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Abstract
This article explores the significant impact that artificial intelligence (AI) could have on food safety and 
nutrition, with a specific focus on the use of machine learning and neural networks for disease risk 
prediction, diet personalization, and food product development. Specific AI techniques and explainable AI 
(XAI) are highlighted for their potential in personalizing diet recommendations, predicting models for 
disease prevention, and enhancing data-driven approaches to food production. The article also underlines 
the importance of high-performance computing infrastructures and data management strategies, including 
data operations (DataOps) for efficient data pipelines and findable, accessible, interoperable, and reusable 
(FAIR) principles for open and standardized data sharing. Additionally, it explores the concept of open data 
sharing and the integration of machine learning algorithms in the food industry to enhance food safety and 
product development. It highlights the METROFOOD-IT project as a best practice example of implementing 
advancements in the agri-food sector, demonstrating successful interdisciplinary collaboration. The project 
fosters both data security and transparency within a decentralized data space model, ensuring reliable and 
efficient data sharing. However, challenges such as data privacy, model interoperability, and ethical 
considerations remain key obstacles. The article also discusses the need for ongoing interdisciplinary 
collaboration between data scientists, nutritionists, and food technologists to effectively address these 
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challenges. Future research should focus on refining AI models to improve their reliability and exploring 
how to integrate these technologies into everyday nutritional practices for better health outcomes.
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Food, food contaminants, computing infrastructure, data analysis, machine learning, artificial intelligence, 
microbiome, health risks

Introduction
The field of nutrition is undergoing a significant transformation driven by the growing importance of data 
and artificial intelligence (AI) [1]. These advances are revolutionizing the way we analyze, understand, and 
adapt dietary practices. AI techniques enable us to unlock the intricate network of relationships between 
food and health by enabling the analysis of vast amounts of data. These data can be diverse, including 
information from clinical studies, population surveys, biometric measurements, and individual diet 
behavior. By identifying meaningful relationships and patterns within this data, AI offers a powerful tool for 
personalizing dietary recommendations and optimizing nutritional strategies [1–3]. However, simply 
possessing significant computing power is not sufficient to fully unlock the potential of AI in nutrition. To 
efficiently manage and analyze the ever-growing volume of data, robust data analysis pipelines are 
essential. These pipelines require careful engineering to ensure continuous processing of new data streams. 
Data operations (DataOps) emerge as a key approach to address these challenges. It focuses on enhancing 
efficiency and collaboration within an organization’s data management processes [4]. DataOps is applying 
development and operations (DevOps) principles to data management. It aims to automate data pipelines 
and improve collaboration between teams to deliver reliable and timely data for business needs. It focuses 
on collaboration, automation, and continuous processes to deliver software faster and more reliably. 
DataOps aims to integrate all aspects of the data lifecycle, including people, processes, and technologies. 
This holistic approach tackles the challenges associated with data collection, processing, management, and 
distribution. Similar to the DevOps approach used in software development, DataOps fosters collaboration 
and breaks down silos between teams. This streamlined communication facilitates a smoother and more 
responsive flow of data.

This article outlines the significant impact that AI has had on nutrition, highlighting the crucial role 
played by computing infrastructures in analyzing such data. It explores how AI can be utilized to enhance 
our understanding of the relationship between food and health, with particular emphasis on disease risk 
prediction, diet personalization, dietary behavior analysis, and the development of novel food products. 
Furthermore, it examines the pivotal role of high-performance computing (HPC) infrastructures and the 
DataOps approach in optimizing nutritional data analysis. Interdisciplinary collaboration is essential for 
driving advancements in AI within the field of nutrition. Data scientists, nutritionists, and food 
technologists each bring unique expertise that is crucial to the successful development and application of AI 
models. Data scientists contribute advanced machine learning (ML) and data analytics techniques, while 
nutritionists provide insights into human metabolism and dietary needs. Food technologists ensure that 
practical aspects of food production and quality control are taken into account. One successful example of 
such collaboration is the METROFOOD-IT project, which integrates expertise from these diverse fields to 
create AI-driven models to improve food safety, quality, and personalized nutrition. This interdisciplinary 
approach fosters innovation and ensures that AI models are scientifically robust and practically applicable 
across the agri-food sector.

Background: the interplay between food, health, and technology
Understanding the intricate relationship between food and health is essential. This relationship directly 
impacts individual well-being and quality of life. Diet and nutrition play a central role in preventing chronic 
diseases and maintaining optimal health. A balanced and varied diet provides the body with the essential 
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nutrients it needs to function properly and protect itself against chronic conditions such as cardiovascular 
diseases, type 2 diabetes, obesity, and certain cancers. However, this relationship is complex and 
multifaceted, influenced by a variety of factors. These factors include accessibility and availability of healthy 
foods, cultural, socioeconomic, and environmental habits, as well as advertising and the prevalence of 
highly processed foods. In addition, scientific research and technological innovation play a vital role in the 
development of new strategies, treatments, and interventions to address challenges related to food and 
health. These advancements aim to promote a healthy and sustainable lifestyle for all, highlighting the 
importance of a holistic approach to nutrition and disease prevention [2].

The gut microbiota: a hidden player in health

The intricate relationship between food and health is closely intertwined with the human microbiota, the 
vast community of microorganisms residing within our bodies, primarily in the gut. This complex 
ecosystem, composed of bacteria, viruses, fungi, and other microorganisms, collectively known as the gut 
microbiome, plays a crucial role in our health, influencing numerous physiological, metabolic, and 
immunological aspects. This microbial community interacts with the human body in intricate ways, 
impacting physiological processes and immune responses. For instance, the gut microbiota aids in breaking 
down dietary fibers and other complex carbohydrates that human enzymes cannot digest on their own. 
This breakdown process produces short-chain fatty acids (SCFAs) and other metabolites that exert 
beneficial effects on intestinal health and systemic metabolism [3]. Diet has a fundamental influence on 
modulating the gut microbiota. The types and quantities of food we consume significantly impact the 
composition and diversity of the microbiota, with direct consequences for our health. For example, a diet 
rich in plant fibers promotes the growth of beneficial bacteria in the colon, while excessive intake of foods 
high in saturated fats and sugars can disrupt the balance of the microbiota and contribute to the 
development of pathological conditions. Conversely, the microbiota can influence our metabolic response to 
the foods we consume, contributing to digestion, nutrient absorption, and the production of bioactive 
metabolites that can have either positive or negative effects on our health [4]. Furthermore, a personalized 
approach to nutrition, based on understanding the individual’s specific microbiota and metabolic needs, 
could represent the future of preventive and personalized medicine. This approach would allow individuals 
to optimize their health through targeted and individualized dietary choices. Various therapies targeting 
the microbiome are being explored to regulate the human microbiome, including dietary intervention, food 
supplements, antibiotics, probiotics, prebiotics, synbiotics, postbiotics, psychobiotics, bacteriophages, and 
fecal microbiota transplantation [5].

The rise of ultra-processed foods and their impact on health

The increasing trend of urbanization, changing lifestyles, the demand for convenience, and aggressive 
marketing by food companies have significantly impacted food quality. Over the past decades, there has 
been a dramatic rise in the global consumption of processed foods [6]. Ultra-processed foods are food 
products that undergo extensive industrial processes and often contain artificial ingredients, chemical 
additives, and high amounts of sugars, saturated fats, and salt. These foods are frequently devoid of 
essential nutrients and rich in empty calories, making them unhealthy when consumed in excess. The NOVA 
classification system categorizes foods into groups based on the extent of processing for human 
consumption. Ultra-processed foods belong to one of the NOVA categories and typically have a long list of 
ingredients (five or more) [7]. These ingredients often include oils, salt, and preservatives commonly used 
in processed foods, but they also include additives that enhance and mask flavors and odors and alter the 
final consistency of the product. Excessive consumption of ultra-processed foods has been linked to various 
health risks, including an increased risk of obesity, type 2 diabetes, heart diseases (HDs), hypertension, and 
other chronic conditions. These foods can also contribute to digestive disorders, chronic inflammation, 
metabolic imbalances, and alterations in the gut microbiota. An unhealthy diet has a significant impact on 
health, surpassing the effects of alcohol, tobacco, drugs, and unsafe sexual practices. This dietary imbalance 
is especially problematic in African countries, where malnutrition and obesity co-exist, contributing to a 
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dual burden of disease. Poor diet is also a major factor in the rise of noncommunicable diseases (NCDs) 
such as coronary HD (CHD) and type 2 diabetes. By contrast, adopting a healthy diet and lifestyle can 
reduce the genetic risk of CHD by nearly 50%, establishing diet quality as a crucial, modifiable risk factor 
for chronic diseases. Advancements in nutrition science have enabled comprehensive databases, such as 
USDA’s FoodData Central and Denmark’s Frida, which provide detailed nutritional profiles. These resources 
facilitate studies on single nutrients and their effects, leading to key findings, such as the negative impact of 
trans fats and the cardiovascular benefits of omega-3 fatty acids, legumes, and nuts. However, focusing 
solely on individual nutrients has limitations, as it fails to consider the interactions between compounds in 
whole foods. For instance, studies initially linked β-carotene to a higher risk of prostate cancer, but later 
research attributed this to specific foods like papaya, not β-carotene itself. This highlights the first 
paradigm: nutrients should be studied within the context of whole foods and their complex interactions. 
Traditional nutrition research, focused on vitamins and other essential micronutrients, has identified 
around 150 key nutrients tracked in most databases. However, foods contain over 139,000 other 
compounds, many of which have significant health implications, such as polyphenols. The second paradigm, 
therefore, is the importance of documenting the “dark matter” of nutrition—the diverse array of bioactive 
compounds that extend beyond well-known nutrients. The third paradigm involves understanding how 
food compounds interact with human proteins, influencing health through mechanisms that are best 
understood using a network approach. Unlike reductionist methods, network science enables a more 
holistic view of how these compounds modulate biological processes, including nutrient bioavailability, the 
food matrix, and interactions with commensal microbes. This network perspective aligns with evolutionary 
biology, as it considers how human diets have co-evolved with various life forms [8].

Fraud prevention and traceability

Fraud prevention and traceability are critical aspects of ensuring food quality, safety, and transparency, and 
maintaining consumer trust in the food supply chain. In recent years, there has been a significant focus on 
this field driven by technological advancements and increasing consumer demand for transparency and 
safety [9]. Consumers are increasingly interested in knowing the origin, supply chain, and production 
practices behind the food they eat. This access to information empowers them to make more informed 
choices, such as preferring products from suppliers who adopt sustainable practices or adhere to specific 
quality standards [10]. Traceability systems play a vital role in the prompt identification and removal of 
defective or contaminated products from the market, ensuring that consumers receive high-quality 
products that meet safety standards. The Internet of Things (IoT) and sensor technology have enabled the 
development of smart devices and systems that monitor various aspects of food production and 
distribution in real-time [11]. These technologies allow for continuous monitoring of environmental 
conditions, such as temperature, humidity, and location, throughout the food supply chain. This continuous 
monitoring helps to ensure the integrity and safety of food products from farm to fork [12]. Another 
important aspect to consider is the potential negative impact on human health of dietary exposure to food 
contaminants, like microplastics [5]. These can derive from food packaging and their release can be 
enhanced by high temperatures, material age, liquid contact, and mechanical stress. To prevent possible 
risks to human health, biocompatible and eco-friendly packaging methods could be used as alternatives to 
conventional plastic-based packaging. In parallel, highly-accurate and standardized detection methods 
should be implemented at industrial level in quality assessment tests, to improve production processes and 
reduce as much as possible food contamination from contact materials. Metrology, in combination with 
large-scale data analysis, can play a key role in this framework, providing reliable and traceable tools for 
the physico-chemical characterization of food samples and the extraction of relevant data for contaminant 
quantification [13]. An example of application is the determination of microplastic concentrations, size 
distributions, and polymer types in various food matrices, starting from reference materials for the 
accurate calibration.
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Data and computing infrastructure

In today’s data-driven world, organizations are increasingly reliant on robust data and computing 
infrastructure to effectively manage, analyze, and extract insights from vast amounts of information. This 
infrastructure plays a crucial role in enabling data-driven decision-making, optimizing operations, and 
driving innovation across various domains [14]. The smart data model is a conceptual framework that 
outlines the principles and strategies for building an intelligent and efficient data management system. It 
emphasizes the integration of data governance, data quality, data security, and data analytics to create a 
unified and actionable data ecosystem [15]. Core principles of the smart data model are listed below. Data 
governance (establishing clear ownership, policies, and procedures): it plays a pivotal role in ensuring the 
integrity, consistency, and compliance of data assets throughout their lifecycle. By establishing clear 
ownership, policies, and procedures, organizations can effectively manage data assets, ensuring adherence 
to regulatory requirements and fostering a culture of data stewardship. Data quality (maintaining accuracy, 
completeness, and relevance): it is important for reliable and trustworthy data analysis. The smart data 
model emphasizes the importance of maintaining data accuracy, completeness, and relevance throughout 
its lifecycle. This involves implementing data quality checks, data cleansing techniques, and data validation 
processes to ensure that data remains accurate, consistent, and fit for purpose. Data security (protecting 
sensitive data from unauthorized access): it is a critical aspect of the smart data model, safeguarding 
sensitive data from unauthorized access, modification, or destruction. Organizations must implement 
robust security measures, including access controls, encryption techniques, and data breach prevention 
strategies, to protect sensitive data and maintain the integrity of their data ecosystem. In AI applications for 
nutrition, data security is particularly crucial due to the sensitive nature of personal health information. 
Specific strategies include using end-to-end encryption for data transmission, anonymizing datasets to 
protect individual privacy, and implementing strong user authentication methods. Technologies such as 
homomorphic encryption, which allows data to be analyzed without being decrypted, and secure multi-
party computation, which enables collaborative data analysis without sharing raw data, are also essential to 
ensure privacy in these applications. Furthermore, conducting regular audits and penetration testing can 
help identify vulnerabilities and bolster the security infrastructure. Privacy and ethical considerations for 
AI applications in nutrition require special attention to privacy and ethical concerns. The collection and 
processing of personal health data must comply with regulatory frameworks such as General Data 
Protection Regulation (GDPR) in the European Union. Ethical concerns include ensuring informed consent 
for data usage, minimizing bias in AI models to prevent discriminatory outcomes, and ensuring 
transparency in how data is used. Establishing clear data privacy policies and maintaining transparency 
with stakeholders about data collection and usage practices are critical to fostering trust. Additionally, 
adherence to privacy by design principles, where privacy considerations are integrated into the technology 
from the outset, further enhances the ethical use of data in AI-driven nutrition applications. Data analytics 
(leveraging advanced techniques for meaningful insights): it plays a central role in extracting meaningful 
insights from data. The smart data model encourages the utilization of advanced analytical techniques, such 
as ML, AI, and statistical analysis, to uncover patterns, trends, and anomalies within data sets. In the context 
of nutrition, AI algorithms must also be explainable and interpretable to ensure that healthcare 
professionals and consumers can trust the recommendations generated. Explainable AI (XAI) techniques 
help in understanding the rationale behind dietary suggestions and can address concerns about “black box” 
models, which are often opaque in their decision-making processes. The advancement of AI in the field of 
nutrition relies heavily on interdisciplinary collaboration. Bringing together data scientists, nutritionists, 
and food technologists is essential to ensure that AI models are both scientifically valid and practically 
applicable. Data scientists provide expertise in ML, data analytics, and computational methods, while 
nutritionists contribute critical insights into dietary needs, human metabolism, and health impacts. Food 
technologists play a key role in understanding the practical aspects of food production and quality. An 
example of successful collaboration is the METROFOOD-IT project, which integrates expertise from these 
various disciplines to develop AI-driven models that enhance food safety, quality, and personalized 
nutrition. This type of collaborative approach ensures that AI technologies are designed with a deep 
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understanding of the complexities of human nutrition, leading to more effective and trustworthy outcomes. 
Additionally, regular workshops and collaborative sessions help in aligning the goals across disciplines, 
which is crucial for the successful implementation of AI innovations in the agri-food sector. Implementing a 
smart data model offers a multitude of advantages. It fosters improved data accessibility and usability, 
making high-quality information readily available to diverse stakeholders. This empowers collaboration 
and innovation based on a shared understanding of the data [16]. Furthermore, smart data models lead to 
enhanced operational efficiency. By streamlining data management processes, they eliminate data silos and 
duplication of efforts. This optimizes data utilization and reduces the burden on data management teams 
[17]. Smart data models also contribute to risk mitigation and compliance. By strengthening data security 
protocols and embedding privacy considerations at every stage, smart data models ensure that 
organizations comply with data privacy regulations, such as GDPR and Health Insurance Portability and 
Accountability Act (HIPAA). This minimizes risks associated with data breaches and unauthorized access 
[18]. Ultimately, smart data models empower organizations to make data-driven decisions. By providing 
reliable data insights, they enable informed decision-making, leading to improved overall business 
performance [19].

HPC in AI for nutrition

HPC infrastructures are essential for handling the vast and complex datasets involved in AI applications for 
nutrition. HPC systems provide the computational power needed to process large-scale nutritional data, run 
sophisticated AI algorithms, and conduct simulations that would otherwise be infeasible on standard 
computing systems. These infrastructures are particularly important in tasks such as disease risk 
prediction, diet personalization, and food product optimization, where the analysis of multi-dimensional 
data, such as genomic, microbiome, and epidemiological data, requires high-speed processing and 
substantial storage capacity. One example of an HPC system used in this context is ReCaS-Bari, which 
provides computational resources for analyzing large datasets in nutrition and food safety studies. Another 
prominent platform is the CRESCO cluster at ENEA, which supports advanced AI models for processing 
genomic and microbiome data to identify patterns that correlate diet with health outcomes. These HPC 
platforms enable the training of deep learning models, which can analyze data at unprecedented speeds, 
reducing the time needed for insights from weeks to hours. For example, in personalized nutrition research, 
HPC systems allow the integration of multiple datasets (e.g., dietary intake, gut microbiota, and genetic 
information) to provide tailored dietary recommendations. This computational power enhances the 
accuracy and timeliness of AI predictions, ultimately leading to more effective interventions in public health 
and personalized medicine.

A framework for data management and analytics

GAIA-X is a comprehensive data platform that provides a unified environment for managing, analyzing, and 
visualizing data at scale according to European data strategy [20, 21]. It offers a suite of tools and 
functionalities that cater to the needs of various data professionals, from data engineers to data scientists. 
Key features of GAIA-X: (1) data ingestion and integration: it seamlessly ingests data from various sources, 
including structured, semi-structured, and unstructured data formats; (2) data storage and management: it 
provides secure and scalable storage for large volumes of data, enabling efficient data organization and 
retrieval; (3) data processing and transformation: it offers robust data processing capabilities to clean, 
transform, and prepare data for analysis; (4) data analytics and visualization: it includes advanced data 
analytics tools and visualization capabilities to uncover insights and patterns from data; (5) ML and AI: it 
supports the integration of ML and AI algorithms for predictive modeling and intelligent data analysis. 
Benefits of using GAIA-X are: (1) accelerated data-driven insights: streamlines the process of extracting 
meaningful insights from data, enabling faster and more informed decision-making; (2) enhanced 
collaboration and innovation: fosters collaboration among data professionals, facilitating knowledge 
sharing and innovation; (3) scalable and cost-effective solution: provides a scalable and cost-effective data 
management solution that can accommodate growing data volumes and evolving business needs; (4) 
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empowered data professionals: equips data professionals with the tools and functionalities they need to 
effectively manage, analyze, and derive value from data.

The smart data model and data platform GAIA-X provide a solid foundation for organizations to build a 
robust and intelligent data management ecosystem. By adopting these frameworks and tools, organizations 
can effectively harness the power of data to drive innovation, optimize operations, and gain a competitive 
edge in the data-driven world.

Methods
Data analysis is crucial for extracting valuable insights from the agri-food sector. However, two key 
challenges hinder this process: data availability and traceability. Access to high-quality data is essential for 
any successful analysis. The open science approach, which promotes transparency and research sharing, 
plays a fundamental role in this area. Once data is available and traceable, advanced analysis techniques 
such as ML come into play. ML has proven extremely useful in the food industry, finding applications in 
various areas to enhance production, distribution, quality, and safety of food products. Next subsections 
will focus specifically on open science and how ML is used to analyze data in the agri-food sector.

Open science

Open science aims to increase the accessibility, reproducibility, and impact of scientific research by 
promoting collaboration, transparency, and inclusivity in the research process [22]. It involves sharing 
research findings, data, methodologies, and other research outputs openly and transparently, often using 
digital technologies and the internet. It is instead a much broader concept that also encompasses, for 
example, openness to raw and processed research data [open data (OD)], educational materials (open 
educational resources), the use of open methodologies throughout the research cycle (open methodology), 
the use of open-source software (open source), and the adoption of open practices even in peer review to 
verify the quality of scientific work (open peer review). Due to the vast quantity and complexity of data, as 
well as the speed at which this data is generated, the so-called findable, accessible, interoperable, and 
reusable (FAIR) principles have been implemented to ensure uniform data management methods and open 
access to the data [23, 24]. Data reusability is ensured, for example, through documentation with embedded 
instructions to maintain reusability while minimizing the number of required files. Additionally, the data is 
in a common format and can be read using widely available software (open-source or commercial). Data 
and metadata should be easily readable by both humans and machines. Specifically, the use of machine-
readable metadata is crucial for the automatic discovery of datasets and services. Once the user has found 
the requested data, the accessibility of OD implies that data are easily retrievable and usable by anyone 
with an interest, without significant limitations. These data are made available without restrictions or with 
minimal restrictions on access and use, allowing users to utilize them for various purposes such as 
research, analysis, and application development. To ensure interoperability, individual datasets and results 
can be described using established field-specific vocabularies, standards, formats, and methodologies, such 
as GUM, OBO, DICOM, NetCDF, HDF5, CityGML, INSPEC, ISO 9001 [25–32]. The adoption of a FAIR approach 
to data management and the development of digital services supporting the agri-food sector will facilitate 
the development of data-driven methods and machine/deep learning models based on the availability of 
data to be analyzed with technologies based on big data analytics. Data acquisition is made possible 
through automation systems to maximize efficiency and result from reproducibility. The generated or 
collected data can be made available through defined applications and repositories that make the data 
freely accessible both through machine-to-human interactions and machine-to-machine interactions, using 
user interfaces and application programming interfaces (APIs) respectively. OD sharing is becoming 
increasingly relevant in the food industry, thanks to its benefits for supply chain efficiency, food safety, and 
sustainability. However, several barriers must be addressed, which can be overcome with targeted 
strategies. Some successful cases of OD sharing in the agri-food sector include: IBM Food Trust (IBM Food 
Trust. Retrieved from https://www.ibm.com/it-it/products/supply-chain-intelligence-suite/food-trust), 
Open Food Facts (Open Food Facts. About Open Food Facts, retrieved from https://world.openfoodfacts.

https://www.ibm.com/it-it/products/supply-chain-intelligence-suite/food-trust
https://www.ibm.com/it-it/products/supply-chain-intelligence-suite/food-trust
https://www.ibm.com/it-it/products/supply-chain-intelligence-suite/food-trust
https://www.ibm.com/it-it/products/supply-chain-intelligence-suite/food-trust
https://world.openfoodfacts.org/
https://world.openfoodfacts.org/
https://world.openfoodfacts.org/
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org), and Food Integrity (Food Integrity project. About Food Integrity, retrieved from https://www.
foodintegrity.org/). The IBM Food Trust initiative, based on blockchain technology, is a significant example 
of OD sharing in the food industry. This platform allows supply chain stakeholders, from producers to 
retailers, to share real-time data regarding food traceability. Companies such as Walmart, Nestlé, and 
Unilever participate in this initiative. The benefits include increased transparency, reduced food waste, and 
improved food safety. For instance, by sharing data on Food Trust, Walmart reduced the time needed to 
trace the origin of a batch of mangoes from days to just seconds, improving crisis management during 
health scares. Open Food Facts is an open-source platform that collects and shares information about 
ingredients, nutritional values, and other characteristics of food products from around the world. This 
project is particularly important for consumers, as it allows full transparency on available products, 
promoting more informed and healthy food choices. Additionally, it enables companies to improve the 
quality of their products through shared data on consumer habits and preferences. The benefits introduced 
by this initiative include increased transparency, greater consumer engagement, and improved product 
quality. The Food Integrity project, funded by the European Union, has promoted the sharing of scientific 
data to tackle food fraud and improve food traceability. Involving over 60 organizations across Europe, the 
project created an accessible database that enhances quality control and the prevention of fraudulent 
practices in the food supply chain. Despite the success of some initiatives, OD sharing in the food industry 
faces several challenges. The most significant of these is the protection of intellectual property. Companies 
are often reluctant to share data for fear of losing competitive advantages. Data on production processes, 
recipes, and suppliers often represent strategic information that could be used by competitors to gain a 
market edge. Blockchain and other secure technologies can help ensure that shared data is only accessible 
to authorized parties, preserving confidentiality when necessary. For example, IBM Food Trust allows 
selective data sharing, where only relevant and non-sensitive information is visible to specific stakeholders. 
Another recurring challenge is data interoperability and standardization, which can facilitate sharing 
through open protocols. Organizations such as GS1 (GS1 Global. About GS1 standards, retrieved from 
https://www.gs1.org), which develops global standards for product information communication, are 
working to promote interoperable and universally accepted data formats. OD sharing may also pose 
security and privacy risks, especially when it comes to personal or commercially sensitive data. This is 
particularly relevant in the context of regulations like the GDPR in Europe, which protects consumers’ 
personal data. In addition to adopting advanced security protocols, such as encryption, another approach is 
“data minimization”. Companies can share only the data strictly necessary to achieve the sharing objective. 
Moreover, adopting frameworks like “data trust” can ensure responsible governance of shared data. OD 
sharing may require significant investments in IT infrastructure and qualified human resources to ensure 
the quality and security of shared data. Public-private partnerships can help reduce implementation costs. 
For example, projects like Food Integrity and Open Food Facts are partly funded by public grants and 
supported by volunteer communities, making data sharing more accessible.

Practical application of DataOps and FAIR principles

The practical application of DataOps in the nutrition sector is realized through the automation and 
optimization of data pipelines that manage complex, multi-source datasets. For instance, in AI-driven 
nutrition research, DataOps techniques ensure that data from clinical trials, epidemiological studies, and 
public health databases are continuously integrated, cleaned, and pre-processed for analysis. This approach 
enhances the efficiency of data processing, reduces errors, and accelerates the delivery of insights. In the 
context of HPC infrastructures, DataOps allows for the seamless flow of data between storage, processing, 
and analysis, supporting real-time data analytics and AI model training. Similarly, the implementation of 
FAIR principles ensures that nutritional data is managed in a way that facilitates open science and 
interoperability. For example, nutritional datasets are stored in standardized formats that are easily 
accessible to both researchers and machines. This allows AI models to access and process data without the 
need for extensive manual intervention. In the METROFOOD-IT project, the adoption of FAIR principles has 
enabled the creation of an OD platform that supports the sharing of food quality and traceability data across 
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different stakeholders in the agri-food sector, fostering collaboration and transparency. This open-access 
data model has proven crucial in integrating diverse datasets, from food production data to health 
outcomes, making it possible to train AI systems on reliable and standardized data. In real-world 
applications, the principles of DataOps and FAIR have been successfully implemented in projects like 
METROFOOD-IT, where they play a crucial role in ensuring efficient data flow and interoperability. In the 
METROFOOD-IT project, FAIR principles guide the management of large datasets related to food quality, 
safety, and traceability. By structuring data to be FAIR, the project ensures that the data can be shared 
seamlessly across different stakeholders, from food producers to researchers. For instance, food safety data 
generated from IoT sensors is stored in standardized formats that allow both human and machine 
interpretation, which enhances real-time decision-making. However, implementing these strategies comes 
with challenges. One major obstacle in adopting FAIR principles is the heterogeneity of data—different 
stakeholders often use different data formats, which complicates integration. To overcome this, 
METROFOOD-IT adopted common standards for metadata and data formats, ensuring that all participants 
adhered to a unified framework for data entry and retrieval. In the context of DataOps, the automation of 
data pipelines within METROFOOD-IT allowed for real-time processing of data from multiple sources. A key 
challenge here was ensuring data quality at each stage of the pipeline. This was addressed by implementing 
continuous monitoring and validation processes that automatically flagged any inconsistencies or errors in 
the data.

Machine learning

ML has proven to be extremely useful in the food industry, finding applications in various areas to enhance 
food production, distribution, quality, and safety. ML can also be employed to personalize individuals’ diets, 
using data on their dietary preferences, nutritional needs, and physiological characteristics to suggest 
personalized meal plans that improve health and well-being. There are several types of data used in the 
field of ML in the food industry for example nutritional data, genomic and microbiome data, food 
contaminant, or environmental data [33]. Combining different types of data can provide a more 
comprehensive understanding of food processes and consumer behaviors, enabling the development of 
predictive models and innovative solutions to improve food production, distribution, and consumption. The 
data may include information on raw materials, production parameters, sensor readings, quality inspection 
results, and historical records. Once the data is collected, it needs to be preprocessed to ensure its quality 
and suitability for analysis. Data analysis is crucial for extracting valuable insights from the agri-food sector 
[34, 35]. The next step is to select appropriate ML models for the analysis task at hand. This may involve 
choosing between supervised, unsupervised, or semi-supervised learning approaches, depending on the 
nature of the data and the objectives of the analysis [36, 37]. In supervised learning, the model is trained on 
a labeled dataset, where each example is associated with an input and an output. During training, the model 
learns the mapping between inputs and outputs, allowing it to make predictions on new, unseen data. 
Common tasks in supervised learning include classification (assigning inputs to discrete categories) and 
regression (predicting continuous values) [38]. Using regression analysis, one could build predictive 
models to understand how different dietary factors contribute to health outcomes. This information can be 
used to inform public health interventions and dietary guidelines aimed at reducing the prevalence of 
obesity and related chronic diseases. An example of classification may include, for example, the origin of 
food products that are strictly connected with their quality like protected designation of origin (PDO) foods, 
which can be valuable for quality control and certification purposes in the food industry. In unsupervised 
learning, the model is trained on an unlabeled dataset, where only the input data is available. Common 
tasks in unsupervised learning include clustering and dimensionality reduction [39]. An example of 
clustering in the context of food and health could involve categorizing food products based on their 
nutritional profile and health effects, while dimensionality reduction techniques highlight relevant features 
in a complex dataset. For example, it is possible to identify, using ML models, a cluster of foods high in 
saturated fats and simple sugars, which are associated with a higher risk of obesity and HD, and another 
cluster of foods high in fiber and protein, which are considered healthier. Semi-supervised learning lies 
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between supervised and unsupervised learning [40]. Once the models are selected, they need to be trained 
on the available data. During training, the models learn to identify patterns and relationships in the data 
that are indicative of production issues or quality deviations. After training, the models need to be 
evaluated to assess their performance and generalization ability. In ML, evaluation metrics are used to 
assess the performance of a model on a given dataset. The choice of evaluation metrics depends on the 
nature of the problem (e.g., classification, regression, and clustering) and the specific goals of the analysis. 
Once the models are trained and evaluated, they can be deployed into production systems for real-time 
monitoring and analysis. Employing ML in the realm of anti-fraud and food traceability offers multiple 
opportunities to enhance food safety and protect consumers from fraud and contamination. ML models can 
be trained to recognize patterns and anomalies in food-related data, enabling the identification of potential 
cases of food fraud, such as food counterfeiting, the addition of undeclared ingredients, fraudulent labeling, 
or the presence of contaminants, like microplastics released from packaging. Despite these advantages, the 
use of ML in food safety also presents several challenges. One significant issue is data quality and 
availability. ML relies on large, high-quality datasets, but in many cases, data in the food supply chain can be 
incomplete, inconsistent, or difficult to access. Poor data quality can lead to inaccurate predictions or 
missed contamination risks. Another challenge is the risk of overfitting, where the ML model becomes too 
tailored to the training data, leading to false positives or negatives. This can either cause unnecessary 
recalls or fail to detect real safety issues. Additionally, ML models, particularly deep learning, often lack 
interpretability. This “black box” nature makes it difficult for food safety managers and regulators to 
understand how decisions are made, leading to a lack of trust in the technology. There is also a dependency 
on digital infrastructure, such as IoT sensors and cloud computing, for ML to be effective. Companies 
without robust technological resources may struggle to implement ML solutions, creating a disparity in 
food safety practices across the industry. Privacy concerns also arise with the use of ML, especially when 
dealing with sensitive data from the supply chain or consumer health records in cases of contamination. 
Finally, the costs of implementing and maintaining ML systems can be high, which may be prohibitive for 
smaller companies. XAI plays a crucial role in food safety by providing transparency and interpretability in 
ML models used for various tasks, such as quality control, contamination detection, and risk assessment. 
XAI techniques can highlight anomalies or outliers in food production processes, indicating potential safety 
hazards [41]. XAI brings its own set of benefits to food safety, addressing some of the transparency issues 
associated with traditional ML. XAI increases trust by providing clear explanations for how predictions or 
decisions are made. In a field like food safety, where regulatory compliance is crucial, this transparency is 
essential. XAI helps companies and regulators understand the rationale behind safety actions, such as 
product recalls or flagged contamination risks. This also aids in regulatory compliance, as the decision-
making process can be easily audited. XAI improves decision-making by allowing managers to understand 
the factors influencing predictions, leading to more informed actions. Additionally, XAI can help reduce bias 
by exposing the factors that drive model decisions. If a model is unfairly targeting certain suppliers or 
regions, XAI can highlight these biases and allow for corrections. However, XAI also has limitations. One 
drawback is the potential trade-off between explainability and accuracy. In some cases, simplifying a model 
to make it more interpretable may reduce its predictive power, which could limit its effectiveness in 
preventing contamination risks. Another issue is the complexity of implementing XAI. It can require 
additional computational resources and expertise, making it more costly and challenging to adopt. XAI can 
also slow down decision-making, as more time is needed to explain and interpret the model’s outputs. In 
food safety, where quick action is often required, this delay can be problematic. Lastly, there is a risk of 
over-interpretation of XAI results. Stakeholders may focus too much on certain explanations, leading to 
decisions based on incomplete or misunderstood information.

Results
The success of AI applications in nutrition is highly dependent on interdisciplinary collaboration. In the 
METROFOOD-IT case study, for example, the cooperation between data scientists, nutritionists, and food 
technologists has been instrumental in developing accurate predictive models for food authenticity and 
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safety. This collaboration ensured that AI technologies were effectively integrated with practical knowledge 
of food production and nutrition, leading to impactful innovations in the field. The success of METROFOOD-
IT in advancing AI-driven innovations in nutrition can be attributed to a comprehensive implementation 
strategy. Infrastructure investments in HPC systems and cloud platforms provided the computational 
backbone needed to manage and analyze vast amounts of data. Simultaneously, workforce training 
initiatives ensured that stakeholders at all levels had the skills required to engage with the new 
technologies effectively. The focus on regulatory compliance, particularly in the management of personal 
health data, ensured that the project adhered to legal frameworks, maintaining trust and transparency 
among all participants. Together, these strategies have created a robust, scalable, and compliant ecosystem 
for AI-driven nutrition research.

Application of ML models

ML is transforming the food industry in numerous areas, from production chains to consumer experiences. 
ML plays a crucial role in determining the origin of food, significantly enhancing traceability across the 
entire supply chain. ML algorithms process these complex datasets to map the entire journey of a food 
product from production to the consumer. This allows for the precise identification of a product’s origin 
and helps detect anomalies that might indicate fraud or contamination issues. One of the most promising 
combinations is between blockchain and ML. Blockchain provides an immutable record of transactions 
related to a food item, while ML analyzes this data to predict potential food fraud, such as ingredient 
substitution or tampering with origin information. Furthermore, it can verify product authenticity by 
comparing collected data with official claims, ensuring that a product labeled as organic or from a specific 
geographical region is indeed what it claims to be. ML is also used to identify the chemical and physical 
characteristics that distinguish food products based on their origin. For instance, analyzing isotopic 
compositions or mineral levels can confirm a product’s authenticity, ensuring that it comes from the region 
indicated on the label, as required for products with PDO. Additionally, with the integration of IoT 
technology, connected devices can monitor food conditions, such as temperature and humidity, during 
transport and storage. ML analyzes this real-time data to ensure that products are kept in optimal 
conditions, enhancing transparency and reliability in the supply chain. Finally, ML can detect trends and 
patterns in data related to the food supply chain, identifying potential risks or problematic areas, such as 
suppliers not adhering to quality standards. Predictive analytics also allow companies to anticipate future 
issues related to food supply or quality, enabling more proactive management of production and 
distribution.

Mozzarella di Bufala PDO analyzing microbiota case of study

The case study of Mozzarella di Bufala Campana PDO has been considered by examining the composition of 
the microbiota in each sample [42, 43]. Mozzarella di Bufala Campana is a soft, fresh, stretched-curd cheese 
traditionally produced in the provinces of Caserta and Salerno (Italy). Production also takes place in 
selected localities of the metropolitan city of Naples, as well as in southern Lazio, northern Apulia, and the 
municipality of Venafro in Molise. Mozzarella di Bufala Campana is often known as “white gold” in homage 
to the cheese’s prized nutritional and taste qualities. It was granted PDO status in 1996. PDO is a 
certification that guarantees the authenticity and quality of food products linked to specific geographical 
regions. ML can play a significant role in reinforcing the integrity and efficiency of PDO certification by 
analyzing complex data related to geographical origin, production methods, and product quality. Three 
different supervised ML algorithms have been compared and the best classifier model is represented by 
random forest with an area under the curve (AUC) value of 0.93 and the top accuracy of 0.87. ML models 
effectively classify origin, offering innovative ways to authenticate regional products and support local 
economies. Further research can explore microbiota analysis and extend applicability to diverse food 
products and contexts for enhanced accuracy and broader impact. The use of microbiota to determine the 
origin of food is an innovative approach that leverages the unique microbial communities associated with 
specific geographic regions, production environments, or even individual farms. This method is based on 
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the idea that different environments (such as soil, water, air, and the surfaces of plants or animals) host 
distinct microbial populations. These microbial “signatures” can serve as biological markers to trace the 
geographic and production origins of food products. Microbiota-based techniques, combined with advanced 
technologies like ML and DNA sequencing, are increasingly being used to improve food authenticity, 
traceability, and safety. Each environment has a unique microbiota composition. These microbial 
communities are shaped by local factors like climate, soil type, altitude, and farming practices. For example, 
grapes grown in different wine-producing regions carry distinct microbial communities from the soil and 
air, which influence the fermentation process and, ultimately, the wine’s flavor profile. By sequencing the 
DNA of microbes found in the food, scientists can create a microbial “fingerprint” that correlates with a 
specific region or environment. This fingerprint can then be used to verify the geographic origin of the 
product. Microbiota analysis can help verify the provenance of high-value products, supporting 
certifications like PDO, or organic labels. This can protect consumers from fraudulent products and ensure 
that producers are fairly compensated for their geographically unique products. Food safety is another area 
where microbiota can be beneficial. By identifying microbial contamination patterns, authorities can trace 
contamination back to its source more quickly, improving outbreak management and reducing public 
health risks. Despite its promise, using microbiota to determine food origin also presents challenges. One 
limitation is variability in microbial communities. Microbial populations can fluctuate based on seasonal 
changes, weather conditions, or variations in agricultural practices, which can make it harder to establish a 
consistent microbial fingerprint for certain regions or products. Additionally, the presence of similar 
microbial species in different geographic areas can complicate efforts to pinpoint a product’s exact origin, 
particularly if the regions share environmental conditions. Another challenge is the need for advanced 
technologies and expertise. The process of extracting, sequencing, and analyzing microbial DNA requires 
sophisticated equipment and specialized knowledge. While the cost of DNA sequencing has decreased, it 
remains a barrier to widespread adoption in smaller or less technologically advanced regions. Finally, the 
presence of contaminants or external microbes picked up during transport, handling, or processing can 
obscure the original microbial fingerprint. For instance, if food products are handled in multiple locations 
or exposed to different environments, the microbial signature may become mixed, making it harder to trace 
the true origin.

METROFOOD-IT: an agri-food innovation engine
The METROFOOD-IT research infrastructure, acting as Italian national node of the European METROFOOD-
RI [European Strategy Forum on Research Infrastructures (ESFRI) domain: health and food], whose 
strengthening and implementation is funded under the National Recovery and Resilience Plan (NRRP, 
NextGenerationEU), plays as a catalyst for progress in the agri-food sector. It champions the digital 
transformation of production and distribution chains, prioritizing traceability, environmental 
responsibility, and open communication. The infrastructure’s core mission is to establish a lasting model of 
support services for the entire agri-food supply chain, with a particular focus on small and medium-sized 
businesses. In particular, METROFOOD-IT aims to create a digital ecosystem that facilitates the collection, 
analysis, and sharing of data related to food quality, safety, and traceability. By leveraging advanced 
metrological standards, IoT sensors, spectrometry, and hyperspectral imaging, it seeks to guarantee the 
integrity of products throughout the supply chain, from raw materials to finished goods. Moreover, the 
project integrates blockchain technology and cloud infrastructures to provide transparent and immutable 
food traceability, ensuring consumers have access to reliable information regarding food origins and 
authenticity. METROFOOD-IT is built on the belief that transparent production and distribution processes 
are key to a more sustainable and productive agri-food system. The project tackles vulnerabilities like fraud 
and adulteration by verifying and communicating the origins and authenticity of ingredients and finished 
products. It also works to improve food quality and safety through enhanced controls and defense 
strategies, integrating suitable tools across all stages of the supply chain. For instance, by utilizing IoT 
sensors to monitor real-time parameters like temperature and humidity, METROFOOD-IT has optimized 
agricultural practices, reducing waste, and improving product quality. In addition, AI and ML algorithms are 
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employed to analyze large data sets, allowing for predictive modeling of food quality and shelf-life. 
Furthermore, the project is committed to empowering policymakers and regulatory bodies to promote food 
transparency and educate consumers, ultimately encouraging healthier and more environmentally 
responsible dietary choices [44, 45]. This is achieved through a combination of digital and physical 
infrastructure, which provides policymakers with accurate, real-time data, supporting informed decisions 
regarding food safety and sustainability. Educational campaigns and consumer tools, enabled by the 
project’s data collection and analysis capabilities, are also part of this effort to raise awareness and 
influence healthier dietary habits. The infrastructure, distributed across Italy, provides services that bridge 
the gap between research, innovation, industry players, and consumers. It aims to cultivate a sustainable 
and innovative agri-food sector, ensuring food safety, promoting healthy habits, and offering solutions for a 
circular bioeconomy. Among the project’s preliminary results, the improvement of food traceability 
through blockchain technology and the personalization of consumer products stand out as examples of how 
digital tools can directly benefit the agri-food system. These efforts are complemented by the use of 
advanced data analytics, which has led to the development of customized food products and services, 
tailored to individual nutritional needs and preferences. METROFOOD-IT is actively integrating the digital 
and physical aspects of its infrastructure to offer services that digitize agri-food systems, guarantee quality, 
safety, traceability, transparency, sustainability, and resilience. This work will culminate in the creation of 
an OD platform, a cloud-based infrastructure for data collection and dissemination, and a federated ICT 
(information and communication technology) solution for long-term access to FAIR data, fostering open 
science practices. As a best practice in the use of AI, blockchain, and advanced sensor technologies, 
METROFOOD-IT is revolutionizing the agri-food sector, contributing to a safer, more transparent, and 
environmentally friendly future.

Facilitating data sharing and utilization in the agri-food sector

The METROFOOD-IT e-infrastructure represents an advanced technological ecosystem designed to 
facilitate data sharing and utilization in the agri-food sector. This infrastructure is based on a robust and 
scalable architecture that integrates services, data, and linking infrastructures to offer a unified 
environment for data management, analysis, and validation. The METROFOOD-IT e-infrastructure offers a 
wide range of services aimed at end-users with diverse needs. These services include: smart sensors, which 
measure physical and chemical properties using various methodologies, such as spectroscopy, 
electrochemical sensors, and biosensors; HPC facilities, which provide advanced computational capabilities 
for large-scale data analysis, AI, and numerical modeling; food tracking, which enhances food production 
quality and traceability through data management solutions, biomolecular sensors, and self-calibration 
tools; co-design and co-creation, which facilitate rapid prototyping, experimentation, and demonstration of 
innovative solutions for the agri-food sector; education, which offers training courses and educational 
materials through an e-learning platform; web portal, which provides access to data and services through 
the OD and ICT integration component. The data infrastructure supports the services described above and 
acts as an interface for their integration within the METROFOOD-IT ecosystem. This infrastructure includes 
a service-specific backend system managed by individual project partners and a data integration that 
aggregates data from the backends of different services, ensuring syntactic and semantic data uniformity 
(see Figure 1).

Agri-food OD and ICT integration play a crucial role in the integration of services and data within the 
METROFOOD-IT ecosystem. OD and ICT are based on a high-performance hardware/software 
infrastructure optimized for HPC whose main components are hosted at the ReCaS-Bari data center and are 
federated with ENEA CRESCO HPC clusters. Its main functions include: (1) large dataset management: 
easily store, process, and archive large amounts of data; (2) data integration: aggregates and processes data 
from various services using customized pre-processing pipelines; (3) smart data model: implements a 
standardized data model for the agri-food sector, facilitating data sharing and use; (4) information 
extraction: employs statistical algorithms and multivariate techniques to extract useful information from 
images and numerical data; (5) complex models: applies ML models and neural networks for high-
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Figure 1. Data infrastructure. API: application programming interface; HPC: high-performance computing; ICT: information and 
communication technology

dimensional data analysis; (6) smart data model: data sharing in a complex scenario like agri-food requires 
a well-structured data model that ensures the syntactic and semantic uniformity of data from diverse 
sources. The smart data model, developed within the smart data models initiative (SDMI), fulfills these 
requirements by defining the following: (1) schema: the technical structure of the model, specifying data 
types and organization; (2) specification: detailed documentation for human users explaining the model 
and data semantics; (3) uniform resource identifier (URI): URIs for each attribute or entity associated with 
the model, ensuring complete data retrievability; (4) payload examples: practical examples of how data 
should be structured within the model. The METROFOOD-IT project should simplify the access to the data 
from both a generator perspective and a user perspective. The adoption of the “agri-food” smart data model 
facilitates true integration of the infrastructure on an international scale, laying the foundation for the 
effective utilization of collected data in the agri-food sector [41].

Infrastructure investments

In the METROFOOD-IT project, significant investments were made in both hardware and software 
infrastructures to support data sharing and analysis across the agri-food sector. HPC systems, such as 
ReCaS-Bari and the ENEA CRESCO HPC clusters, were deployed to handle the large volumes of data 
generated by IoT sensors, metrological devices, and AI models. These systems offer the computational 
capacity necessary for real-time data processing and large-scale AI model training. Furthermore, cloud-
based infrastructures were integrated to ensure scalability and flexibility, allowing the project to 
accommodate increasing data volumes without compromising performance. To maximize the efficiency of 
data management, METROFOOD-IT adopted a distributed infrastructure model, which links local and 
national nodes, creating a decentralized but unified system for data processing and storage. This 
distributed architecture reduces bottlenecks and ensures that data is always available to stakeholders, no 
matter their geographic location. A critical component of the METROFOOD-IT implementation strategy was 
workforce training. Given the complexity of AI models, HPC infrastructures, and FAIR data management 
principles, targeted training programs were developed for various stakeholders, including researchers, data 
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scientists, and food industry professionals. These programs focused on equipping personnel with the 
necessary skills to use data integration tools, cloud platforms, and AI-driven data analysis systems. To 
ensure accessibility, METROFOOD-IT deployed an e-learning platform, offering courses that covered topics 
such as data governance, AI model deployment, and secure data sharing. This workforce training initiative 
was essential in ensuring that all project participants, regardless of their technical background, could 
contribute effectively to the data-driven innovations of the project. Continuous professional development 
sessions and workshops were held to keep teams updated on the latest technologies and methodologies. 
Ensuring compliance with regulatory frameworks, such as the GDPR in the European Union, was a central 
focus of the METROFOOD-IT project. The collection and processing of personal health data related to 
nutrition required strict adherence to data privacy and security protocols. To address these regulatory 
requirements, METROFOOD-IT implemented end-to-end encryption for data transmission, ensuring that 
sensitive information was protected from unauthorized access. In addition, the project developed a 
comprehensive data governance framework that outlined specific protocols for data storage, access, and 
sharing. These protocols ensured that all personal data was anonymized where possible, and data subjects 
were given full transparency and control over how their data was used. Regular audits and security 
assessments were conducted to ensure that all data management practices remained in compliance with 
regulatory standards. To support ethical considerations, METROFOOD-IT established clear informed 
consent procedures, ensuring that participants in research and data collection activities were fully aware of 
how their data would be used and had the option to opt out at any stage.

METROFOOD-IT a possible scenario for data space application

The organization of the data management infrastructure within METROFOOD-IT could be based on data 
spaces, a form of multilateral organization implemented to achieve shared objectives. Within the data 
space, three distinct roles emerge: (1) federator: operates as a neutral entity, ensuring data sharing 
integrity and data ecosystem sustainability. Its key functions include managing the service portfolio, the 
decentralization level, and business services; (2) data provider: publishes data sources, identifies and 
registers participants, and manages data exchange; (3) data consumer: searches for data sources, identifies 
and authorizes participants, and uses the data for stated purposes. Data spaces do not require physical data 
integration, as data remain within respective proprietary repositories; integration occurs at a semantic 
level using shared vocabularies. Data payloads are exchanged exclusively between data providers and data 
consumers. Within the data ecosystem, three operational levels emerge: (1) data-driven services: enable 
the provision of data services such as fraud prevention, food tracking, and quality analysis, while 
simultaneously acquiring new data to enhance the ecosystem; (2) data objects: abstract the data level by 
creating logical datasets, such as a “digital twin” of a PDO production, consumer type, or geographical area, 
characterized by the data ecosystem; (3) GAIA-X: the software infrastructure that organizes, distributes, 
and builds value-added data services.

Federation services are provided by the GAIA-X architecture, which offers a federated catalog of 
distributed services such as sovereign data exchange, identity and trust management, and compliance 
services. GAIA-X is designed to ensure integration between architectures and processes supporting the data 
space. The evolution of roles within the data space progresses in parallel with the data ecosystem’s growth 
and complexity. As the ecosystem becomes more complex, it demands increasingly sophisticated federation 
services.

Conclusions
The field of nutrition is undergoing a significant transformation driven by the growing importance of data 
and AI. This article has explored the profound impact of AI on our understanding of food and health, 
highlighting its potential for personalized dietary recommendations, disease risk prediction, the impact of 
food contaminants, and the development of novel food products. HPC infrastructures, coupled with AI-
driven models, are instrumental for efficiently managing and analyzing the increasing volume of nutritional 
data. The smart data model provides a framework for building an intelligent and efficient data management 
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system, while GAIA-X offers a comprehensive platform for data management, analysis, and visualization. OD 
sharing and FAIR principles are essential for ensuring data accessibility, interoperability, and reusability. 
ML algorithms play a vital role in various aspects of the food industry, from production and quality control 
to personalized nutrition. The METROFOOD-IT research infrastructure represents an excellent application 
scenario for experimenting with the use of data spaces in the agri-food sector. Its e-infrastructure offers a 
range of services and data resources, facilitating data sharing and utilization to promote a more sustainable, 
transparent, and efficient food system. The infrastructure’s data space model fosters collaboration between 
stakeholders and ensures data security through a decentralized approach. Future research directions and 
technological advancements: moving forward, several areas warrant further research to fully unlock the 
transformative potential of AI in nutrition. Future research should explore advanced AI techniques, such as 
reinforcement learning and generative models, to develop more sophisticated dietary planning tools and 
predictive models for public health. Emphasis should also be placed on developing XAI and interpretable AI 
models to increase trust and transparency, particularly in healthcare and nutrition applications. Research 
on integrating AI with other emerging technologies (such as blockchain for food traceability and IoT for 
real-time monitoring of dietary habits) can further enhance the value of AI in the agri-food sector. 
Additionally, research into overcoming ethical and privacy challenges, particularly in data-sharing 
environments, is crucial. Policy implications and strategic recommendations: policymakers have a critical 
role to play in shaping the future of AI in nutrition. Policies must be developed to ensure the ethical 
collection, storage, and use of personal health data, with clear guidelines for AI model validation and the 
prevention of algorithmic bias. Regulations that encourage interdisciplinary collaboration among data 
scientists, healthcare professionals, and food technologists will facilitate the adoption of AI solutions that 
are both scientifically robust and socially acceptable. Incentivizing OD initiatives and ensuring compliance 
with privacy frameworks such as GDPR and HIPAA will be crucial for creating a transparent data-sharing 
culture that benefits consumers, researchers, and the food industry alike. Roadmap for stakeholders: to 
accelerate AI-driven advancements in nutrition, a strategic roadmap is recommended for stakeholders. Key 
actions include fostering public-private partnerships to fund research and development projects, 
encouraging interdisciplinary research teams to address complex nutritional issues, and developing 
educational programs to train the next generation of professionals in AI and nutrition. Industry 
stakeholders should focus on adopting FAIR principles and implementing best practices in DataOps to 
ensure data quality and availability, which are pivotal for training effective AI models. Collaboration 
between technology providers, the food industry, and government bodies is also essential to build resilient 
and responsive data infrastructures. In conclusion, the integration of data science and AI holds immense 
potential for revolutionizing the field of nutrition. By leveraging these advancements, we can create a future 
where personalized dietary strategies and a data-driven approach to food production contribute to 
improved health outcomes for all. However, realizing this future will require continued investment in 
technology, well-crafted policy frameworks to support ethical data use, and sustained interdisciplinary 
collaboration. The journey towards a truly AI-powered, transparent, and efficient nutrition ecosystem is 
ongoing, and strategic, well-coordinated efforts across sectors are key to achieving meaningful progress.
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