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Abstract
Pickering emulsions have emerged as suitable alternatives to healthily and sustainably deliver unstable 
compounds, addressing the demands of consumers, increasingly concerned about the nutritional value and 
environmental impact of the products they consume. They are stabilized by insoluble solid particles that 
partially hydrate both the oil (O) and aqueous (W) phases through a combination of steric and electrostatic 
repulsions determined by their surface properties. Since the desorption energy of the particles is very high, 
their adsorption is considered irreversible, which accounts for their greater stability compared to 
conventional emulsions. Proteins and polysaccharides, used either individually or in combination, can 
stabilize Pickering emulsions, and recent studies have revealed that microorganisms are also suitable 
stabilizing particles. This review provides an overview of recent research on Pickering emulsions, 
highlighting the properties of the stabilizing particles, and their ability to deliver hydrophobic and/or 
unstable compounds. The use of Pickering emulsions as fat-replacers, edible inks for 3D-printing or their 
incorporation into packaging material are also presented and discussed, pointing out their great potential 
for further innovation.
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Introduction
Emulsions are commonly used in the food industry for the manufacture of different products (e.g., 
beverages, milk, smoothies, creams, sauces, desserts, and dressings, among others), imparting attributes 
such as texture or flavor among others. They have also been extensively employed as delivery and release 
systems for bioactive compounds, including vitamins or antioxidants, as well as lactic acid bacteria [1–4].

From a physicochemical point of view, emulsions are thermodynamically unstable systems, consisting 
of two immiscible phases [usually oil (O) and water (W)], requiring surfactants to reduce the interfacial 
tension and stabilize them. Several surfactants employed in food emulsions are chemically synthesized, but 
they may have a negative environmental impact and potential adverse effect on consumers’ health (e.g., 
alterations in intestinal microbiota, allergies) [5, 6], who in turn, are increasingly concerned about the 
nutritional value of the products they consume. This has led to the current trend of reducing their use, 
challenging technologists to formulate stable emulsions without them. Pickering emulsions emerge as 
suitable solutions to overcome this problem, as they can be stabilized by insoluble solid particles adsorbed 
to the interface [7]. These particles can partially hydrate both the O and W phases through a combination of 
steric and electrostatic repulsions, determined by their surface properties (e.g., hydrophobicity, contact 
angle, and superficial tension). Besides the fact of being free of surfactants, sustainable, and physico-
chemically stable [8, 9], it is important to point out that their stability also prevents degradation during 
exposure to gastro-intestinal conditions. This additional advantage improves the bioaccessibility of the 
compounds encapsulated in them [10].

Different types of particles have been used, namely inorganic safe compounds (e.g., silica, calcium 
carbonate, hydroxyapatite, clay, magnetic nanoparticles intended for biomedical applications), chitosan, 
cyclodextrins, or carbon nanotubes [11]. Natural stabilizers can be also employed, and they have become 
the most appropriate choice to stabilize Pickering emulsions intended for food applications. Among this 
second group of stabilizing particles, one can count on proteins (e.g., whey, zein, soy, pea), carbohydrates 
(e.g., starch, chitosan, cellulose), or safe microorganisms [11].

The diverse nature of the stabilizing particles opens up the possibility of generating innovative 
technological applications, suitable to be incorporated into food and nutraceutical products. The literature 
addressing these applications is very recent, as articles date back mostly from the last 4–5 years. Besides 
that, several of those articles discuss the formulation and physico-chemical properties of “empty” 
emulsions, focusing on the role of natural particles as Pickering stabilizers, without exploring the 
emulsions’ suitability for encapsulating unstable compounds. This also highlights the novelty of the topic, 
underscoring the potential for further innovation. Hydrophobic compounds with food relevance are 
suitable to be encapsulated into Pickering emulsions and this way, extend their shelf-life and their stability 
when exposed to gastro-intestinal conditions. Although the attention to these issues has increased in recent 
years, only a few unstable compounds have been encapsulated (e.g., β-carotene, curcumin, astaxanthin, 
lycopene, certain essential oils, hydrophobic vitamins), which underlines the significant and yet unexplored 
potential of Pickering emulsions as delivery systems. Indeed, the great potential of Pickering emulsions 
goes beyond the encapsulation of unstable compounds. They can be incorporated into the formulation of 
functional foods, sustainable and antimicrobial packaging materials, and even used as fat replacers and 
edible inks for 3D-printing food products.

Unlike previous reviews that primarily focused on the formulation and physico-chemical properties of 
“empty” emulsions using natural particles as stabilizers, this manuscript delves into the practical 
applications and benefits of encapsulating unstable compounds. This shift in focus highlights the emerging 
trend and novelty in the use of Pickering emulsions, particularly their capability to extend the shelf-life and 
stability of hydrophobic compounds (e.g., β-carotene, curcumin, astaxanthin, lycopene, certain essential 
oils, hydrophobic vitamins) when exposed to gastro-intestinal conditions. Moreover, the innovative 
applications involving packaging materials, fat-replacers, and edible inks for 3D-printing food products, 
having gained significant traction in the last 2–3 years, put into relevance the vast and yet largely 
unexploited potential of Pickering emulsions in advancing food technology.
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Stabilizing particles in Pickering emulsions
The stabilizing effect of solid particles on emulsions has been identified for the first time by Ramsden in 
1903, and experimentally confirmed by Pickering four years later [12]. Pickering emulsions are emulsions 
stabilized by the adsorption of insoluble solid particles at the O-W interface through steric, electrostatic, 
and hydration repulsions [7]. Their greater stability compared to conventional emulsions can be explained 
by considering the adsorption and desorption energy of the particles at the interface, defined by the 
thermal energy of Brownian motion (Equation 1).

E = kBT

where E represents thermal energy (Joules); kB represents Boltzmann constant (Joules/Kelvin); T 
represents absolute temperature (K).

For surfactants used in conventional emulsions, the desorption energy ΔGd is less than 10× kBT, which 
results in a dynamic equilibrium of interface adsorption/desorption that makes the adsorption reversible 
[13]. In contrast, when particles with “appropriate” contact angles (θ) (far from 0° and 180°) stabilize 
emulsions, ΔGd is much greater than kBT, leading to practically irreversible adsorption.

The adsorbed particles cause the interface to curve towards the phase with lower affinity, and thus, the 
surface properties of the particles will determine the type of emulsion: more hydrophilic particles will be 
more suitable for oil in water (O/W) emulsions, and more hydrophobic particles for W/O emulsions 
(Figure 1).

Figure 1. The contact angle of spherical particles at the interface of oil and water and the favored type of emulsion. O/W: oil in 
water; W/O: water in oil

For applications in food and nutraceutical products, the particles adsorbed to the interface of Pickering 
emulsions should have a QPS (Qualified Presumption of Safe, EFSA) or GRAS (Generally Recognized as Safe, 
FDA) status [14]. This not only ensures consumer safety but also meets the demand of plant-based 
consumers, who are often concerned about the sustainability of production processes. This has been the 
main reason why applications of Pickering emulsions in the above-mentioned industries are relatively 
recent. In the next section, the use of proteins, polysaccharides, and microorganisms will be thoroughly 
discussed, as examples of natural GRAS stabilizing particles, highlighting the advantages of using them as 
feasible strategies for applying Pickering emulsion in real products.
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Natural solid particles stabilizing Pickering emulsions
Natural compounds mostly used to stabilize Pickering emulsions include different biopolymers (proteins, 
carbohydrates) and QPS microorganisms (Figure 2) [11].

Figure 2. Natural compounds mostly used to stabilize Pickering emulsions

Proteins

Proteins are excellent candidates for stabilizing Pickering emulsions due to their adsorption ability at the 
oil-water interface, forming a dense layer that significantly reduces interfacial tension. Additionally, they 
may enhance emulsion stability through electrostatic repulsion and steric hindrance, preventing droplet 
coalescence, Ostwald ripening, or phase separations. The use of proteins as Pickering particles offers 
versatility due to their biocompatibility, biodegradability, and responsiveness to environmental changes 
such as pH, temperature, and ionic strength.

However, for proteins to act as efficient stabilizers, certain surface properties of the protein particles 
should be carefully considered. For example, the protein’s isoelectric point (pI) is an important parameter 
that determines the stabilization of Pickering emulsions. At pH values far from the pI, proteins carry a net 
charge, which enhances stabilization through electrostatic repulsion between droplets. Conversely, when 
pH = pI, proteins have no net charge, leading to increased aggregation and potential coalescence, thereby 
reducing emulsions’ stability. Thus, optimizing the pH and ionic strength of the aqueous phase is crucial to 
enhancing proteins’ solubility and electrostatic stabilization. Another important aspect to consider is the 
molecular size of proteins. Smaller proteins can form more cohesive interfacial layers, enhancing emulsion 
stability while still retaining their functionality. These proteins can quickly adsorb to the oil-water interface 
and cover droplets effectively, providing better stabilization.
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Controlling protein aggregation can also enhance the stabilization of Pickering emulsions. Self-
aggregation involves the interaction of protein molecules with each other to form larger complexes or 
aggregates. This depends on the inherent properties of proteins (e.g., molecular weight, surface charge, 
hydrophobicity) and occurs under certain conditions, namely pH, temperature, ionic force, presence of 
other molecules, protein concentration, and processing conditions. As aggregates form larger structures 
with increased surface area, self-aggregation can be promoted in the formulation of Pickering emulsions. 
This leads to more efficient adsorption at the interface with better packing arrangements and rheological 
properties. Several authors have exploited proteins’ self-aggregation to fine-tune proteins as stabilizers of 
Pickering emulsions (Table 1). Physical treatments, including mild thermal treatments, ultrasonication, 
high pressures, precipitation with antisolvents, solvent evaporation, and pH adjustment, can also contribute 
to facilitating the adsorption of proteins to the emulsions’ interface. Another strategy widely employed to 
optimize the stabilizing capacity of proteins is to esterify them with octenyl succinic anhydride (OSA) 
esterification, which covalently binds specific amino acid residues (e.g., lysine) on the protein surface. As a 
result, the superficial properties of the proteins are modified, making them more suitable for stabilizing 
emulsions intended for food or nutraceutical applications [15–18].

The interaction of proteins with carbohydrates can also improve the emulsifying properties by 
providing additional steric or electrostatic stabilization [14]. Such interaction can occur both by covalent or 
non-covalent bonds, enzymatically (e.g., transglycosidases or glycosyltransferases) or chemically (e.g., 
reductive amination, reductive alkylation to lysine residues on the surface), and results in the modification 
of surface properties, leading to better interface adsorption. Glycosylated proteins usually exhibit better 
stability in a wide range of pH and temperatures, thus making emulsions more stable to processing 
conditions. The choice of carbohydrate moiety and the degree of glycosylation can be tailored to engineer 
the most appropriate surface properties leading to stabilized emulsions with the most appropriate 
rheological properties (Table 1). The proteins mostly used to stabilize Pickering emulsions include whey, 
zein, soy, and pea ones [19].

Native whey proteins are not suitable to stabilize Pickering emulsions and their utilization requires 
treatments including aggregation (heat denaturation), treatment with tannic acid, glycosylation with 
glucose, lactose, or maltodextrin to produce nanofibrils suitable to adsorb at the interfaces, and also 
production of nanoparticles generated by Ca2+ cross-linking (Table 1). Treatments with high hydrostatic 
pressures have been also employed to modify whey protein isolate surface.

Table 1. Protein particles usually employed to stabilize Pickering emulsions (publications since 2020)

Proteins Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

Glycosylated whey protein isolate-chitosan 
complexes

Algal oil 
[docosahexaenoic 
acid (DHA)]

-Better thermal, storage, and oxidative 
stability.

-Efficient release of free fatty acids 
during digestion.
-Increased bioavailability of DHA.

[20]

Whey protein isolate fibril complexed with 
hordein (main storage protein in barley 
seeds, with high content of hydrophobic 
aminoacids) by anti-solvent precipitation 
method at pH 2.5.

Quercetin Enhanced bioaccessibility of 
quercetin.

[21]

Pectin methyl esterase-responsive 
nanocomplex prepared using heat-induced 
whey protein isolate and high methoxyl 
pectin (pH 4.5, 85°C, 15 min).

Thyme essential oil -pH stability (stabilizing effect of 
hydrophobic, hydrogen bonding, and 
electrostatic interactions).

-Pectin methyl esterase triggers the 
demethylation of high methoxyl pectin 
within the Pickering emulsion, 
conferring response characteristics to 
the enzyme (control of the thyme 
essential oil release).

[22]

-Bacteriostatic agent.

Whey 
protein

Whey protein isolate-vanillin complexes 
(Schiff-base reaction)

Vitamin E [23]
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Proteins Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

-Enhanced bioaccessibility of vitamin 
E in the small intestine (81%).

Whey protein gel particles prepared by 
heat-induced, enzyme cross-linking and 
calcium ion cross-linking methods

CoQ10 -Increased bioavailability of CoQ10.

-Stability of emulsions 4°C for 
28 days.

[24]

Whey protein with tannic acid, gallic acid, 
tea polyphenol, and vanillic acid

Vitamin D -Enhanced bioaccessibility of vitamin 
D.
-Enhanced stability of the emulsions.

[25]

Whey protein isolate covalently conjugated 
with epigallocatechin-3-gallate

Lactiplantibacillus 
plantarum

Stable systems for L. plantarum 
delivery.

[26]

Whey protein isolate glycosylated with short 
chain inulin/cyanidin 3-glucoside

Curcumin Increased bioaccessibility of curcumin. [27]

Heat-denatured whey protein DHA oil Enhanced bioaccessibility of DHA. [28]
Resveratrol crystals dissolved in ethanol, 
added to soy proteins dispersed in 
deionized water at different pH

Vitamin D3 Protection of resveratrol against 
precipitation and oxidation.

[29]

Whey protein isolate fibrils Nobiletin -Improved long term stability.
-Extent of lipolysis.

-Increased nobiletin bioaccessibility.

[30]

Whey protein isolate nanofibers prepared 
with subcritical water

Curcumin Better loading effect and antioxidant 
activities.

[31]

Whey protein isolate/epigallocatechin-3-
gallate covalent conjugates obtained by 
free-radical induction reaction

Lactiplantibacillus 
plantarum

Enhanced viable cell count after 
14 days of storage and gastro-
intestinal digestion.

[32]

Whey protein isolate microgel cross-linked 
with organic acids (tannic and citric acids)

Roasted coffee oil Tannic acid resulted in a suitable 
crosslinker for providing stability to 
whey protein isolate emulsions.

[33]

Gel protein isolate gel particles obtained by 
high hydrostatic pressure treatments

Curcumin -High loading efficiency of curcumin.

-Stability against light degradation.

[34]

Whey protein isolate microgels, natural 
whey protein isolate, Gum arabic, whey 
protein isolate combined with gum arabic, 
maltodextrin, and modified starch (Capsul®)

Pomegranate seed 
oil

-All particles protected pomegranate 
seed oil from oxidation.

-Whey protein isolate combined with 
modified starch was protecting the 
best.

[35]

Zein and tannic acid complexes Cinnamon essential 
oil

-Tannic acid decreases the superficial 
tension and accelerates zein 
adsorption.
-Controlled release of cinnamon 
essential oil.

-Antimicrobial activity against spoilage 
organisms.

[36]

Zein non-covalently bonded sodium 
abietate

Avermectin 
(pesticide) dissolved 
in tea tree oil

-Delivery system for pesticides (faster 
release at acidic or alkalyne conditions 
in comparison with neutral ones).

-Enhanced UV-resistance of 
avermectin.

-Antibacterial and insecticidal activities 
in vitro.

[37]

Pea protein isolate-zein complex particle 
prepared by hydrophobic interactions

Curcumin -Good storage stability (up to 
30 days).
-Ionic strength resistance (up to 500 
mM).
-High-temperature stability (80°C, 
48 h).

-pH stability (pH 2–9).
-Enhanced stability of curcumin.

[38]

Zein 
protein
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Proteins Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

Zein-gallic acid covalent complex prepared 
by alkali treatment

Cinnamon essential 
oil

Pickering emulsions incorporated into 
chitosan films facilitated a slow 
release of the essential oil, extending 
the antimicrobial activity of the films.

[39]

Zein/tannic acid nanoparticles are obtained 
by covalent interactions of tannic acid with 
zein amino groups, followed by self-
assembling to form nanoparticles through 
antisolvent precipitation

Oregano oil -Successful incorporation of the 
emulsions into konjac glucomannan 
films.
-Enhanced antibacterial and 
antioxidant activities of the films.

[40]

Zein/hyaluronic acid nanoparticles obtained 
by non-covalent interaction

Astaxanthin -Stability of emulsions towards pepsin 
hydrolysis.

-Enhanced bioaccessibility of 
astaxanthin.

[41]

Zein-tannic acid-sodium alginate complexes β-carotene -Good pH and ionic strength stability.

-Enhanced bioaccessibility of fatty 
acids and carotene.

-Rheological properties support the 
potential application of edible ink.

[42]

Covalent and non-covalent zein-gallic acid 
composite nanoparticles

Astaxanthin Covalently bonded composites 
significantly delayed the oxidation of 
the encapsulated algal oil, protected 
astaxanthin from heat, and increased 
its bioaccessibility.

[43]

Zein nanoparticles and gum Arabic Peach polyphenols -Improved stability of peach 
polyphenols during UV irradiation, 
storage, and heating.

-Enhanced bioaccessibility of 
polyphenols.

[44]

Zein nanoparticles Cinnamon essential 
oil

Enhanced antimicrobial properties and 
control release of chitosan/gelatin 
films.

[45]

Zein-proanthocyanidins-pectin ternary 
composites

Curcumin -Long term stabilized gel-like 
emulsions.

-Enhanced bioaccessibility of 
curcumin.

[46]

Zein/Adzuki bean seed coat polyphenol 
nanoparticles

Astaxanthin -Enhanced stability of the emulsions 
against ionic strength and heat 
treatment.

-Retaining astaxanthin after exposure 
to high levels of UV light irradiation.
-Enhanced bioaccessibility of 
astaxanthin.

[47]

Zein nanoparticles coated with bioactive 
glycyrrhizic acid, through cross-linking with 
tannic acid

Curcumin Enhanced bioaccessibility of curcumin 
when orally administered.

[48]

Zein-lecithin-epigallocatechin complex 
nanoparticles

Peppermint oil Set-up of the formulation and physico-
chemical characterization.

[49]

Zein and sodium caseinate nanoparticles Clove essential oil -Clove essential oil-loaded zein-
sodium caseinate successfully 
incorporated into chitosan films, 
decreasing the water vapor 
permeation.
-Controlled release of clove essential 
oil from the films in 96 h.

-Increased tensile strength and break 
elongation of chitosan films.

-Increased antibacterial properties.

[50]

-Optimal pH for zein particle 
adsorption: 6.6–8.9.

Bare zein particles (hydrophobicity 
modulated by changing pH)

Lactiplantibacillus 
plantarum

[51]
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Proteins Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

-Storage stability of microorganisms at 
4°C.

Zein colloid particles Clove essential oil -Emulsions incorporated into chitosan 
films.
-Enhanced antibacterial properties of 
the films with Pickering emulsions.

[52]

Green tea polysaccharide conjugates-soy 
protein isolate complex

Curcumin Protection of curcumin from adverse 
pH, light, and temperature effects, with 
a retention rate of over 74.00%.

[53]

Crosslinking soy protein isolate and 
chitooligosaccharide using genipin

Fucoxanthin -Improved fucoxanthin light retention.
-Theoretical support to preserve 
hydrophobic nutrients in commercial 
products.

[54]

Soybean protein isolate-citrus pectin-gallic 
acid complex

β-carotene Theoretical guidance for the design of 
protein-polysaccharide-polyphenol 
stabilized Pickering emulsions.

[55]

Soy 
protein

Soy protein hydrolyzate microgel particles 
produced at various pH (3, 5, 7, and 9) with 
and without ultrasonication

Quercetin -Storage stability of the emulsions.
-Suitable system to efficiently 
encapsulate quercetin, and also for its 
sustainable release.

[56]

Ultrasound-treated pea protein isolate and 
mung bean starch complexes

β-carotene -Improved stability of β-carotene.

-Higher bioaccessibility of β-carotene.

[57]

Pea protein isolate-quillaja saponin-tannic 
acid self-assembled nanoparticles through 
non-covalent interactions

Curcumin -Theoretical support for multi-scale 
exploration of structure-properties 
relationships of nanoparticle.
-Tannic acid provides additional 
stability to the emulsions.

[58]

Pea protein-κ-carrageenan complexes Curcumin Enhanced stability of curcumin for the 
generation of 3D printed cake 
decorations.

[59]

Pea protein isolate nanoparticles obtained 
by heat-assisted pH-shifting

Curcumin Theoretical basis for fabricating a 
prospective delivery system for 
improving bioavailability of 
hydrophobic nutraceuticals.

[60]

Hydrolyzed pea protein at pH 3 and 
overnight storage at 4°C

Thymol Smart release of bactericidal agents. [61]

Pea protein-naringin complexes Naringin Mask the bitter taste of naringin. [62]
Pea protein amyloid fibrils obtained by 
thermal treatment of purified pea protein in 
an acidic environment, leading to hydrolysis 
and re-assembly

Lutein Stability of lutein against ultraviolet 
irradiation, heating, and iron.

[63]

Pea protein-pectin-epigallocatechin gallate 
complexes for extrusion 3D-printing

Cinnamaldehyde Retain the cinnamaldehyde flavor, 
which supports the incorporation of 
emulsions in printed food.

[64]

Pea 
protein

Pea protein and high methoxyl pectin 
colloidal particles

β-carotene Enhanced stability and controlled 
release of β-carotene.

[65]

Zein is a natural amphiphilic protein that can be extracted from corn and is also a co-product of the 
ethanol industry. It has a high percentage of nonpolar aminoacids (e.g., proline, alanine, leucine) and based 
on its insolubility in water and solubility in alcohol, it can form colloidal particles through self-assembly 
without surface modification at pH different from its pI [66]. Its solubility properties make it a suitable 
compound to obtain colloidal particles by nanoprecipitation (anti-solvent precipitation). Using zein as 
Pickering emulsions’ stabilizers requires the set-up of particle concentration, pH, and ionic strength. Stable 
zein composite particles can be generated using biodegradable and edible materials including sodium 
caseinate, sodium alginate, or chitosan, through electrostatic adsorption [66] or producing zein complexes 
with xanthan gum, which improves viscoelastic properties (Table 1).
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Soy proteins contain essential aminoacids, flavonoids, and vitamin E, whose two major components are 
glycinin and β-conglycinin. They consist of a hydrophilic shell and a hydrophobic kernel in aqueous 
environment [67]. This explains the good emulsifying and gelling properties of soy proteins, although pH, 
solubility, ionic strength, and temperature shall be controlled when used as Pickering stabilizers. Soy 
protein isolates have been complexed with pectins through electrostatic interactions to be suitable as 
Pickering stabilizers [68]. In addition, Maillard reaction has been also used to generate complexes between 
soy proteins and carbohydrates, leading to an enhanced stability of Pickering emulsions [69] (Table 1).

Pea proteins arise from yellow peas, having gained attention as stabilizers of Pickering emulsions 
because of their functional properties, sustainability, and allergen-free nature. They have amphiphilic 
properties, which makes them suitable to adsorb at the O/W interface through their hydrophobic 
aminoacid residues (e.g., leucine, isoleucine, and valine). The concentration of pea proteins shall be 
optimized in order to control the size of the emulsions’ droplets and prevent coalescence. Being stable in a 
wide range of pH and ionic strength, pea proteins are suitable stabilizers of Pickering emulsions submitted 
to food processing. However, they impart color and flavor that cannot be disregarded and their interaction 
with polyphenols must also be considered as this can lead to a decrease in the functionality of antioxidants 
(Table 1).

This section highlights the need for deep knowledge about the physico-chemical properties of proteins 
(both general and particular to each protein) to develop the best strategy for application in real products. 
Compared to synthetic stabilizers, proteins offer a natural and sustainable alternative, which is particularly 
advantageous in food and nutraceuticals, providing a versatile and eco-friendly option. However, as previ-
ously explained, their application may require prior treatments and careful consideration of formulation 
parameters to achieve optimal results.

Polysaccharides

Polysaccharides represent other groups of compounds, widely employed in the formulation of Pickering 
emulsions. Unlike protein-based particles, which reduce interfacial tension and form a viscoelastic film, 
polysaccharides stabilize emulsions by forming a protective network around the droplets, providing steric 
hindrance. Besides that, they can introduce additional technological and functional properties, including 
greater viscosity, gelation, or controlled release of encapsulated compounds. This versatility supports their 
increasing use to tailor emulsions’ properties and expand the potential of Pickering emulsions in different 
technological applications, including fat replacement, packaging, or 3D-printing. However, for 
polysaccharides to effectively act as stabilizers in Pickering emulsions, several key aspects should be 
considered. For instance, polysaccharides containing charged functional groups can facilitate electrostatic 
interactions between droplets, thereby enhancing stability. In general, a higher charge density and uniform 
distribution of these charged groups may promote stronger electrostatic interactions between 
polysaccharide molecules and the droplet interface, resulting in more efficient stabilization of the emulsion. 
Polysaccharides should be water-soluble to disperse easily and adhere effectively to interfaces. 
Additionally, they should have the ability to swell, which increases the viscosity of the continuous phase 
and reduces creaming, thereby enhancing the stability of the emulsion. Another important aspect to 
consider is the particle size and concentration of the polysaccharides-based particles. The particles should 
be small enough to properly adsorb onto the droplet surface. Likewise, increasing the particle 
concentration is necessary to cover a larger and thicker interfacial area, which reduces the creaming speed 
of small oil droplets and inhibits Ostwald ripening. Polysaccharides have poor hydrophobicity and need to 
be modified physically or chemically to enhance their wettability. Another strategy to enhance wettability is 
by making them interact with other polymers (polysaccharides, proteins). As these properties vary among 
different polysaccharides, this section will show the most recent findings regarding the most common 
polysaccharides used for Pickering emulsions: starch, chitosan, and cellulose.

Starch is an amphiphilic, cost-effective, biocompatible, biodegradable, and non-toxic polysaccharide 
composed of glucose units. Native starch granules are suitable stabilizers of Pickering emulsions because of 
their size, shape, and stability over a wide range of processing conditions (pH, temperature, shear rate), 
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making them suitable alternatives to traditional stabilizers. However, the poor stability and hydrophobicity 
weaken its capacity of starch to adsorb to the emulsion’s interface, thus requiring modifications, such as 
hydrolysis (chemical or enzymatic), nanoprecipitation, recrystallization, or esterification with OSA to 
increase the hydrophobicity (Table 2).

Chitosan is another polysaccharide occurring in shrimp and crab shells and fungi, as a result of chitin 
deacetylation. It also has antibacterial properties, is non-toxic and biodegradable, generally employed as a 
drug delivery system and film-forming material. Because of the presence of hydrophilic groups (-NH3

+; -
OH−) embedded along its backbone, its utilization as Pickering emulsions’ stabilizer requires processes to 
increase its hydrophobicity (e.g., pH and adjustment of the degree of deacetylation). At low pH [pH < pKa 
(6.5)], amino groups are positively charged, which leads to electrostatic repulsion and improves the 
stability of emulsions. Regarding deacetylation, a moderate one appears to be the optimal one as 
hydrophobic acetyl groups are not completely removed [70].

Self-aggregation is also a suitable process to promote the adsorption of chitosan particles to the 
emulsions’ interface. However, ultrasonication should be avoided as a pretreatment, as it was reported to 
decrease the hydrophobicity of chitosan [71]. As chitosan is one of the few polysaccharides with acidic pKa, 
it is very suitable to interact with negatively charged groups (e.g., sodium tripolypohosphate) in cross-
linking reactions, also employed to modify chitosan and make it suitable as Pickering emulsions’ stabilizer 
[72]. Complexes of chitosan with proteins (e.g., gliadin) have been also developed as stabilizers, leading to 
emulsions with high viscoelasticity [73] (Table 2).

Cellulose is a polysaccharide composed of glucose units, insoluble in water and organic solvents [74], 
naturally occurring in plant cell walls, and also being produced by certain bacteria. When submitted to 
chemical and mechanical treatments leading to replacement hydroxyl groups with methyl, hydroxypropyl-
methyl, and carboxymethyl, cellulose’s hydrophobicity becomes suitable to prepare Pickering emulsions. In 
addition, acid hydrolysis or physical treatments (high hydrostatic pressures) promote the generation of 
microfibrillated cellulose, macroscopic fibers, or microcrystalline cellulose, that can act as Pickering stabil-
izers [75]. In turn, bacterial cellulose nanoparticles have demonstrated good hydrophilic and lipophilic 
properties to stabilize Pickering emulsions at low concentrations of nanofibers [76] (Table 2).

Table 2. Natural carbohydrate particles usually employed to stabilize Pickering emulsions (publications since 2022)

Carbohydrate 
particles

Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

Starch nanoparticles obtained by 
heating under mildly acidic conditions

Catechin -Catechin encapsulated in the starch 
nanoparticles exhibits higher water 
solubility and UV stability than pure 
ones.

-Catechin-starch nanoparticle 
composites improve the 
encapsulation efficiency, water-
solubility, stability of catechins, and 
Pickering emulsion stability.

[77]

Debranched-waxy corn starch and 
chitosan

Curcumin -Debranched-waxy corn starch and 
chitosan polymers lead to greater 
emulsifying stability and lower gel 
strength than native starch and 
chitosan-prepared emulsion.

-Enhanced stability and 
bioaccessibility of the encapsulated 
curcumin.

[78]

Cana edulis starch and starch 
nanoparticles modified with octenyl 
succinic anhydride

Curcumin -Enhanced curcumin storage 
protection and controlled release.

-Stabilizing Pickering emulsions has 
a positive effect on gut microbiota 
and improves the intestinal 
environment.

[79]

Quinoa and maize starch 
nanoparticles prepared by sono-

-Stable emulsions against 
coalescence and Ostwald ripening.

Starch

Ferulic acid [80]



Table 2. Natural carbohydrate particles usually employed to stabilize Pickering emulsions (publications since 2022) (continued)

Explor Foods Foodomics. 2024;2:408–42 | https://doi.org/10.37349/eff.2024.00044 Page 418

Carbohydrate 
particles

Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

precipitation and modified with 
nonenyl succinic anhydride and 
octenyl succinic acid

-Long-term stability of the emulsions.

-Sustained release of ferulic acid 
from the strong gel network.

-Encapsulation efficiency close to 
99% after 15 days of storage.

Potato starch and polyvinyl alcohol Clove essential oil -Efficiency of encapsulation: 58%, 
which ensured the antimicrobial 
effectiveness of clove essential oil.

-Emulsions were applied for pork 
meat preservation, enabling the slow 
release of the encapsulated 
compound.
-Prolonged preservation period 
(10 days) and potent inhibition of E. 
coli and S. aureus.

[81]

Ultrasonic esterified corn starch Tangerine peel 
essential oil

-Pickering emulsions incorporated 
into corn films containing purple 
corncob anthocyanin.

-Bacteriostatic ability against E. coli 
and S. aureus.

[82]

Starch nanocrystals and bacterial 
cellulose nanofibers

Satureja khuzestanica 
essential oil

Antibiofilm (Salmonella enterica) 
activity.

[83]

Carboxymethyl starch/xanthan gum 
combinations with different ratios

Pterostilbene -High encapsulation efficiency 
(91.2%), enhanced stability of 
pterostilbene.
-Controlled release of pterostilbene in 
the intestinal tract.

[84]

Butyric acid-modified porous starch Paclitaxel The emulsifying and sustained 
release capacity are significantly 
improved using higher substituted 
butyric acid-porous starch as 
stabilizers.

[85]

Gliadin/gelatinized starch 
nanocomposites

Astaxanthin -Emulsions with shear-thinning 
behavior and high solid 
viscoelasticity.
-Suitable rheology properties for 3D 
printing.
-Enhanced stability (90% astaxanthin 
was retained after heating at 95°C for 
30 min) and bioaccessibility of 
astaxanthin.

[86]

Acetalized starch-based 
nanoparticles

Curcumin -Acetalized starch and its 
degradation products showed good 
biocompatibility.

-Acid environments promote a better 
release of the encapsulated 
curcumin.

[87]

Chayote tuber starch functionalized 
by zein-pectin nanoparticle

Cinnamon essential 
oil

-Pickering emulsions were 
incorporated into biodegradable and 
bioactive starch-based films for food 
packaging applications.

-Improve water-resistance of the 
films.

-Sustained release of cinnamon 
essential oil into food stimulants.

[88]

-Incorporation of the emulsions into 
edible coatings to prevent 
biochemical degradations and 
minimize color changes of 
mandarins.

Corn starch pregelatinized with a 
cellulose nanofiber

Basil essential oil [89]
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Carbohydrate 
particles

Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

-Coated mandarins significantly 
suppressed quality losses, did not 
experience a loss of citric acid, and 
maintained color stability.

Acorn starch β-carotene -Low solubility and swelling power, 
and high retrogradation and gel 
strength of the acorn starch.
-Free/bound phenolics exhibit 
stronger antioxidant activity.

-Outstanding effect for protecting β-
carotene against ultraviolet 
irradiation.

[90]

Octenyl succinic anhydride-modified 
corn, potato, and pea starch 
nanoparticles

Curcumin -Stable emulsions against different 
environmental stresses (pH, ionic 
strength, and heating) and during 
30 days of storage.

-No-oiling-off observed over the 
storage time.

-Improved protection of curcumin 
during storage and controlled release 
during in vitro digestion.

[91]

Octenyl succinic anhydride-starch Thymol -Enhanced bactericidal effects 
against E. coli, S. aureus, and 
Aspergillus flavus by inducing ROS 
eruption, membrane lipid 
peroxidation, and cell shrink.

-Time-sustained bactericidal effect 
(9 days) upon intermittent exposure 
to E. coli, S. aureus. and A. flavus in 
vitro (in comparison with thymol 
alone).

[92]

Starch-fatty acid complexes prepared 
using different long chain fatty acids 
(myristic acid, palmitic acid, and 
stearic acid) and native rice starch

Curcumin Curcumin was successfully retained 
after 28 days of storage stability 
(79.4%) and after exposure to 
gastrointestinal conditions (80.8%), 
attributed to the enhancement of the 
coverage of particles at the oil-water 
interface.

[93]

Octenyl succinic anhydride 
starch/chitosan complexes

Resveratrol -Strong stability when subjected to 
light, high temperature, UV radiation, 
and freeze-thaw treatment.

-Resveratrol retention greatly 
improved with the increasing addition 
of complexes and resveratrol.

-Pickering emulsions were suitable 
systems to overcome the stratum 
corneum barrier (ca. 3–5-fold 
increase in resveratrol deposition) in 
deep skin compared to bulk oil.

[94]

Gliadin/starch nanocomposites Astaxanthin -Gelatinized starch improved the 
wettability of particles, and thus, the 
stability of emulsions.
-Pickering emulsions stable at pH 
within 3 and 11, and tolerant to high 
ionic strength (up to 1000 mM NaCl).
-Enhanced retention of astaxanthin 
(half-life 2.3 times longer than that in 
oil).

-Bioaccessibility of astaxanthin ca. 
1.5 times higher than that of oil.

[95]

-Chitosan-coated emulsions are 
stable in the mouth and stomach 

Starch crystals and chitosan Curcumin [96]
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Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

phases, and slowly digested in the 
intestine phase.
-Permeability of encapsulated 
curcumin enhanced ca. 9.5-fold 
compared to the curcumin solution.

-Enhanced intestinal permeability of 
curcumin ascribed to the electrostatic 
mucoadhesion and reversible 
epithelial tight junction opening 
effects of the coating.

Dihydromyricetin/high-amylose corn 
starch composite particles

β-carotene Stability of β-carotene against UV 
irradiation, enhanced bioaccessibility 
and starch hydrolysis inhibition during 
digestion.

[97]

2-(dimethylamine)ethyl methacrylate 
(DMAEMA) grafted onto maize starch 
via free radical polymerization

Lipase from Candida 
rugosa

-Emulsions readily applied as 
recyclable microreactors for the n-
butanol/vinyl acetate 
transesterification.

-Catalytic activity and good 
recyclability.

[98]

Oxidized high-amylose starch β-carotene -Stable emulsions at pH within 3 and 
7, salt concentrations up to 1 M, and 
temperatures within –25°C and 80°C.

-Storage stability for up to 30 days.

-Controlled-release of β-carotene in 
vitro, with antioxidant activity-
maintained ca. 50% of initial activity 
when exposed to 80°C.

[99]

Chestnut starch 
nanocrystal/macadamia protein 
isolate complexes

Quercetin High encapsulation efficiency for 
quercetin (> 93%).

[100]

Starch-based nanoparticles obtained 
by nanoprecipitation and 
ultrasonication

Ferulic acid Preserved ferulic bioactivities in the 
Pickering emulsions (anti-cancer, 
anti-diabetic, angiotensin-converting 
enzyme inhibition).

[101]

Ultrasound and high-pressure 
homogenization treated starch 
nanoparticles

Carotenoids extracted 
from the peel of 
passion fruit 
(Passiflora edulis)

-Pickering nanoemulsions rich in 
carotenoids and total phenolic 
content, with high antioxidant activity 
and stability.

-Stable emulsions to heat and freeze-
thaw treatments and storage at 6°C 
and 25°C.

[18]

Cross-linked carboxymethyl 
cellulose/chitosan submicron particles 
through polyelectrolyte self-assembly 
method in conjunction with 
isocyanide-based multicomponent 
reactions

Piperine -Stabilization of the emulsion’s 
droplets by carboxymethyl 
cellulose/chitosan particles.
-Highly level emulsions regarding 
changes in pH, temperature, and 
ionic strength.

-Controlled release of piperine in vitro 
in both acidic and neutral media.

[102]

β-carboxymethyl chitosan and gelatin-
A

Curcumin Physico-chemical characterization 
supporting cosmeceutical 
applications (uptake of curcumin into 
fibroblasts in vitro).

[103]

Chitosan/alginate nanoparticles and 
Ca2+

D-limonene -Set-up of the emulsion’s formulation 
and encapsulation process.

-Encapsulated limonene had higher 
activity, higher resistance to 
ultraviolet (UV), and higher 
temperature than free D-limonene.

[104]

Self-aggregated chitosan particles 
prepared by a pH-responsive self-

-Networked structures generated by 

Chitosan

Curcumin [105]
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assembling method by tuning pH, 
degree of deacetylation, and 
molecular weight

chitosan aggregation led to highly 
elastic gels more resistant to the 
breakdown of Pickering emulsion at 
ambient temperature.
-Molecular weight and degree of 
deacetylation determine curcumin 
loading, encapsulation efficiency, and 
release profile.

Self-assembled chitosan complexed 
with natural phytosterol particles

β-carotene 
(hydrophobic) and 
epigallocatechin 
gallate (hydrophilic)

-Storage stability at 4°C and 25°C (at 
least 2 months).
-Suitability to co-encapsulate 
hydrophilic and hydrophobic bioactive 
compounds, shielding them against 
UV exposure and long-term storage.

[106]

Chitosan-based nanoparticles 
obtained by ionic gelation modified by 
flaxseed gum or sodium 
tripolyphosphate

Ferulic acid -Complex nanoparticles had high 
surface activity.

-Controlled topical release of ferulic 
acid.

-Ferulic acid in the emulsion had 
higher penetration and retention 
ability in the skin dermis.

[107]

ε-polylysine-carboxymethyl chitosan 
nanoparticles

Oregano essential oil -Pickering emulsions incorporated 
into gelatin films.

-The mechanical properties, barrier 
properties, anti-oxidation, and 
antibacterial properties of the films 
were improved with the incorporation 
of Pickering emulsions.

-Extension of shelf life of beef and 
strawberries with excellent 
antioxidant and antibacterial 
properties.

[108]

Resveratrol-grafted zein covalent 
conjugate combined with quaternary 
ammonium chitosan

Peppermint oil Enhanced antioxidant effect against 
DPPH and ABTS free radicals.

[109]

Rice peptide aggregate-chitosan 
complexes

Curcumin Enhanced storage stability, lower free 
fatty acids release, and higher 
curcumin bioaccessibility (65.2% and 
68.2%, respectively).

[110]

Soy protein isolate-chitosan 
nanoparticles

Docohexaenoic acid 
(DHA)

Enhanced retention rate of DHA 
under storage, ionic strength, and 
thermal conditions.

[111]

Soybean protein isolate/chitosan 
hydrochloride composite particles

Citrus essential oil -Good storage and oxidation 
stabilities and rheological properties.

-Preservative effect on freshly-cut 
apple slices.

[112]

Chitosan and soy protein isolate 
colloid particles

Cinnamon essential 
oil

-Pickering emulsions incorporated in 
collagen films enhanced their thermal 
stability, UV-blocking properties, and 
water resistance.
-Improved antioxidant (DPPH 
scavenging activity) and antimicrobial 
properties (E. coli, S. aureus, P. 
fluorescence).

-4-day shelf-life extension of pork 
coated with the functionalized films.

[113]

Spirulina protein-chitosan complex Astaxanthin -Improved the stability of astaxanthin 
in different environments.

-Enhanced bioaccessibility of 
astaxanthin.

[114]
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Gallic acid modified-chitosan 
nanoparticles

Garlic essential oil 
and curcumin

-Improved bioaccessibility of garlic 
essential oil and curcumin.
-Good biocompatibility and enhanced 
cellular uptake of garlic essential oil 
and curcumin.

[115]

Chlorella pyrenoidosa protein-
chitosan complex

Lutein -Stability of encapsulated lutein when 
UV irradiated for 48 hours.
-Enhanced bioaccessibility of lutein.

[116]

Zein and chitosan nanoparticles Citral and/or 
cinnamaldehyde

-Effective antifungal system 
(decrease of Aspergillus spp. growth 
and ochratoxin production).

-Stable emulsions within 15 days and 
good sustained release ability during 
9-day storage experiment.

[117]

Phosphorylated perilla protein isolate-
chitosan composite nanoparticles

β-carotene -No coalescence during long-term 
storage, centrifugation, and heat 
treatment.
-Increasing the chitosan 
concentration leads to a progressive 
strengthening of viscosity, 
viscoelasticity, and thixotropy-
recovery capacity of the emulsions, 
allowing their controllable injectability 
and printability during 3D printing.

-Enhanced stability of β-carotene in 
emulsions exposed to environmental 
stresses.

[118]

Phytosterol/chitosan complex 
particles

Epigallocatechin 
gallate

Protection of epigallocatechin gallate 
from heat and pH shock

[119]

Chitosan tripolyphosphate 
nanoparticles

Andrographolide -Improved apparent digestibility 
coefficient of protein, fiber, 
carbohydrates, and energy for carps 
fed with the encapsulated 
andrographolide.

-Protection of carps against koi 
herpes virus.

[120]

Soybean protein isolate-chitosan 
composite

Cinnamon essential 
oil

-Encapsulation efficiency of 
cinnamon essential oil: 65.23%.

-Stabilization of the encapsulated 
compound.

[121]

Resveratrol-loaded α-lactalbumin-
chitosan particles

Curcumin -High (64%) curcumin retention up to 
30 days.
-Enhanced curcumin bioaccessibility.

[122]

Chitosan with different molecular 
weights functionalized with 
protocatechuic acid by free-radical 
grafting reaction,

β-carotene -Stability of β-carotene upon 
exposure of emulsions to ultraviolet 
irradiation, natural light exposure, 
and heat treatment.
-Oxidative stability of β-carotene.

[123]

Whey protein isolate-chitosan 
complexes

Apigenin -95% of apigenin retention when 
emulsions are stored under 
refrigerated conditions.

-Enhanced bioaccessibility of 
apigenin.

[124]

Chitosan/guar gum nanoparticles 
were formed by hydrogen bond 
interactions between amino groups of 
chitosan and hydroxyl groups of guar 
gum.

Astaxanthin Retention rate of astaxanthin: 86% 
when stored at 37°C for 30 days.

[125]

Alginate-coated chitosan-stabilized Tocotrienol (vitamin E) Enhanced retention of tocotrienol 
upon processing and storage.

[126]



Table 2. Natural carbohydrate particles usually employed to stabilize Pickering emulsions (publications since 2022) (continued)

Explor Foods Foodomics. 2024;2:408–42 | https://doi.org/10.37349/eff.2024.00044 Page 423

Carbohydrate 
particles

Modifications Encapsulated 
bioactive

Characteristics of the emulsions Reference

Zein-chitosan nanoparticles Curcumin, oil red, and 
oil blue

-Better chroma (based on L*a*b* 
values) with lower incorporation of 
pigments (under the same amount of 
pigment, the saturation of the 
emulsion increases by 81.5%).

-Potential application as a color 
control strategy for complex food 
systems.

[127]

Chitosan nanoparticles obtained by 
cross-linking with sodium 
tripolyphosphate

Chlorogenic acid and 
cinnamon essential oil

-Stable emulsions after 5 days of 
storage.
-Suitable co-encapsulation of 
cinnamon essential oil and 
chlorogenic acid.

[128]

Carboxymethyl chitosan-sodium 
alginate nanoparticles to obtain 
hydrogel emulsions

Curcumin -Controlled release of curcumin in 
vitro.

-Antibacterial properties against E. 
coli and S. aureus.

-Improved wound healing.

[129]

Pea protein isolate-chitosan 
nanoparticles

Eicosapentaenoic acid Sustained release in vitro digestion 
and enhanced bioaccessibility of 
eicosapentaenoic acid.

[130]

Potato protein-chitosan complex β-carotene Sustained release rate of β-carotene 
in vitro.

[131]

Ovotransferrin-carboxymethyl 
chitosan nanoparticles to prepare 
oleogels

Curcumin Enhanced bioaccessibility of 
curcumin, stable during storage and 
with high retention of the 
encapsulate.

[132]

Ultrasonicated chitosan β-carotene Stable emulsions during heating 
(121°C), processing and storage at 
37°C (constant color parameters).

[133]

Chitosan nanoparticles produced by 
self-aggregation or by crosslinking 
with tripolyphosphate, further freeze-
dried, or spray-dried

Roasted coffee Increased oil retention in the 
microcapsules spray-drying promotes 
better retention of polyphenolic 
compounds and antioxidant activity 
during in vitro digestion.

[134]

Cellulose nanofibrils, holocellulose 
nanofibrils, and lignocellulose 
nanofibrils were obtained using deep 
eutectic solvents

Curcumin -Encapsulation efficiency of 
curcumin: 94.80%.
-Inhibitory effect against S. aureus.

[135]

Cellulose nanocrystals and 
hydroxypropyl methylcellulose

Omega-3 
polyunsaturated fatty 
acids (n-3 PUFA)

-Enhanced bioavailability of omega-3 
fatty acids in dogs.

-Stomach oxidation of n-3 PUFA 
prevented.

[136]

Nanocellulose synthesized from 
coconut milk waste residue using 
38–42% sulfuric acid and/or 
ultrasound (5–10 min) separately and 
in combination 

Curcumin -Stable emulsions at pH 2 and 63°C.

-Stomach release: 38%; intestinal 
release: 52%, which supports 
emulsions as curcumin delivery 
systems.

[137]

Cellulose nanocrystals D-limonene -Pickering emulsions incorporated 
into citrus pectin-based films aiming 
to coat fruits.

-Improved mechanical properties of 
the films (tensile strength, 
elongation), water barrier, and film 
clarity.
-Inhibition of harmful microbes 
causing rotting of fresh fruits.

[138]

Nanocrystalline cellulose Butterfly pea petal 
extract rich in 
anthocyanins

Set the encapsulation conditions to 
retain the greatest amounts of 
extracts.

[139]

β-cyclodextrin, cellulose nanocrystals, 
and bacterial cellulose

Citrus essential oil Controlled delivery system for flavors. [140]

Cellulose
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Alginate beads and cellulose 
nanocrystal-stabilized Pickering 
emulsion

Curcumin -Improved storage stability of 
curcumin (half-life 160 days).
-Feasible incorporation of emulsions 
into milk, apple juice, yogurt, and 
mineral water, that can be stored u to 
26 days.

-Full release of curcumin in the 
intestinal phase of in vitro digestion.

[141]

Cellulose nanofibrils and cellulose 
nanocrystals synthesized from 
pomelo peels

Lycopene High ail fractions are beneficial for 
controlling lycopene release during 
gastrointestinal digestion.

[142]

Cellulose nanocrystals-whey protein 
isolate complex

Curcumin -Encapsulation efficiency: 89.4%.
-Stable a stomach pH.

-Release of curcumin in the intestinal 
phase.

[143]

Bacterial cellulose from fermented 
kombucha

Curcumin Enhanced stability (temperatures, low 
pH, sunlight, UV-365 nm) and 
antioxidant capacity of curcumin.

[144]

Nanofibrillated cellulose Astaxanthin -Increased stability of astaxanthin 
with the increase in the concentration 
of nanofibrillated cellulose.

-Enhanced bioaccessibility of 
astaxanthin.

[145]

Hydrophobic-hydrophilic cellulose 
particles

Vitamin B9 Responsiveness of emulsions at pH 
2, 4, and 7, vitamin B9 release 
depending on pH.

[146]

Cellulose nanocrystals Clove bud oil Pickering emulsions incorporated into 
pearl millet starch films with 
antimicrobial activity.

[147]

Tempo-oxidized cellulose 
nanocrystals

Ginger essential oil -Pickering emulsions incorporated 
into starch-based films with improved 
antibacterial activity and tensile 
strength properties, decreased water 
vapor permeability.

-Improved storage of tomatoes when 
coated with the films.

[148]

Fungal (Pleurotus eryngii) cellulose 
nanocrystals

Triterpenes Enhanced stability of triterpenes. [149]

Cellulose nanocrystals Astaxanthin -Structural stability of astaxanthin.

-Inhibitory effect against E. coli and 
S. aureus.

[150]

Pineapple peel cellulose nanocrystals 
and (−)-epigallocatechin-3-gallate

Curcumin -Improved bioaccessibility of 
curcumin.

-Thermal and UV-light stability of 
emulsions, with a curcumin retention 
of 92%.

[151]

Cellulose nanocrystalline Curcumin -Stable emulsions up to 1 month.
-Encapsulation efficiency: 99%.

-Half-life of encapsulated curcumin: 
98 days.

[152]

Undaria pinnatifida nanocellulose Astaxanthin -Stable emulsions at 50°C and 
14 days.
-Enhanced bioaccessibility of 
astaxanthin and release of free fatty 
acids.

[153]

ROS: reactive oxygen species
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As a whole, polysaccharides like cellulose, chitosan, and alginate offer highly versatile, sustainable, and 
environmentally friendly alternatives for stabilizing Pickering emulsions, compared to synthetic ones. 
Optimizing the formulation parameters maximizes the emulsion’s stability and functionality, making them 
particularly suitable for use in food-related applications such as functional foods, packaging, and 3D 
printing.

Microorganisms

Microorganisms have also been used as stabilizing particles in Pickering emulsions [13, 154]. In particular, 
the use of lactic acid bacteria in Pickering emulsions offers safety due to their GRAS and QPS status, and 
allows adding value to the final product, making microorganisms the choice for food applications [13]. 
Unlike polysaccharides-based particles, microorganisms stabilize emulsions through the physical 
adsorption of microbial cells at the interface. Thus, the shape, size, and surface properties of bacteria are 
relevant characteristics for the effective stabilization of emulsions. Different geometric shapes (e.g., cocci, 
bacilli) determine their adsorption at the interface and, consequently, the stability of emulsions [155]. The 
sphericity of particles (the ratio of the surface area of a sphere of equal volume to the actual surface area of 
the particle) affects flow properties, heat/mass transfer, and wettability at the O/W interface [13].

Regarding surface properties, surface roughness increases the accessible surface area, and surface 
charge (determined by carboxyl, amino, and phosphate groups) is important in adsorption at the interface. 
High electronegativity can decrease bacterial adsorption at the interface, while heterogeneity in surface 
charge increases it [156]. In Gram-positive bacteria, such as lactic acid bacteria, the cell wall has a thick 
layer of peptidoglycan, lipoteichoic acids, and polysaccharides, and some of them bear S-layer proteins 
[157]. All these molecules constitute the outermost bacterial layer and allow reducing interfacial tension, 
improving Pickering emulsion stability [158]. Furthermore, hydrophobic bacteria have an affinity for each 
other and self-assemble at the O/W interface, allowing them to resist coalescence and deformation, 
stabilizing O/W emulsions for prolonged periods. That’s why they are the most suitable for stabilizing 
Pickering emulsions.

There are very few publications in which food-grade microorganisms are used as stabilizing particles 
in Pickering emulsions, and most of them are from recent years. Firoozmand and Rousseau [155] studied 
the stabilization of O/W emulsions by S. cerevisiae, Lactobacillus acidophilus, and Streptococcus 
thermophilus at different microorganisms’ concentrations, observing that some emulsions remained stable 
for more than four months. Lactic acid bacteria can exhibit a range of surface properties, including both 
hydrophilic and hydrophobic characteristics, depending on the specific strain and environmental 
conditions. To enhance their functionality, different methods aiming to modify the physicochemical 
properties of the bacterial cell wall have been proposed. These methods include fermentation, adsorption of 
macromolecules such as polysaccharides, polyphenols, and proteins, as well as chemical modifications. 
Jiang et al. [159] reported that surface modification of L. acidophilus by OSA improved emulsion stability. In 
addition, the surface properties of L. rhamnosus and L. delbrueckii subsp. lactis have been altered through 
enzymatic treatments and the adsorption of hydrophobic zein proteins, enhancing their performance as 
Pickering stabilizers.

Compared to other synthetic stabilizers, several lactic acid bacteria provide the added value of their 
probiotic properties, leading to additional health benefits. In addition, since several lactobacilli strains are 
naturally highly hydrophobic, they usually do not require prior treatments to enhance hydrophobicity, as is 
necessary with proteins and polysaccharides. The use of lactobacilli as stabilizers also aligns with the 
growing demand for natural and sustainable ingredients. However, the use of lactic acid bacteria as 
Pickering stabilizers is still very scarce. The main challenge lies in the careful selection of strains and the 
optimization of emulsion conditions to achieve the desired stability while maintaining bacterial benefits. 
This opens up significant opportunities for innovative applications in food technology.



Explor Foods Foodomics. 2024;2:408–42 | https://doi.org/10.37349/eff.2024.00044 Page 426

Applications of Pickering emulsions

Pickering emulsions offer a natural alternative to traditional emulsifiers without relying on synthetic 
additives and allowing for the encapsulation and controlled release of bioactive compounds. This supports 
relevant applications in the food and nutraceutical industries, paving the way for innovation in the 
formulation of functional foods, improving the delivery and absorption of nutrients and supplements, as 
well as formulating active packaging, suitable fat replacers, or even ink for 3D printing.

As a whole, the incorporation of Pickering emulsions into those products drives innovation, addressing 
consumer demand for safe, effective, and sustainable products. The state of the art and potential 
applications of Pickering emulsions in food and nutraceutical systems are provided in the next sections 
(Figure 3).

Figure 3. Food and nutraceutical applications of Pickering emulsions

Food and nutraceutical

Using Pickering emulsions in food-related applications has primarily focused on investigating the physico-
chemical properties that determine the stability of emulsions. However, the increased stability of Pickering 
emulsions supports the development of innovative processes to obtain healthier and sustainable food 
products, overcoming technological limitations and responding to the demands of increasingly exigent 
consumers.

Incorporation of Pickering emulsions in food formulation

The increased stability of Pickering emulsions provides systems retaining texture, appearance, and 
extended shelf-life in comparison with conventional emulsions. Besides that, the stabilization of oil droplets 
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with solid particles generates low-fat emulsions without sacrificing sensory attributes, which represents a 
powerful tool to reduce the amount of fat in food formulations while maintaining the desired texture and 
mouthfeel. In addition, the possibility of adjusting the size and composition of the stabilizing particles 
enables precise control over the texture and rheology of food products. This allows manufacturers to tailor 
the mouthfeel and consistency of different sauces (e.g., salad dressings, mayonnaise), extending shelf-life, 
and preventing ingredient separation. Furthermore, when the encapsulated compounds impair flavor or 
aroma, Pickering emulsions appear to be suitable systems to provide prolonged sensory experiences in 
food products. The incorporation of Pickering emulsions into mayonnaises also represents a suitable 
alternative to replace egg yolk, thus providing innovative products to vegan consumers. In this regard, 
Pickering emulsions stabilized by apple pomace particles, gum nanoparticles, curcumin-based solid 
dispersion particles, pea protein isolate microgels, and black garlic, have been applied for the development 
of edible mayonnaises [160–164], that demonstrated stability both during storage and against different 
environmental stresses.

In the formulation of sausages and related food products, Pickering emulsions can act as templates to 
develop low-viscosity liquid oil into soft gels providing interesting textures that can be used to reduce trans
- and/or saturated-fat content in food products, thus being healthier and oxidation-stable alternatives to 
saturated fatty acids [165–168]. In turn, the textural stability arising from the capacity of insoluble particles 
to maintain the structure of foam bubbles supports the application of Pickering emulsions in the 
formulation of aerated products (e.g., whipped creams, mousses, meringues) [169–173].

Considering that stabilizing particles can form a particle-particle network in the space between the 
droplets, effectively and irreversibly anchored at the oil-water interface, they play a crucial role as 
“structuring agents”, preventing droplets’ aggregation [174, 175]. Such gels or networks can impair 
enhanced stability and textural attributes when incorporated into structured foods (e.g., desserts, 
confectionery, bakery products, and ice cream) [176, 177].

Pickering emulsions in packaging materials

An innovative strategy involves the incorporation of Pickering emulsions into biopolymer matrices to 
create films, offering a promising alternative to petroleum-based packaging materials. The physico-
chemical features of active packaging can be improved by incorporating Pickering emulsions loaded with 
bioactive substances, which increases their hydrophobicity, and introduces new functionalities. When 
selecting Pickering particles for film production, it is crucial to consider their long-term stability and 
desired properties. For example, Zhang et al. [178] discovered that by carefully choosing the concentration 
of zein-pectin Pickering emulsions loaded with oregano essential oil, they could change the hydrophilicity 
of Konjac glucomannan films. This change results from the enhanced hydrogen bonding and hydrophobic 
interactions driven by the amino acids present in zein. Also, Fan et al. [45] found that incorporating 
cinnamon essential oil-loaded zein Pickering emulsion improved the hydrophobic characteristics of 
chitosan-gelatin films. This enhancement is attributed to the hydrophobic cinnamon essential oil droplets in 
the emulsion and the interactions between the film’s biopolymeric matrix and the Pickering emulsions, 
which partially replace water interactions. In this line, integrating Pickering emulsions loaded with 
hydrophobic compounds into biopolymer-based films can enhance their barrier properties by establishing 
a uniform network structure within the film matrix that delays the diffusion of water molecules [45, 178]. 
Regarding the impact of adding Pickering emulsions on the mechanical properties of biopolymer-based 
films, results vary according to the polymers used, the bioactive compound encapsulated, and the 
concentration of Pickering particles employed. On the one hand, Yang et al. [39] noted that incorporating a 
small quantity of cinnamon essential oil Pickering emulsion, stabilized by zein-gallic acid, into chitosan 
films led to enhanced mechanical properties. This improvement was linked to the dispersion of the low-
concentration emulsion within the films, which filled gaps and improved the polymer matrix’s continuity. 
Additionally, these authors suggested that introducing solid particles might facilitate the formation of new 
intermolecular hydrogen bonds with the film-forming matrix polymer, contributing to an increase in the 
cross-linking within the films [39]. Conversely, increased incorporation of Pickering particles may weaken 



Explor Foods Foodomics. 2024;2:408–42 | https://doi.org/10.37349/eff.2024.00044 Page 428

the hydrogen bonds within the film matrix and substitute strong polymer-polymer interactions with 
weaker polymer-oil interactions. This could result in structural discontinuities thus, affecting the tensile 
properties of the film, and potentially compromising its structural integrity during processing, 
transportation, and storage [179]. Based on these findings, the concentration of Pickering emulsion, droplet 
size, and distribution of the loaded Pickering emulsion within the film during casting should all be carefully 
examined when producing a biopolymer-based film containing Pickering emulsion for a specific 
application.

Furthermore, Pickering emulsions incorporating bioactive ingredients, such as essential oils or 
phenolic compounds, are designed to improve the film’s physico-chemical properties while also imparting 
antibacterial and antioxidant activities. These films work as active packaging systems, regulating the 
release of bioactive into the headspace throughout storage to prevent microbial growth and oxidative 
reactions, thus increasing the shelf-life of food products. Recent research has developed packaging films 
incorporating Pickering emulsion to preserve excellent postharvest quality and increase the shelf-life of 
mangoes [180], strawberries [181], and cherry tomatoes [182]. Likewise, biopolymer-based films 
containing Pickering particles have been successfully employed to enhance antimicrobial and antioxidant 
properties, as well as pH sensitivity, for potential applications in preserving and indicating freshness in 
pork meat [183] and fish [184]. Additionally, films incorporating Pickering emulsions loaded with essential 
oils exhibited antifungal activity, extending the shelf-life of sliced bread for up to nine weeks [185]. These 
recent findings from the last three years demonstrate the considerable potential of Pickering emulsion films 
for applications in food packaging, indicating ample opportunity for further innovation.

Pickering emulsions in 3D printed food products

The use of Pickering emulsions as building blocks to construct 3D scaffolds with customized structures and 
programmable functions is one of the latest trends in the applications of these emulsions, and food 
technology is one of the main applications’ fields [186]. Indeed, this has emerged as an innovative approach 
with an increasing number of reports in the latest years (Tables 1 and 2). Some of the applications include 
their use as fat replacers for decorating pastry [59, 64, 187–193].

Pickering emulsions are excellent systems to innovate in food products, including their formulation, 
processing, and product development, enabling the creation of healthier, more stable, and functional food 
options. The compatibility of Pickering emulsions with 3D-printing technology also opens up possibilities to 
create complex and tailorable food structures, that can be incorporated into different sectors (e.g., 
functional foods, personalized nutrition). This enables the production of food products, not only stable and 
nutritious but also aesthetically appealing, which can be particularly beneficial in gastronomy, thus 
transforming the culinary landscape by merging technology with traditional food preparation.

Pickering emulsion for nutraceutical applications

The capacity of Pickering emulsions to encapsulate bioactive compounds is somehow a “conservative” 
approach, extending upon the capabilities of conventional emulsions in this regard. However, the superior 
stability of Pickering emulsions makes them suitable delivery systems for bioactives with low 
bioaccessibility, ensuring their safe arrival to the intestine [194]. Comprehending the release capacity and 
gastrointestinal stability of lipophilic compounds encapsulated within Pickering emulsions is paramount, 
particularly in their potential application as nutraceutical products. The digestion process of Pickering 
emulsions varies based on their intended objectives, either to delay lipolysis, thereby aiding in post-meal 
satiation as a strategy to reduce calorie intake, or to facilitate the delivery of bioactive compounds. 
Therefore, it is essential to design Pickering emulsions that tune factors like particle concentration, particle 
shape and size, and oil fraction to create Pickering particles with high desorption energy that reduce lipid 
release [14]. Conversely, when designing Pickering emulsions for the delivery of bioactive compounds, it is 
important to ensure that the emulsion provides sufficient stability for the bioactive compounds to remain 
intact during passage through the gastrointestinal tract and enables their release upon reaching the 
intestine for absorption [195]. In this regard, the range of investigated low bioaccessible compounds 
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remains somewhat limited, primarily focusing on β-carotenes, curcumin, lycopene, lutein, ω-3 fatty acids, 
essential oils, and certain vitamins (A, D3, E, K) [194] (Tables 1 and 2). However, there is limited 
understanding regarding the actual absorption of these compounds through intestinal cells, emphasizing 
the need for future in vivo and in vitro studies to address this gap. Moreover, given that most studies have 
primarily simulated conditions only up to the upper gastrointestinal stage, there has been limited 
exploration of the digestion of Pickering emulsions during colonic fermentation and their potential 
implications for human health through interactions with gut microbiota [196]. This is particularly crucial 
for those Pickering emulsions that maintain remarkable stability throughout gastrointestinal conditions, 
potentially reaching the colon in an undigested form. In a recent study, Hu et al. [196] observed that particle 
size influenced lipid digestibility, with smaller particles showing increased digestibility and release of 
bound phenolics during gastrointestinal digestion and colonic fermentation. The released phenolics 
displayed antioxidant activity even after colonic fermentation and were found to enhance the production of 
short-chain fatty acids linked to intestinal health [197]. Moreover, the released phenolics from Pickering 
emulsion stabilized by media-milled black rice particles were observed to modulate the composition of 
intestinal flora, suppressing harmful bacteria while promoting the growth of beneficial bacteria [196, 197]. 
These findings underscore the importance of exploring deeper into gastrointestinal digestion and 
examining the effects of Pickering emulsions on gut microbiota, which can in turn influence biological 
activity. This highlights the considerable room for innovation in this field.

Conclusions
Pickering emulsions revolutionized different aspects of food science and technology, addressing several 
challenges faced by the food industry, and making them valuable assets in the pursuit of sustainable and 
innovative food solutions. Their potential extends far beyond that of conventional emulsions offering 
sustainable solutions for delivery, fat replacers, film-makers and 3D food printing applications.

The future of Pickering emulsions in food and nutraceutical technology holds significant potential for 
innovation and enhanced functionality. One of the most promising areas is the delivery of hydrophobic 
compounds (e.g., vitamins, essential oils, and bioactive lipids), which are often challenging to incorporate 
into aqueous food systems. Advancements in understanding the interfacial properties of the different 
natural stabilizers addressed in this work (proteins, polysaccharides, microorganisms) will further 
optimize the stability and delivery efficiency of these emulsions. Another impactful consideration is the 
development of smart Pickering emulsions responding to environmental triggers (pH, temperature 
changes). This capability significantly contributes to the controlled release of encapsulated nutrients, 
including targeted release in specific organs and topical applications (e.g., biomedical applications, where 
targets may be at different temperatures, temperature-responsive stabilizing agents might be particularly 
useful).

Beyond delivering hydrophobic compounds, Pickering emulsions are poised to revolutionize cutting-
edge food applications by offering new textures, flavors, and functional properties. The ability to create 
stable emulsions with natural, clean-label ingredients aligns with consumer demand for healthier and more 
sustainable food products. Future research may focus on tailoring the sensory attributes of Pickering 
emulsions to mimic or enhance traditional food textures (e.g., creaminess, juiciness), while maintaining 
nutritional value. Moreover, the incorporation of bioactive compounds into Pickering emulsions can 
transform them into multifunctional ingredients, providing not only nutritional benefits but also improving 
food safety and shelf life through antimicrobial properties. As the field advances, collaborations between 
food scientists, nutritionists, and material scientists will be crucial in developing innovative Pickering 
emulsion-based products that meet the evolving needs of the food and nutraceutical industries.
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