) and a complexing agent (1,10-phenanthroline). The DES acted as both the extraction solvent and a 
reducing agent, converting Fe (III) to Fe (II), which then complexed with the 1,10-phenantroline. After VA-
DLLME and cooling, the solidified DES extraction solvent was analyzed with VIS detection. The LOQ for total 
iron was 1.5 µg L-1. Wang et al. [173] analyzed strobilurin fungicides in water, juice and vinegar using MIL-
VA-DLLME. The MDES was prepared from methyltrioctylammonium chloride, ferric chloride and heptanoic 
acid. Addition of 200 µL of the MDES to 5 mL of sample and vortxing for 3 min. was followed by addition of 
90 mg of carbonyl iron powder (CIP) to aid in separating the MDES. The MDS, was then filtered to remove 
the coagulated CIP-ferric chloride, and the DES extract analyzed by HPLC/UV. The resulting LODs for 3 
fungicides ranged from 1–2 µg L-1.

UA-DLLME applications

UA-DLLME is comparable to VA-DLLME, but usually results in a more stable dispersion system. Ultrasound 
should be limited to as short a time as possible, to prevent analyte degradation and possible loss of more 
volatile analytes. Sample retrieval is the same as above [157].

An example of DES-UA-DLLME-SFO for the determination of nickel and cobalt in broccoli, spinach and 
environmental water samples was demonstrated by Tavakoli et al. [176]. Food samples were digested with 
HNO3/H2O2 and 150 µL DES (d,l-menthol:decanoic acid) added to 50 mL of prepared sample, 2 mL pH 6 
buffer and 100 µL of complexing agent [2-(5-bromo-2-pyridoazol)-5-(diethylamino) phenol] dissolved in 
ethanol. After ultrasonic treatment for 2 min., the sample was centrifuged and cooled in an ice bath. The 
solidified DES was removed, allowed to melt and diluted to 1 mL with ethanol, and the extract analyzed by 
FAAS. LOQs were 1.1 µg L-1and 1.3 µg L-1, for Co and Ni, respectively and the EF was 50. A second example 
of UA-DES-DLLME-SFO was used by Elik and Altunay [178] for propineb fungicide in water and foods, 
including cereal based baby foods and tomato. The procedure involved the addition of 330 µL of DES (8-
hydroxyquinoline:pivalic acid) to a 5 mL sample solution (pH buffered to 4.6), 1.5 min sonication, 
centrifugation, solidifying the DES in an ice bath, diluting the solidified DES in 500 µL of ethanol and UV 
detection. The LOD was 6.1 µg L-1, and the EF was 93.
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Air-assisted DLLME applications

The term air-assisted (AA) is a misnomer, since dispersion is actually obtained by the shearing forces 
resulting from the rapid movement of sample and extraction solvent into and out of a syringe. The process 
works best with small volumes of sample, to ensure maximum sample-solvent interaction [157, 165].

Elik et al. [179] used a MDES-AA-DLLME procedure for the analysis of melamine in milk and milk 
products. Prepared solutions were extracted by drawing a solution of 260 µL magnetic DES [octanoic 
acid:Aliquat-336:Co (II), 3:2:1] and 125 µL acetone in and out of a the sample with a syringe 6 times. The 
MDES was separated from the sample solution with a neodymium magnet, the DES back extracted and the 
extract analyzed by UV-Vis. The LOQ was 0.9 µg L-1, with an EF of 144.

Switchable solvent DLLME applications

Switchable solvents (SSs) are simply water insoluble acids or bases which become soluble or insoluble, 
depending on the pH of the solution. As an example, sodium hexanoate added to an aqueous sample will 
becomes an insoluble dispersion when acid is added. Recovery is as above [157, 162].

A DES-SS-DLLME extraction was developed by Mogaddam et al. [180] for the extraction of phenolic 
antioxidants from edible oil samples. The antioxidants were first extracted from the 5 mL of oil at 80℃ with 
1.25 mL of 1.5 mol L-1 NaOH for 5 min and centrifuged, The extracted antioxidants were concentrated for 
analysis by dissolving DES (tetrabutylammonium chloride:hydroquinone) in the alkaline solution, followed 
by dispersion formation of the DES upon acidification. After centrifugation, the DES extract was analyzed by 
GC-FID. The LOQs ranged from 0.36−1.41 µg L-1 with EFs averaging 400. Wang et al. [182] developed a 
simple SS-DLLME for on-site sample preparation of benzoylurea insecticides in water and honey samples. 
The water and honey samples (5 mL honey diluted to 100 mL) were filtered to remove particulates, and 
15 mL added to a plugged 20 mL plastic syringe, along with 1.1 mL (100 mg mL-1) of salicylic acid solution. 
After addition of H2SO4 solution to acidify the sample, a salicylic acid dispersion formed. NaCl (0.5 mL, 20%) 
was added, the syringe plunger attached, the plug removed and replaced by a needle containing a porous 
fabric to retain the salicylic acid. The water was expelled from the syringe, which was then returned to the 
laboratory for analysis of the extract. After dissolving the salicylic acid in methanol, the solution was 
filtered and analyzed by HPLC/UV. The LODs for the insecticides were 1.5 µg L-1 for the water samples and 
30–90 µg kg-1 for the honey samples.

In situ dispersion formation DLLME applications

In situ-DLLME, also referred to as homogeneous liquid-liquid microextraction (HLLME) most commonly 
involves formation of a dispersion by the in situ formation of an insoluble extractant solvent, or by 
temperature control to form a SUPRAS [157, 160, 163].

Three example are discussed below.

Antibacterial sulfonamides were determined in milk with MIL-in situ-DLLME sample preparation in a 
paper by Yao and Du [184]. The technique involved adding a water soluble MIL (containing an organic free 
radical, 4-OH-Tempo) to milk samples which had been denatured and filtered. KPF6 was then added to the 
solution, resulting in the substitution of the chloride ion in the soluble IL with the PF6

-1 ion and formation of 
an emulsion, extracting the contaminants. The MIL was separated from the solution using a neodymium 
magnet, back extracted into methanol and HPLC/UV used for final analysis for 5 sulfonamides. LOQs ranged 
from 1.8–3 µg L-1, with EFs between 42–47. Timofeeva et al. [185] developed an automated system for the 
analysis of PAHs in tea infusion using SUPRAS-in situ-DLLME, based on a syringe pump system interfaced 
with HPLC/fluorescence detection (FLD). The procedure involved first: the formation of a SUPRAS emulsion 
by mixing hexanoic acid with NaOH in a 1:4 molar ratio. This was followed by addition of 1.2 mL of the 
emulsion to 3.8 mL of tea sample in the syringe, with stirring. Stirring was then stoped to allow separation 
of the phases. The upper phase (50 µL) was then transferred from the syinge directly to the HPLC for 
analysis. The syringe was automatically cleaned during the HPLC run for a another sample. The LODs for 
PAHs ranged from 0.02−0.04 µg L-1, and EFs ranged from 38−46. As a final DLLME example, Piao et al. [187] 
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developed a MDES-in situ-DLLME sample preparation for the analysis of triazine herbicides in rice. The 
procedure involved extraction of 1 g of powdered rice with 4 mL hexane and centrifugation. Addition of 250 
µL DES (ethylene glycol: tetrabutylammonium chloride), 40 mg iron chloride, and 90 mg of CIP to the 
hexane was followed by removal of the generated MIL/CIP. Separation of the MIL/CIP with a neodymium 
magnet extracted the herbicides from the hexane. The MIL/CIP was then back extracted with 5 mL of 
diethyl ether, the ether evaporated, the residue dissolved in 100 µL of ACN, and 20 µL of the extract 
analyzed by HPLC/UV. LOQs ranged from 5–10 µg kg-1.

CF, microfluidics and 96 well LPME
Due to the reduction in sample and extraction solvent sizes, LPME lends itself to CF, microfluidic and 96 
well techniques. However, very little research or application has been published related to food sample 
analyses using them. A list of relevant review and application papers are listed in Table 8 [188–201], as a 
guide to those wishing to explore this area. Also included is one application paper using microfluidic with 
EME extraction conditions. CF has been used for DI-SDME, HS-SDME, HF-LPME and microfluidic extractions 
[188–194]. Microfluidic techniques are most frequently used with membrane extraction (PALME, EME). 
MIL and MDES held to a neodymium rod allows multiple DI-SDME extractions with 96 well devices. 
Membrane PALME and pEME have been used with 96 well devices as well. PALME involves the use of a 96 
well system with a flat membrane to perform extractions, with two and three phase HF-LPME and EME 
emulations [188–194]. The 96 well plate uses orbital motion for mixing of up to 96 sample wells, therefore 
allowing multiple simultaneous extractions, and also using less sample than traditional HF-LPME and EME. 
Sample and extraction solvent volumes of 250 µL or less are commonly used. Disposable conductive 
chambers have also been used for the 96 well pEME applications, which eliminates disposal or cleaning of 
sample plastic or metal sample chambers. Since the sample and receiver chambers are similar in volumes, 
the EFs for these systems are close to 1. The advantage, however, is the increased sample throughput 
resulting from the simultaneous processing 30 or more samples, as well as the cleanup resulting from the 
use of a membrane system. microfluidic devices have been used most successfully for membrane 
extractions, similar to PALME, but under CF conditions. Microfluidics are still a developing area for LPME, 
and applications are essentially centered on biological fluids, as with PALME [192–194].

Table 8. CF, microfluidics and 96 well LPME reviews and key application papers

Recent LPME 
techniques

Subject Author(s) Year References

LPME and EME in microfluidic devices Ramos-Payán 2019 [188]
Flow based methods and applications in chemical analysis Tomofeeva et al. 2021 [189]
Nanofluidic devices for biological analyses Yamamoto et al. 2021 [190]
Conductive vial EME Schüller et al. 2023 [191]
Microfluidic devices in sample extraction overview Alidoust et al. 2021 [192]
Lab-on-a-chip systems in molecular diagnosis Cunha et al. 2022 [193]

Reviews

EME with microfluidic devices Hansen et al. 2022 [194]
MIL-DI-SDME with 96 well device Mafra et al. 2021 [195]
NADES-SLM-SDME, HF-LPME 96 well system Morelli et al. 2020 [196]
SLM-SDME, HF-LPME 96 well system Lopes et al. 2022 [197]
Automated DES-VA-DLLME, 96 well system Ju et al. 2023 [198]
3-Phase HF-LPME 96 well system, extraction time Schüller et al. 2022 [199]
Microfluidic, microextraction and analysis on a chip Santigosa-Marillo et al. 2023 [200]

Key application 
papers

EME, microfluidic system, derivatization, HPLC/UV, biogenic 
amines, food

Zarghgampour et al. 2018 [201]

LPME: liquid phase microextraction; EME: electromembrane extraction; MIL: magnetic ionic liquid; DI: direct immersion; SDME: 
single drop microextraction; NADES: natural deep eutectic solvent; SLM: supported liquid membrane; HF-LPME: hollow fiber 
liquid phase microextraction; DES: deep eutectic solvent; VA: vortex assisted; DLLME: dispersive liquid-liquid microextraction 
HPLC: high performance liquid chromatography; UV: ultraviolet
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LPME using 96 well sampler application

Morelli et al. [196] developed a method for the extraction and analysis of 11 contaminants of concern in 
environmental water, including pesticides and hormones. The sample preparation involved extraction with 
DES impregnated in the pores of 1 cm long hollow fibers, placed over the pins of a 96 well sampler. The 
authors refer to this as HF-microporous membrane liquid-liquid microextraction (HF-MMLLME). A less 
cumbersome and more descriptive name which will be used here is DES-SLMME (DES-SLM 
microextraction). In effect, this technique is actually a variation of SDME, with the solvent held in the pores 
of the fiber polymer, rather than at the tip of a syringe. The procedure involved immersion of the fiber in 
400 µL of DES (Thymol:Camphor, 1:1) for 10 min., immersion of the SLM into 1.5 mL of water sample for 
50 min, and desorption with 300 µL of acetone:methanol (3:1) and analysis of 20 µL of the extract with 
HPLV/UV. The LODs ranged from 0.3–6 µg L-1. The maximum EFs for this technique can be no higher than 5, 
due to the final ratio of sample and final desorption volumes, but the procedure allows automation of at 
least 30 samples simultaneously.

CF microfluidic EME application

An EME sample preparation for 5 biogenic amines in foods, using a CF microfluidic device, was developed 
by Zarhgampour et al. [201]. Samples (1 g), including sausage, were treated with trifluoroacetic acid, 
vortexed, filtered and the resulting solution diluted to 5 mL. The SLM for the microfluidic was a 3 mm × 
4 mm porous polypropylene sheet, which was impregnated with 2-nitrophenyl octyl ether containing 10% 
2-(2-ethylhexyl) phosphate. The receiving solution was 50 µL of 0.09 mol L-1 HCl. A total volume of 2 mL of 
the sample was passed through the microfluidic device, and the receiving solution then treated with dabsyl 
chloride derivatizing agent, to allow analysis and detection by HPLC/UV. LODs ranged from 0.3–8 µg L-1 for 
this semiautomated CF microfluidic system.

µ-QuEChERS
The original QuEChERS procedure was developed to meet the needs of laboratories monitoring agricultural 
products for pesticide contaminants [6]. Several hundred pesticides, ranging from very polar, to very 
nonpolar, were the potential contaminants of high-water content fruits, vegetables and processed products. 
To add to the requirements of the task, the samples contained very complex matrices, including sugars, 
lipophilic components and pigments. Due to the massive scale of the monitoring requirements, a simple, 
fast, and reliable method was needed to simultaneously test for more than 100 potential pesticides which 
could be present.

The method centered on two crucial preparation steps. First, a 10 g (mL) homogenized sample was 
treated with 10 mL of ACN, followed by addition of a mixture of MgSO4 and NaCl to the extract to remove 
most of the water from the ACN, while extracting contaminants (salting out and extraction). The second 
step involved the use of a mixture of additional MgSO4 and primary-secondary amine (PSA) sorbent to 
remove remaining water and matric interferences, including carboxylic acids. Addition of small amounts of 
0.05–0.1% acetic acid was added when base sensitive pesticides were present, and graphitized carbon 
black (GCB) addition removed chlorophyl from green leafy vegetable samples and C18 absorbent removed 
additional lipid material.

PSA is a diamine containing primary and secondary amines,  bonded to silica: (Si-
CH2CH2CH2NHCH2CH2NH) and is added to the ACN extract as a “dispersive solid phase extraction (d-SPE)”, 
which is easily separated from the extraction solvent after centrifugation [6].

This initial work was followed up by two independent validation regimens [202, 203], which were the 
basis for the resulting published QuEChERS procedures used as official methods for multiclass pesticide 
sample preparations for agricultural foods and food products [204, 205]. The method procedures have 
been further modified during the last 2 decades to enable agricultural, dairy, meat and fish produce 
monitoring for pesticides, PAHs, and harmful biological contaminants [8]. The QuEChERS methodology has 
also been further modified by Lehotay [9], to enable a wider array of analyte polarities to be analyzed. The 
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terms “efficient and robust” were added to QuEChERS (QuEChERSER) to distinguish this variation. The four 
classical papers covering the developments of QuEChERS [6, 9, 202, 203] are recommended reading 
requirements for analytical scientists working in the fields of environmental, forensics, industrial and foods 
analyses for the development of validated analytical methodology. They coherently present the scope, 
purpose, advantages and limitations of sample preparation methodology, and the development of validated 
analytical methods.

The original QuEChERS methodology relied on a reliable, rugged and relatively inexpensive single 
quadrupole benchtop GC-MS instrument for the final pesticide analysis [6]. The development of more 
sophisticated and sensitive instrumentation (GC-MSMS, UHPLC-MS/MS) allowed a wider range of more 
than 100 multiclass analytes, especially the polar pesticides, to be analyzed without the need for 
derivatization. This advantage is also a major disadvantage, since the required instrumentation is very 
expensive to purchase and, importantly, to maintain and operate, making them practical only for major 
high-throughput regulatory or research laboratories. In addition, while QuEChERS removes most of the 
matrix contaminants from the analytical sample, enough remains that can damage or contaminate the 
instruments, requiring increased maintenance [9]. An additional disadvantage of QuEChERS is that the 
technique produces large amounts of hazardous waste, since solvents, extracts, and solid wastes in contact 
with hazardous materials must in turn be treated as contaminated materials [4, 12, 13, 24]. One solution to 
this last limitation is to reduce the quantities of sample, solvents, and reagents required for sample 
preparation. This approach has led to the development of the µ-QuEChERS methodology.

µ-QuEChERS development and applications

While the original QuEChERS method developers foresaw the possibility of using smaller amounts of 
sample, solvent and reagents, the approved methods used 10–15 g of sample, to provide the concentrations 
of pesticides in the final extracts to allow LOQ in the low ppb or high ppt ranges [204, 205]. An attempt to 
reduce sample requirements for QuEChERS was published in 2015 by Porto-Figueira et al. [11]. Their 
approach for monitoring zearalenone, a fungus aflatoxin in cereal grains, used 0.3 g of cereal sample (maize, 
corn) 0.7 mL ACN and 0.2 g of QuEChERS salt for the first step, and 75 mg MgSO4, 12.5 mg of C18 12.5 mg of 
PSA for the cleanup. The final extracts were filtered, evaporated to near dryness and diluted with HPLC 
mobile phase. The samples were then analyzed using UHPLC-FLD.

Seven applications using the µ-QuEChERS approach are included in Table 9 [6–9, 11, 202–211]. The 
methodology has been used for pesticides, aflatoxins, alkaloids and polyphenols analysis in a variety of 
foods, food products and water runoff from washed foods. The reduced sample sizes, however, continue to 
require the use of highly sensitive chromatographic and detection instrumentation in the final analyses, 
though hazardous waste, analysis time and costs are reduced, while potentially increasing sample 
throughput and improving the green nature of the total methods.

Two recent examples illustrate the scope of the µ-QuEChERS sample preparation technique. González-
Gómez et al. [208] developed a µ-QuEChERS procedure for determination of tropane alkaloids in leafy 
vegetables, with GC-MS/MS analysis. The procedure reduced reagent and solvent requirements 10 fold, 
compared to QuEChERS. The leafy vegetables were lyophilized to remove water, and 0.5 mL of water and 
1 mL of ACN added to 0.1 g of the powder for the initial extraction. After vortexing, 0.65 g of partitioning 
salts and citrate buffer were added with vortex and ultrasound mixing. After centrifugation, the upper layer 
was treated with MgSO4 (150 mg) and PSA (25 mg), vortexed and centrifuged. Internal standards were 
added, and the supernatant blown dry, redissolved in ACN:water, (1:1), filtered and analyzed by UHPLC-
MS/MS. The LOQs for the method were < 2 µg kg-1. The presence of alkaloids like scopolamine in samples 
illustrates the co-dependence and connection between environmental and food analyses, since these 
alkaloids could have arisen either through co-harvesting weeds containing the alkaloids, or by uptake from 
the soil containing residual alkaloids. The second procedure by Câmara et al. [209] involved the analysis of 
patulin in apple juices using µ-QuEChERS, followed by UHPLC-MS/MS. The µ-QuEChERS extraction involved 
the addition of 1 mL of ACN/1% acetic acid to 100 mg of sample, salting out with 0.65 g partitioning salts, 
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Table 9. Micro-quick, easy, cheap, effective, rugged, and safe (µ-QuEChERS)

QuEChERS Subject Author(s) Year References

Original QuEChERS methodology Anastassiades et al. 2003 [6]
QuEChERS (AOAC) methodology Lehotay 2007 [202]
AOAC official method 2007.01 AOAC 2007 [203]
(CSN EN 15662) QuEChERS methodology Payá et al. 2007 [204]
BS EN 15662 EU Committee for Standardization, 
QuEChERS

BS EN 15662 2018 [205]

QuEChERSER methodology review Lehotay 2022 [9]
QuEChERS applications review 2020-2023 Santana-Mayor 2023 [8]

QuEChERES and 
QuEChERSER 
methodologies, reviews

QuEChERS review Varela-Martínez 2020 [7]
µ-QuEChERS method, cereals Porto-Figueira et al. 2015 [11]
µ-QuEChERS, polyphenols in baby foods Casado et al. 2018 [206]
µ-QuEChERS, alkaloids in oregano Izcara et al. 2020 [207]
µ-QuEChERS, alkaloids in vegetables González-Gómez et al. 2022 [208]
µ-QuEChERS, patulin in apple juice Câmara et al. 2023 [209]
µ-QuEChERS, pesticides in food washing García-Cansino et al. 2023 [210]

µ-QuEChERS applications

µ-QuEChERS, capsaicinoids in red peppers Rodrigues et al. 2023 [211]
QuEChERS: quick, easy, cheap, effective, rugged, and safe; AOAC: Association of Official Analytical Chemists (AOAC 
International); QuEChERSER: QuEChERS, efficient, robust; µ-QuEChERS: micro-QuEChERS

ultrasound mixing and centrifugation. The supernatant was filtered and subjected to HPLC-MS/MS analysis. 
LOQ for patulin was 1.2 µg kg-1. These results should be compared to the similar results achieved by Li et al. 
[113] (section DSDME) using LLLME.

LPME coupled to other extraction techniques for food sample preparations
As illustrated in sections from Single drop microextraction (SDME) modes to CF, microfluidics and 96 well 
LPME, LPME sample preparations purify and concentrate analytes so that greener, less sensitive, and much 
less expensive instrumentation can be used for analyses. This section lists reviews applications (Table 10) 
for LPME, used in conjunction with other sample preparation techniques, including SPE and QuECHERS for 
further purification and concentration of samples, and increasing the green nature of sample preparations 
for food, environmental, biological and other analytical sample preparations which contain complex 
matrices [1, 10, 212–229].

Many multiresidue sample preparation methods for food sample analyses are based on QuEChERS or 
SPE, and most combined sample preparations use DLLME for final extract purification, solvent-instrument 
compatibility and concentration. DLLME is a natural fit in this combination since the final extraction solvent 
for these methods is oftern ACN, which then can serve as the dispersion solvent for SA-DLLME. However, all 
LPME modes can potentially be used in conjunction with other extraction methods, including SPME, 
pressurized hot water extraction (PHWE), pressurized liquid extraction (PLE), and ultrasonic-assisted 
extraction (UAE) [3]. Table 10 lists 2 recent reviews [1, 10] for combined sample preparation techniques, 
an example of SPE combined with DLLME for carbamates in food and environmental samples [212], a 
combined EME-DLLME method for biogenic amines in beer samples [213], a µ-QuEChERS/DLLME method 
for PAHs in coffee and tea [214], and a modified QuECHERS method combined with DSDME for a multiple 
residue of pesticides in tea [215]. Additionally, 14 QuEChERS and modified QuEChERS methods, combined 
with DLLME, are listed for the analyses of halogenated compounds, pesticides and PAHs in a variety of 
fruits, vegetable, fish and milk products [216–219]. Most of these procedures were developed with the 
goals of increasing EFs, decreasing matrix interferences and changing the final solvent to one compatitable 
with the final analytical instrumentation. However, these methods, as well as most published research and 
application papers, should always be viewed as works in progress requiring scrutiny and the potential for 
improving methodology. As examples, in several of these procedures, the LPME extraction solvent was 
CHCl3 or another halogenated solvent, rather than a more recently developed green solvent. In other cases, 
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Table 10. LPME coupled to other extraction techniques, reviews and applications

LPME with other 
techniques

Subject Author(s) Year References

LPME combined with other extraction techniques for food 
analysis

Moreda-Pineiro 
et al.

2019 [1]Combined extraction 
technique reviews

LPME and coupled green extraction techniques for food 
analysis

Moreda-Piñeiro 
et al.

2023 [10]

SPE-DLLME application SPE-DLLME, HPLC/UV, carbamates, fruits and vegetables Zhou et al. 2012 [212]
EME-DLLME application EME-DLLME, GC-MS/MS, biogenic amines in non-alcoholic 

beer
Kamankesh et 
al.

2023 [213]

µ-QuEChERS-DLLME 
application

µ-QuEChERS-DLLME, GC-MS, PAHs in coffee, tea, water Kamal El-Deen 
et al.

2021 [214]

d-SPE-DSDME application d-SPE-DSDME, GC-MS/MS, multiple residue pesticides, tea Li et al. 2020 [215]
QuEChERS-DLLME-SFO, GC/ECD, OCPs, fish Wang et al. 2017 [216]
QuEChERS-IL-DLLME, LC-MS, pesticides, fruits, vegetables Lawal et al. 2018 [217]
QuEChERS-DLLME, GC-MS, ethion, bifenthrin, palm dates Abdel Ghani et 

al.
2018 [218]

QuEChERS-DES-UA-DLLME, GC-FID, pesticides, tomato Farajzadeh et al. 2019 [219]
QuEChERS-DLLME-H2SO4, GC-MS/MS, halo-organics, fish Nagyová, 

Tölgyessy
2019 [220]

QuECHERS-EMR-Lipid-DLLME, GC-MS, PAHs, smoked 
foods

Slámová et al. 2020 [221]

QuEChERS-DLLME, GC-MS, 4-PAHs, roasted cocoa beans Agus et al. 2020 [222]
QuEChERS-DLLME, GC-MS, multiclass pesticides, yoghurt Szarka et al. 2020 [223]
QuEChERS-DLLME-H2SO4, LC-MS, Br-fire retardants, fish Okšová, 

Tölgyessy
2020 [224]

QuEChERS-DLLME, LC-MS, neonicotinoid pesticides, grains Ma et al. 2020 [225]
QuEChERS-low density DLLME, GC-MS, Fiprinil, eggs Zhao et al. 2021 [226]
QuEChERS-IL-DLLME, LC-MS, multiclass pesticides, 
vegetables

Lawal, Low 2021 [227]

MNP-QuEChEERS-DLLME, GC-MS, OC-pesticides, 
vegetables

Yu et al. 2021 [228]

QuECHERS-DLLME 
applications

QuEChERS-DLLME, LC/QTOF-MS/MS, pesticides in fruits Sel et al. 2023 [229]
LPME: liquid phase microextraction; SPE: solid-phase extraction; DLLME: dispersive liquid-liquid microextraction; HPLC: high 
performance liquid chromatography; UV: ultraviolet; µ-QuEChERS: micro-quick, easy, cheap, effective, rugged, and safe; GC-
MS: gas chromatography-mass spectrometry; PAHs: polycyclic aromatic hydrocarbons; d-SPE: dispersive solid phase 
extraction; DSDME: directly suspended deoplet microextraction; SFO: solidified floating organic droplet; ECD: electron capture 
detector; OCP: organochlorine; DES: deep eutectic solvent; UA: ultrasound-assisted; FID: flame ionization detector; EMR: 
enhanced matrix removal; MNP: magnetic nanoparticle; QTOF: quadrupole time of flight; MS/MS: tandem mass spectrometry

the final extraction solvent was evaporated and changed to one compatible with UHPLC-MS/MS, when GC-
MS may have been just as suitable for analysis. In several of the QuECHERS/DLLME methods, dispersion (or 
pseudo-dispersion) was achieved by adding water to the ACN, followed by addition of the extraction 
solvent, contrary to standard conditions for SA-DLLME, VA-DLLME or UA-DLLME. Thus, this area of 
research needs additional systematic examination of more effective approaches for combined extraction 
techniques.

DLLME coupled with other sample preparation techniques applications

Three following examples illustrate the utility of combining LPME with other sample preparation 
techniques, for the further purification and concentration of samples in food analyses. Zhou et al. [212] 
developed a method involving SPE, followed by DLLME for the HPLC/UV analysis of carbamates of fruit and 
vegetables. Homogenized samples were treated with NaCl and MgSO4, and ACN. After sonication and 
filtration, the liquids were rotary evaporated, and reconstituted in water and filtered. Portions of the 
filtrates were subjected to SPE, using C18 packing, washing with water to remove polar matrix interferences 
and eluted with 1 mL ACN. For DLLME, 35 µL of chloroform was added to the ACN extract and rapidly 
injected into 5 mL of water. After centrifugation, the CHCl3 was removed with a syringe and evaporated. 
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The residue was dissolved in 25 µL of methanol and 5 µL analyzed by HPLC/UV. The LODs ranged from 
5–60 pg kg-1 for 3 carbamates. A second example by El-Deen and Shimizu [214] coupled µ-QuEChEERS to an 
AA-DLLME sample preparation for the analysis of PAHs in coffee, tea and environmental waters. Water 
samples were prepared by direct AA-DLLME for GC-MS analysis. The coffee and tea samples were 
powdered and 200 mg samples were extracted with 1 mL each of water and ACN. After vortexing, 200 mg 
of salts were added, and the sample vortexed and centrifuged. A mixture of MgSO4, PSA and C18 (200 mg) 
was added to 800 µL of the supernatant, the mixture vortexed, centrifuged and 600 µL of the extract 
evaporated to dryness and redissolved in 5 mL of water. AA-DLLME was performed by adding 500 µL of 
diethyl carbonate and drawing the mixture in and out of a syringe 6 times. The sample was then 
centrifuged, the diethyl carbonate (300 µL separated, and 1 µL analyzed by GC-MS. In addition to further 
concentrating the analytes, the solvent was changed to one compatible with GC chromatography and caffein 
interference was significantly reduced. LODs for the procedure were 0.01–2.1 µg kg-1 for 15 PAHs. In the 
last example, Yu et al. [228] used a modified QuEChERS procedure for the extraction of OCPs from green 
leafy vegetables, followed by a further cleanup/concentration of the extract with DLLME. The QuEChERS 
procedure used fairly standard methodology, reduced in scale, for 2 g of the homogenized samples, which 
were first extracted with 4 mL of ACN, followed by the addition of 0.8 g of NaCl, but with no added MgSO4. 
After shaking and centrifugation, 2 mL of the ACN extract was treated with 10 mg of PSA, 20 mg of carbon 
black (rather than GCB), and 20 mg of Fe2O3 magnetic nanoparticles (MNPs). The MNPs were used as an 
additional cleanup aid, and to facilitate separating the cleanup material from the extract using a magnet. For 
the DLLME procedure, 1 mL of the ACN extract was added to 4 mL of water and the mixture added to 40 µL 
of chloroform, the mixture briefly subjected ultrasound mixing, centrifuged, and the CHCl3 dried with a 
small amount of MgSO4. One µL of the CHCl3 was used for GC-MS analysis of 8 OCPs. The LOQs ranged from 
0.15–0.32 µg kg-1, and EFs ranged from 2–3.

A few final comments need to be presented concerning this last example, which may also pertain to 
questions concerning other similar published procedures. The authors used granular carbon black, rather 
than the much more expensive commercial GCB to decolorize the extract, with no observable reduction in 
extract yield. This may be a useful approach for reduced sized QuEChERS methods, but needs further 
investigation. The authors also use MNPs as a cleanup aid, and to facilitate removal of PSA and carbon black 
from the extract, rather than centrifugation. It is unknown whether this method would work on a standard 
QuEChERS sized extraction, but is an interesting application and should also be further investigated. Most 
unusual, and completely unexplained, however, is the DLLME procedure. Rather than using standard SA-
DLLME conditions (addition of CHCl3 to ACN and then dispersion formation by addition of the ACN to 
water), the authors added the ACN directly to water and then added the mixture to the CHCl3, and then used 
UA-DLLME to form a dispersion. This unexplained anomaly can also be seen in some of the other examples 
in Table 10. This unusual modification of DLLME should be compared to SA-DLLME conditions to determine 
whether it is an acceptable methodology, or not, before further use of this technique for sample 
preparations. As a final comment, several of the combined sample preparation procedures use chlorinated 
solvents for extractions. For situations involving a few sample preparations, these solvents may be 
acceptable, but for large scale operations, even the small amounts of chloroform or other chlorinated 
solvents should be replaced with greener solvents, since all aqueous and organic solutions, and solids in 
contact with chlorinated solvents should be treated as hazardous waste, requiring expensive remediation 
[40].

Choosing an LPME mode for plant or animal-based food sample analysis preparations

There are many factors which must be considered before choosing a food sample preparation method 
involving liquid extraction—with or without using LPME. In general, these include, but are not limited to: 
the sample characteristics, the extraction solvent, green requirements, available instrumentation, and 
whether the analyses are undertaken in the field or in a laboratory. There may also be more than one 
appropriate sample preparation choices for a specific sample. A simplified example of method choice is 
illustrated in Figure 3.
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Figure 3. Choosing an LPME mode for plant and animal-based sample preparations. QuEChERS: quick, easy, cheap, effective, 
rugged, and safe; µ-QuEChERS: micro-QuEChERS; SPE: solid-phase extraction; GC-MS/MS: gas chromatography-tandem 
mass spectrometry; UHPLC: ultra-high performance liquid chromatography; DLLME: dispersive liquid-liquid microextraction; HS-
SDME: headspace-single drop microextraction; DI-SDME: direct immersion SDME; HF-LPME: hollow fiber liquid phase 
microextraction; PALME: parallel artificial liquid membrane extraction; EME: electromembrane extraction; pEME: parallel 
electromembrane extraction

Nearly all food analyses require some sample pretreatment, ranging from filtration or centrifugation, to 
denaturization, lyophilization, or acid degradation. Same analytes, such as elements, aldehydes or acids may 
also need to be derivatized. Some samples, such as commercial fruit juices or tea effusions, can be analyzed 
directly by techniques such as SDME or DLLME. This depends on the complexity or the sample matrix, 
including the presence of fats, proteins, sugars, pigments and other components which might be co-
extracted and potentially interfere with the analysis or damage the analytical instrumentation. After a 
pretreatment step, the number of potential analytes and their physical and chemical characteristics need to 
be considered, including: are the analytes volatile, or non-volatile, polar or non-polar, ionizable or ionic, 
organic or inorganic, liquid, oil or solid. The QuEChERS, procedure has the advantages of being suitable for 
a very wide variety of food samples, providing sample cleanup of fats, proteins and sugars. The downside of 
the methodology is that little or no analyte concentration enrichment is obtained, necessitating, in most 
cases, very sensitivive, expensive to purchase, and very expensive to maintain analytical instrumentation. 
SPE and other traditional sample preparation procedures may overcome some of these deficiencies, but 
generally are more time and labor intensive. These factors, in addition to the large volumes of hazardous 
waste potentially resulting from these methodologies, make these techniques most suitable for large 
volume commercial or governmental analytical laboratories. LPME methods, on the other hand, are simple 
to use, requiring only standard laboratory supplies, and result in a 10 to more than 100 fold increase of the 
concentration of target analytes, in addition to sample cleanup, and often allow the use of less sensitive and 
much less expensive analytical instrumentation, such as GC, GC-MS, HPLC, IC or AAS. The scheme presented 
in Figure 3 is very general, and omits some protentional sample preparation choices. More detailed and 
specific selection guides for solvents, sample types and analyte families, as well as the metrics for 
calculating the relative greenness of an analytical method, are presented in the tables included in this 
review.

Conclusions
Food samples require extensive sample preparations for instrumental analyses due to the complex 
matrices involved. Food safety regulatory agencies also require sample preparation procedures that are 
accurate, sensitive, robust, and, above all, fast, to handle the requirements for determining the safety of the 
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massive amounts of foods and food products needed for human, pet, and livestock consumption. Food 
contamination can occur at farms or fisheries, industrial food production plants, from food packaging and 
handling and transport, and finally at local markets. There is also an inseparable interconnection between 
environmental, agricultural, forensic, cosmetic and industrial analytical chemistry involved in this 
requirement, and advances in analytical methodology are simultaneously applicable to all of these realms. 
As a response to these needs, Anastassiades et al. [6] developed a multiclass method for the accurate, 
sensitive, robust, and, fast analysis of agricultural products potentially containing any of several hundred 
potential food contaminants. The resulting official QuEChERS sample preparation methods [203, 205] have 
devolved into hundreds of variants, to meet the need of specific samples and specific analytes to be 
analyzed, but the original QuEChERS methodology remains the basis for regulatory procedures for large 
scale analyses of food samples containing a wide variety of possible contaminants. These complex samples, 
containing trace amounts of contaminants within a complex matrix, require very expensive, very sensitive, 
final analytical instrumentation, which require highly trained operators and continual maintenance. While 
suitable for high-throughput, regulatory and university research laboratories, the expense of these 
requirements may not be necessary or possible for smaller regulatory and field laboratories, requiring 
sample preparation procedures for only a limited number of specific pesticides, metals, PAHs or other 
contaminants.

This is the role of LPME in food sample preparations and analysis. As the examples presented here 
illustrate, LPME, individually or in combination with other sample preparation techniques, such as 
QuEChERS and SPE, can meet the needs for very sensitive and accurate analyses of specific analytes, even in 
the very complex matrices found in food, environmental, cosmetic, forensic and industrial samples. This is 
due to the ability of microextraction techniques to cleanup and concentrate samples to levels allowing the 
use of greener, less expensive and low maintenance final determination analytical instrumentation, 
including GC, GC-MS, HPLC, UV-Vis, FAAS, and IC, rather than much more expensive, high maintenance 
instrumentation, such as UHPLC-MS/MS or high-resolution GC-MS/MS.

The tabulated lists of of food sample preparations included here will provide the reader good starting 
points for developing validated green procedures for food, environmental or other samples containing 
simple or complex analyte analyses. This is a rich area for research and development in analytical 
chemistry.

Abbreviations
µ-QuEChERS: micro-quick, easy, cheap, effective, rugged, and safe

AA: air-assisted

AAS: atomic absorption spectroscopy

ACN: acetonitrile

CF: continuous flow

CIP: carbonyl iron powder

DAD: diode array detector

DESs: deep eutectic solvents

DI: direct immersion

DLLME: dispersive liquid-liquid microextraction

DSDME: directly suspended droplet microextraction

d-SPE: dispersive solid phase extraction

EFs: enrichment factors

EME: electromembrane extraction
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FAAS: flame atomic absorption spectroscopy

FID: flame ionization detector

GAC: green analytical chemistry

GC: gas chromatography

GCB: graphitized carbon black

GSP: green sample preparation

HF-LPME: hollow fiber liquid phase microextraction

HPLC: high performance liquid chromatography

HS: headspace

IC: ion chromatography

ILs: ionic liquids

LLE: liquid-liquid extraction

LLLME: liquid-liquid liquid microextraction

LODs: limits of detection

LOQs: limits of quantification

LPME: liquid phase microextraction

MDESs: magnetic deep eutectic solvents

MILs: magnetic ionic liquids

MNPs: magnetic nanoparticles

MS/MS: tandem mass spectrometry

MS: mass spectrometry

NADESs: natural deep eutectic solvents

OCPs: organochlorine pesticides

PAHs: polycyclic aromatic hydrocarbons

PALME: parallel artificial liquid membrane extraction

pEME: parallel electromembrane extraction

PSA: primary-secondary amine

QuEChERS: quick, easy, cheap, effective, rugged, and safe

SA: solvent assisted

SBME: solvent bar microextraction

SDME: single drop microextraction

SFO: solidified floating organic droplet

SLM: supported liquid membrane

SPE: solid phase extraction

SPME: solid phase microextraction

SS: switchable solvent

SUPRASs: supramolecular solvents

UA: ultrasound-assisted

UAE: ultrasonic-assisted extraction
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UHPLC: ultra-high performance liquid chromatography
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VA: vortex assisted

Vis: visible
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