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Abstract
Ketogenic diets are emerging dietary patterns that have demonstrated potential as therapeutic tools in a 
variety of symptoms and conditions, such as epileptic seizures, diabetes, obesity, cancer, migraines, and 
metabolic syndrome. This narrative review examines the therapeutic effects of ketogenic diets on 
physiological and mental health, including their role in modulating the gut microbiome. Ketogenic diets 
promote weight loss, enhance insulin sensitivity, and may lower dyslipidemia, which are crucial factors in 
preventing cardio-metabolic diseases. They also play a significant role in the composition and function of 
the gut microbiome, serving as a therapeutic approach to control autoimmune diseases, given their 
effectiveness in reducing pro-inflammatory cells. Conversely, a potential downside of these diets is the 
decrease in beneficial bacteria that have been positively associated with human health. Regarding mental 
health, ketogenic diets have the capability to stabilize neural networks, improve neuroplasticity, and exert 
direct benefits in brain bioenergetics, thereby potentially alleviating the symptoms related to several 
mental conditions, such as epilepsy, anxiety, depression, schizophrenia, bipolar disorder, autism spectrum 
disorder, and certain neurodegenerative diseases. However, more randomized, long-term studies are 
required to assess their efficacy, sustainability, and safety, including methodological rigor to strengthen 
findings on dietary impacts.
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Introduction
Nutritional psychiatry is a new area that links dietary habits to mental health and microbial function [1, 2]. 
Therefore, nutritional psychiatry must include the role of the gut microbiome as a diagnostic tool to identify 
targets for personalized treatments, and for integrative strategies that combine dietary, pharmacological, 
and psychological interventions.
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Dietary patterns refer to the quantity, diversity, and types of foods and nutrients in a diet, as well as to 
the frequency of their consumption. Some of the major dietary patterns include: high-calorie diets such as 
the Western diet; mixed-balance diets such as the Mediterranean and Japanese diets; plant-based diets such 
as the vegetarian and vegan diets; and low-carbohydrate diets such as the ketogenic diet (KD). These diets 
exert diverse effects on physiological well-being, and share common attributes and characteristics [3–8]. 
However, adherence to a specific dietary pattern is influenced by geographic location, cultural norms, 
ethical beliefs, and environmental consciousness, as well as by physical health and psychological well-being 
[9–11].

The KD is an emerging dietary pattern, which consists of a normocaloric, high-fat, very low-
carbohydrate diet that provokes a state of ketosis [12]. There are numerous reports in the literature stating 
that KD has a significant positive effect on epileptic seizures and mood disorders, thus suggesting KD as a 
potential therapeutic tool [13]. In addition, several modified KDs are currently widely applied to the 
treatment of obesity [14], diabetes [15], cancer [16], migraine [17], and metabolic syndrome [18]. However, 
the involvement of this diet in mental health outcomes, as well as its role in the modulation of the gut 
microbiome, has been poorly studied. For this reason, the present narrative review examines the 
therapeutic effects of the KD and its variants on physiological and mental health, including their role in 
modulating the gut microbiome.

Effects of KDs on physiological health
KDs have become increasingly popular due to their effects in promoting weight loss, enhancing insulin 
sensitivity, and potentially lowering dyslipidemia [14, 15, 19]. These factors are crucial in the prevention of 
cardio-metabolic diseases, which represent one of the most significant health challenges today [19], 
although there is no clear evidence regarding the advantageous effects of these diets on other cardio-
metabolic risk markers [20].

There are diverse variants of KDs that primarily differ in their composition of fats, proteins, and 
carbohydrates. (i) The modified Atkins diet (MAD) consists of 65% fats, 25% proteins, and 10% 
carbohydrates [21]. In the classic KD, the ratio of fats and carbohydrates is 4:1. This ratio can be altered to 
3:1 for moderating metabolism activity, with restricted calories and fluids. In contrast, the MAD does not 
require calorie, protein, or fluid restriction and may be a good alternative for patients who cannot tolerate a 
more restrictive diet like the classic KD [22]. (ii) The medium-chain triglyceride diet (MCTD) contains a 
higher production of ketone bodies (KBs) than any other types of fats, including long-chain triglycerides 
(LCT). This diet, which consists of 71% fats, 10% proteins, and 19% carbohydrates, is more appropriate for 
children because it diminishes the need for other micronutrients, and contributes to a lower cholesterol 
ratio, thereby decreasing the risk of cardiovascular disease [23]. (iii) Low glycemic index therapy (LGIT) is 
an alternative diet treatment consisting of 60% fats, 30% proteins, and 10% carbohydrates with a low 
glycemic index [24]. While the KD and MAD are associated with ketosis, the exact role of KBs in LGIT is 
unclear. For instance, Muzykewicz et al. [25] reported that of the 12 patients with less than 90% seizure 
reduction, only 33.3% had elevated serum levels of β-hydroxybutyrate (BHB) (0.7–1.7 mM). Therefore, it 
seems that ketosis is not required for optimal seizure control.

All KDs result in increased amounts of KBs, such as acetoacetate, BHB, medium-chain triglyceride 
(MCT), and acetone in the blood and urine [26]. These compounds are involved in several physiological 
mechanisms, including enhanced mitochondrial activity, inhibition of apoptotic proteins, reduction of 
oxidative stress, expression of antioxidant proteins, as well as modulation of autophagy, neurotransmitter 
levels [γ-aminobutyric acid (GABA), glutamate, and monoamines], and neuroinflammatory pathways [27–
33]. In addition, KBs can act as an alternative energy source when glucose metabolism is compromised [34], 
potentially addressing the bioenergetic deficiencies in several physiological and mental disorders [35, 36]. 
In this sense, Augustin et al. [37] reported a pivotal role of ketones directly inhibiting glutamate receptors 
(AMPA receptors) and altering cell energetics through mitochondrial biogenesis. Interestingly, KD therapy 
also induces an epigenetic mechanism by means of DNA methylation [38].
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Although a low-carbohydrate, high-fat, and high-protein diet, like KD, could be considered unhealthy 
for individuals with obesity, diverse studies have shown its effectiveness in treating this condition [39]. 
Lowering carbohydrate consumption has also been shown to result in substantial reductions in cholesterol, 
triglycerides, and diastolic blood pressure levels, while simultaneously raising high-density lipoprotein 
(HDL) levels [40]. KDs provide benefits through several mechanisms, such as appetite diminishment 
associated with greater levels of cholecystokinin, glucagon-like peptide 1, and ghrelin, or appetite 
suppression promoted by the ketones themselves. In short, it can be hypothesized that the results of KD in 
obese patients may also be related to its efficacy in increasing fat consumption and lipolysis while 
decreasing lipogenesis. In addition, KD inhibits gluconeogenesis in the liver by a decrease in insulin and an 
increase in glucagon, which then leads to a higher rate of resting energy expenditure [41].

By lowering glucose levels, KDs also restrict the metabolism of cancer cells, which are unable to 
effectively utilize KDs as an energy source [42]. Furthermore, KDs induce low glucose levels with an 
inhibition of the lactate/pyruvate cycle, thereby blocking neovascularization, hypoxia-induced epidermal 
growth factor activation, and angiogenesis [42]. Elevated KB levels inhibit NLRP3 inflammasome, limiting 
inflammation, which is central to cancer pathogenesis [43].

Gut microbiome modulation

With regard to the mechanisms through which dietary interventions operate, the potential mediating role 
of the gut microbiome is essential. The bacteria ecosystem within the gastrointestinal tract interacts with 
the diet consumed even before nutrients and other food-derived compounds enter the bloodstream [10]. It 
is possible to argue that various effects of the KD therapy may be mediated by the gut microbiome, either 
directly through metabolites produced by the microbes, or indirectly by influencing the activity of the 
enteric nervous system [44, 45]. Several studies have shown that KD plays a significant role in the 
composition and function of the gut microbiome [46]. Kim et al. [47] showed that a diet rich in fats and 
carbohydrates increases inflammation and pro-inflammatory cytokines through the TLR4 signaling 
pathway. Other authors found various changes in the bacterial composition of the gut, characterized by a 
reduction in members of the Bacillota phylum and an increase in members of the Bacteroidota phylum, in 
patients with obesity that were subjected to an isocaloric very-low-calorie KD (VLCKD) [48].

In animal models, Ma et al. [49] reported a change in the gut microbiome of mice after 4 months of KD 
feeding. These authors found an increase in the abundance of short-chain fatty acids (SCFA)-producers, 
such as Akkermansia muciniphila and Lactobacillus, and a decrease in the pro-inflammatory bacteria 
Desulfovibrio and Turicibacter. Similar results were found in a study of a mouse model of autism spectrum 
disorder (ASD) fed with a KD [50]. Interestingly, the KD decreased total cecal and fecal microbes in mice by 
an average of 78% and 28% respectively, probably due to the low amount of carbohydrates in the KD. In 
fecal samples, the abundance of Akkermansia, Bifidobacterium, Lactobacillus, and Roseburia decreased, 
whereas the members of the Enterobacteriaceae family, as well as of the genera Bacteroides, Clostridium, 
and Prevotella increased. In another study performed by Olson et al. [51], it was found that the KD induced 
significant changes in the gut bacteriome of mice, with a decrease in its α-diversity and in the abundance of 
the genera Allobaculum, Bifidobacterium, and Desulfovibrio, and with an increase in the abundance of the 
genera Akkermansia, Parabacteroides, and Sutterella, and also in members of the family Erysipelotrichaceae. 
These authors proposed that this dysbiosis may be correlated with seizure protection, including reductions 
in systemic gamma-glutamylated amino acids and elevated hippocampal GABA/glutamate levels, and also 
suggested diet- and microbiota-dependent alterations in serum ketogenic amino acids, as well as links 
between amino acid importation and brain GABA levels.

Several studies on the effects of KDs on the gut microbiome have been conducted in humans [8, 52], 
mainly in refractory epilepsy and cognitive disorders. For example, no statistically significant differences in 
Bacillota and Bacteroidota were reported in response to 3 months of KD consumption in patients with 
glucose transporter 1 deficiency syndrome. However, fecal microbial profiles revealed a significant increase 
in Desulfovibrio spp., a group of bacteria involved in exacerbating the inflammatory state of the intestinal 
mucosa [53]. Xie et al. [54], investigating patients with refractory epilepsy and healthy infants to know how 



Explor Foods Foodomics. 2025;3:101079 | https://doi.org/10.37349/eff.2025.101079 Page 4

KD alters the gut microbiome, found that the diet produced a decrease in the genera Cronobacter, 
Erysipelatoclostridium, Streptococcus, Alistipes, Ruminiclostridium, Barnesiella, and Enterococcus, and an 
increase in the genera Bacteroides and Prevotella. In a study by Lindefeldt et al. [55], involving children with 
severe epilepsy, no significant changes were observed in the α-diversity of fecal microbiota. Nevertheless, 
there was a significant reduction in the relative abundance of Bifidobacterium, Dialister, and Eubacterium, 
along with an increase in Escherichia among children fed with KD. Using a modified Mediterranean-KD in 
subjects with mild cognitive impairment, Nagpal et al. [45] identified a decrease in the abundance of 
Bifidobacterium spp. and Lachnobacterium spp. in their gut, whereas Akkermansia spp., Slackia spp., and 
members of the Christensenellaceae family showed increased levels.

Interestingly, Ang et al. [56] conducted a study in both animal and human models, finding that KD 
intake led to decreased levels in members of Actinomycetota, Lactobacillus spp., and Bifidobacterium spp. In 
addition, the authors suggested that the KD could serve as a therapeutic approach to control autoimmune 
diseases, given its role in reducing pro-inflammatory Th17 cells. However, a potential downside of low 
carbohydrate diets, such as KD, is the decrease in Bifidobacteria, which has been positively associated with 
human health [57], although in a study it has been reported an increase of this specific bacterial genus [54]. 
Moreover, further evidence indicates that KD could also change the gut microbiome (increase in Bilophila 
wadsworthia), potentially affecting cognitive functioning, due to alterations in hippocampal regions and 
gene expression [58].

Effects of KDs on mental health
KD stabilizes neural networks, improves neuroplasticity, and has direct benefits in brain bioenergetics, 
which are related to several mental disorders [59, 60]. These effects of the KD confer health benefits by 
alleviating the symptoms of several neuropsychiatric and psychological conditions, such as epilepsy, 
anxiety, depression, schizophrenia, bipolar disorder, ASD, and certain neurodegenerative diseases [29, 61–
67].

Epilepsy

Epilepsy is a neurological disorder characterized by recurrent seizures caused by abnormal neuronal 
activity and the KD has shown effectiveness as an alternative treatment by influencing biochemical 
processes, including cellular substrates and mediators of neuronal hyperexcitability, although it remains 
unclear whether its success is due to a single mechanism or multiple factors [22, 23]. KBs, such as BHB, 
have been implicated as mediators of the anti-inflammatory, anti-seizure, and neuroprotective effects 
associated with KD therapy [68, 69]. In neuronal cells, BHB can compete with glucose for energy production 
by inhibiting glycolytic flux upstream of pyruvate kinase [70], thereby diverting ketones into oxidative 
metabolism within the brain and increasing the ability to synthetize amino acids and GABA [71]. BHB has 
been recognized as an important effector of the positive outcomes of KD therapy because of several aspects: 
(i) BHB supports synaptic vesicle recycling, a mechanism with possible anticonvulsant outcome [72]; and 
(ii) BHB has a direct effect by acting as an endogenous ligand of the hydroxyl-carboxylic acid receptor 2 
(HCA2), whose activation on a subset of macrophages induces a neuroprotective phenotype dependent on 
prostaglandin D2 production [68].

MCTs from KD, such as valproic, heptanoic, octanoic, and decanoic acids, have been widely used in 
refractory childhood epilepsy treatment, due to their improved anti-seizure efficacy and reduced toxicity 
[37, 73]. Heptanoic acid can provide energy for the tricarboxylic acid cycle and can lead to increased 
glutamine levels in the brain, indicating a potential role in the glial metabolism of heptanoate [74]. Decanoic 
acid, in contrast to octanoic acid, improves mitochondrial biogenesis and increases the transcription of 
genes involved in fatty acid metabolism, while downregulating genes related to glucose metabolism [75, 
76]. In addition, MCTs influence astrocyte metabolism by supplying lactate and ketones as energy sources 
to adjacent neurons through the glial/neuronal shuttle system [77]. MCTs also impact amino acid 
metabolism, leading to elevated brain tryptophan levels, which are linked to decreased excitability in the 
hippocampal region [78]. Chang et al. [79] found that decanoic acid directly decreases neuronal excitability 
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by inhibiting AMPA receptor activity. These results indicate that decanoic acid may serve as a potent 
anticonvulsant mechanism of MCTs derived from the KD, based on its direct inhibition of excitatory 
neurotransmission.

KD therapy produces an anti-inflammatory activity and antioxidant effects that exert a relevant 
function in the pathophysiology of epilepsy via the regulation of peroxisome proliferator-activated 
receptors (PPAR), transcription factors implicated in mitochondrial biogenesis and in the control of genes 
involved in these pathways [27, 28, 80]. KD therapy generates cytochrome P450-dependent hydroxylation 
of reactive lipid species, a mechanism that may contribute to the anti-inflammatory properties of KD 
therapy [81]. In addition, KD therapy was found to reverse epilepsy progression, and to delay the onset of 
severe seizures [38]. In animal models, as above mentioned, a relationship between KD therapy and 
epigenetic mechanisms has been found, as an increase in DNA methylation is linked to chronic epilepsy in 
rats, and KD therapy also reduced seizure progression and mitigated DNA methylation-mediated shifts in 
gene expression, increasing adenosine that blocks DNA methylation [82–84].

Several systematic reviews and meta-analysis have been performed in recent years on the use of KDs 
(KD, MAD, MCTD, and LGIT) for the treatment of epilepsy and its symptoms [22, 66, 85]. Table 1 shows 
recent randomized controlled trials (RCT) and retrospective studies in humans on the effects of KDs 
therapy on different types of epilepsy.

Table 1. Human studies on the effects of ketogenic diets therapy on different types of epilepsy

Authors/Country Intervention characteristics Main findings

Sharma et al. [86]
/India

N = 95 children (2–14 years old) with 
drug-refractory epilepsy.

•

N = 46 MAD, N = 49 controls, 
3 months, RCT.

•

MAD was found to be effective and well tolerated in 
children with drug-refractory epilepsy.

Wibisono et al. [87]
/Australia

N = 48 children (mean 3.8 years old) 
with intractable epilepsy.

•

KD, MCT, and MAD treatment, 
9 years, retrospective study.

•

Lower rates of side effects were scored for MAD. The 
three KDs were comparably effective in seizure control 
and tolerability.

Kim et al. [88]/Korea N = 104 patients aged 1–18 years old 
with refractory epilepsy.

•

N = 53 MAD, N = 51 KD, 6 months, 
RCT.

•

MAD may be considered as the primary choice for the 
treatment of intractable epilepsy in children. KD is more 
suitable as diet therapy in children < 2 years of age.

Lambrechts et al. [89]
/The Netherlands

N = 48 patients aged 1–18 years old 
with refractory epilepsy.

•

N = 26 KD, N = 22 control, 4 months, 
RCT.

•

KD is an effective therapy for children and adolescents 
with refractory epilepsy.

Kverneland et al. [90]
/Norway

N = 62 patients aged > 16 years old 
with at least 3 seizures/month.

•

N = 28 MAD, N = 34 control, 3 months, 
RCT.

•

A significant reduction in seizure frequency was achieved 
with the MAD treatment compared to control.

McDonald et al. [91]
/USA

N = 80 adult patients > 18 years old 
with drug-refractory epilepsy and at 
least 4 seizures/month.

•

MAD and MAD + KetoCal, 2 months, 
RCT.

•

MAD significantly reduced seizures at the end of the 
treatment.

Park et al. [92]/Korea N = 16 children (mean age of seizure 
onset 8 years) with super-refractory 
status epilepticus (SRSE).

•

KD treatment. 12 years, retrospective 
study.

•

KD may be a feasible and safe therapeutic approach for 
SRSE patients in reducing the frequency of seizures.

Sondhi et al. [93]/India N = 158 children (1–15 years old) with 
4 or more seizures/month.

•

N = 52 MAD, N = 52 KD, N = 54 LGIT, 
6 months, RCT.

•

LGIT diet showed a balance between seizure reduction 
and relatively fewer adverse events compared to MAD and 
KD.

N = 60 patients with chronic epilepsy • Lower seizure frequency was significantly associated with 
anxiety symptoms. MAD had a positive input on 

Shegelman et al. [94]
/USA
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Authors/Country Intervention characteristics Main findings

(19–75 years old).
N = 36 MA, N = 24 control, 3 months, 
retrospective study.

•
psychological state independent of seizure reduction or KB 
production.

Rafli et al. [95]
/Indonesia

N = 31 children (2–18 years old) with 
intractable epilepsy.

•

MAD treatment for 6 months, pilot 
experimental study.

•

MAD reduced the seizure frequency by 50% in the first 
month, 62% in the third, and > 83% in the sixth month.

KD: ketogenic diet; MAD: modified Atkins diet; MCT: medium-chain triglyceride; LGIT: low glycemic index therapy diet; RCT: 
randomized controlled trial; KB: ketone body

According to the diverse outcomes obtained by the studies specified in Table 1, KD and its variants 
produced successful and well-tolerated effects in individuals with refractory epilepsy, with significant 
improvements in seizure control and minimal side effects, particularly in children.

Mood, anxiety, and depression

Mood disorders, including anxiety and depression, are a group of prevalent mental conditions often linked 
to metabolic dysfunctions and neuroinflammation, which may influence the development and persistence 
of symptoms [60, 96]. Substantial enhancements in depressive and psychotic symptoms, in subjects with 
severe mental disorders who underwent KD, were reported in a retrospective study [97]. Likewise, Adams 
et al. [98] also noted an important improvement in mood in outpatients with type 2 diabetes who were 
treated with a KD for 2 years. More recently, Calabrese et al. [62] and Garner et al. [99] reported that KD 
improved mood, anxiety, and depression symptoms in participants. Conversely, Iacovides et al. [100] 
reported no significant differences in cognitive performance, mood, or subjective sleep quality, between the 
two groups of participants (KD individuals and isocaloric high-carbohydrate low-fat diet individuals). Thus, 
while various studies suggest the potential of KD to improve mood and reduce symptoms of anxiety and 
depression, conflicting findings underscore the need for further research to clarify its efficacy and identify 
the factors influencing individual responses to this dietary intervention.

Bipolar disorder and schizophrenia

Bipolar disorder and schizophrenia are complex psychiatric conditions with distinct diagnostic criteria and 
etiologies involving genetic and environmental factors, in which gastrointestinal inflammation and gut-
brain axis alterations may contribute to their pathophysiology [61, 96]. In fact, while the precise 
pathophysiology of bipolar disorder and schizophrenia is not fully understood, evidence indicates that 
disrupted energy metabolism and associated oxidative stress are critical factors in the expression of 
symptoms [101]. Campbell and Campbell [102] proposed that KD may alleviate symptoms of bipolar 
disorder by circumventing the effects of mitochondrial dysfunction. Later, in two pilot studies, Needham et 
al. [103] and Sethi et al. [104] found that the adverse effects of bipolar disorder were reduced by the KD 
application.

Administration of KD or BHB efficiently regularized behavioral impairments in a hypo-glutamatergic 
animal model of schizophrenia [105–107]. Results from a human case study [108] showed that KD 
improved symptoms and quality of life in individuals with schizophrenia. Sethi et al. [104] reported 
improvements in several psychiatric symptoms related to schizophrenia and bipolar disorder, as well as in 
other metabolic functions. In addition, Bohnen et al. [109] designed a pilot trial protocol to evaluate the 
effect of a ketogenic mimicking diet (ketone esters combined with a supplementation consisting of a low 
glycemic index diet) on mood, neural network stability, and biomarker outcomes in subjects with bipolar 
disorder, reporting positive findings.

Autism spectrum disorder

ASD is a developmental brain disorder characterized by stereotyped behavior and deficits in 
communication and social interaction, with its complex pathology and etiology implicating genetic factors, 

Table 1. Human studies on the effects of ketogenic diets therapy on different types of epilepsy (continued)
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immune dysregulation, environmental exposures, and gut microbiota alterations [96]. Several lines of 
evidence implicate mitochondria in the pathophysiology of ASD [110]. For this reason, KD could be a 
fruitful therapy for ASD since it enhances the core symptoms of ASD, potentially mitigating its 
comorbidities such as seizures [65]. In this regard, various studies on the therapy of KD for ASD have been 
conducted in recent years [111, 112], obtaining promising results. Nevertheless, further research is needed 
to better understand its efficacy and mechanisms in treating core symptoms and comorbidities.

Neurodegenerative diseases

Neurodegenerative diseases are commonly characterized by neuroinflammation and synaptic damage, with 
gut microbiota dysbiosis increasingly recognized as a factor in their pathophysiology [96]. Research 
suggests that KDs may play a role in neurodegenerative diseases, such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD), because hypometabolism in neurodegenerative diseases is ameliorated by KBs 
[63]. The mechanism underlying the efficacy of KDs remains unclear, but some evidence suggests the 
normalization of aberrant energy metabolism [64]. In addition, the antioxidant and anti-inflammatory 
activities, as well as the mitochondrial function of KDs, may improve health biomarkers and symptoms of 
the pathophysiology of AD and PD [32, 113]. Almost all studies performed on the influence of various KDs 
on neurodegenerative diseases reported benefits in the prevention of cognitive decline [113–118], except 
in the case of the study by Henderson et al. [119], who found that caprylic/capric triglyceride did not 
improve cognition or functional ability in AD patients. The authors suggested that the low KB formation of 
this diet may explain this unsuccessful result. Consequently, the potential of KDs to alleviate 
neuroinflammation and metabolic disruptions in both AD and PD is promising, but further investigation is 
required to evaluate their viability as therapeutic options. Table 2 summarizes recent studies on the role of 
KDs in various human psychological and neuropsychiatric disorders.

Table 2. Role of the ketogenic diets therapy in several mental disorders

Authors/Country Intervention characteristics Instruments Outcomes

Calabrese et al. 
[62]/USA

Depression: N = 3 adults (32–36 years 
old) with MDD and GAD. Treatment 
with KD for 12–16 weeks.

GAD-7, PHQ-
9.

Two from three patients achieved remission in 
MDD and GAD within 12 weeks of KD 
treatment.

Danan et al. [97]
/France

Depression, bipolar disorder, and 
schizophrenia: N = 31 adults. 
Treatment with KD for 248 days.

HDRS, 
MADRS, 
PANSS.

The KD treatment for patients with refractory 
mental illness was feasible, well-tolerated, and 
associated with significant improvements in 
depression and psychosis symptoms.

Adams et al. [98]
/USA

Depression: N = 262 adults 
(21–65 years old) with diabetes type 2. 
Treatment with carbohydrate 
restriction diet for 2 years.

CESD Subclinical depressive symptoms decreased 
over the first 10 weeks and reductions were 
maintained out to 2 years with the tested diet.

Garner et al. [99]
/United Kingdom

Mood: N = 147 patients (> 18 years 
old). Treatment with KD for 8 months.

Depression and anxiety: N = 276 (> 
18 years old). Treatment with KD for 
6 months.

BL-VAS, 
DASS-21.

KD was associated with higher self-reported 
mental and emotional well-being behaviors, 
including calmness, alertness and 
contentedness (improved mood). In addition, 
individuals who consumed a KD were less 
anxious and depressed.

Iacovides et al. 
[100]/South Africa

Mood: N = 11 healthy subjects (mean 
age 30 years old). Treatment with KD 
and an isocaloric diet (HCLF) for 3 
weeks.

Cogstate, 
PSQI.

The results suggest that 3 weeks of sustained 
nutritional ketosis had no effect on cognitive 
performance, mood, or subjective sleep quality.

Needham et al. 
[103]/United 
Kingdom

Bipolar disorder: N = 20 euthymic 
individuals with bipolar disorder 
(18–70 years old). Treatment with KD 
for 6 weeks.

BDI, YMRS, 
ALS, WTRUQ.

The adverse events in the majority of 
participants were generally mild and 
modifiable.

Sethi et al. [104]
/USA

Bipolar disorder and schizophrenia: 
N = 23 (18–75 years old). Treatment 
with KD for 4 months.

BPRSS, CGI. Participants with schizophrenia showed a 
reduction in BPRSS, and the severity of CGI 
improved.

Longhitano et al. 
[107]/Australia

Bipolar disorder, schizoaffective 
disorder, and schizophrenia: N = 100 
(> 18 years old). Treatment with 
modified KD for 14 weeks.

PANSS, BDI, 
YMRS, ALS, 
CCB.

The modified KD therapy was well tolerated 
and improved psychiatric and metabolic 
outcomes. The authors suggested a correlation 
between the levels of ketones and metabolic, 
cognitive and psychiatric improvements.
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Authors/Country Intervention characteristics Instruments Outcomes

Palmer et al. [108]
/USA

Schizophrenia: N = 2 adults (39 and 
82 years old). Treatment with KD for 2 
weeks.

PANSS The cases suggest that KD may be an effective 
treatment for schizophrenia and for restoring 
function in life.

Lee et al. [111]
/USA

Autism: N = 15 children with ASD 
(2–17 years old). Treatment with a 
modified KD (gluten free) 
supplemented with MCT for 3 months.

ADOS-2, 
CARS.

The modified diet is a potentially beneficial 
treatment tool to improve the features of ASD.

Żarnowska et al. 
[112]/Poland

Autism: N = 1 child (6 years old). 
Treatment with KD for 16 months.

WISC-R, 
CARS.

KD improved the behavior and intellect of the 
subject.

Tidman et al. [113]
/USA

Parkinson: N = 1 PD patient (53 years 
old). Treatment with KD for 24 weeks.

CESDR, PAS, 
UPDRS.

KD results in the elevation of blood ketones 
that provide an enhanced mood, motivation 
and sleep quality, reduced levels of anxiety, 
and improved cognitive functions while 
reducing PD symptoms.

Phillips et al. [114]
/New Zealand

Parkinson: N = 38 PD patients 
(40–75 years old). Treatment with KD 
or low-fat KD for 8 weeks.

UPDRS, 
MoCA.

Both diet groups significantly improved motor 
and non-motor symptoms; however, the KD 
group showed greater improvements in non-
motor symptoms.

Neth et al. [115]
/USA

Alzheimer: N = 20 AD patients (11 
with subjective memory complaints 
and 9 with mild cognitive impairment). 
Treatment with modified 
Mediterranean-KD (MMKD) for 6 
weeks.

SMC, MRI. All participants improved metabolic indices 
following MMKD. This diet has been associated 
with decreased tau and it is adequate in the 
prevention of cognitive decline.

Ota et al. [116]
/Japan

Alzheimer: N = 20 AD patients (mean 
age 73.4 years). Treatment with MCT 
for 12 weeks.

MMSE, ADAS-
Cog.

Diet produced significant improvement in 
verbal memory and processing speed in AD 
patients.

Phillips et al. [117]
/New Zealand

Alzheimer: N = 21 hospitalized 
patients with AD (mean age 
73.4 years old). Treatment with 
modified KD or low-fat KD for 10 
weeks.

ACE, QoL-AD, 
ADCS-ADL.

AD patients who consumed modified KD 
increased ADCS-AD and QoL-AD scores.

Brandt et al. [118]
/USA

Alzheimer: N = 9 patients with AD. 
Treatment with MAD for 12 weeks.

MCS MAD participants increased MCS scores, 
enhanced episodic memory, and patient-
reported vitality in very early AD.

Henderson et al. 
[119]/USA

Alzheimer: N = 413 mild-to-moderate 
AD patients. Treatment with AC-1204 
(caprylic triglyceride) for 24 weeks.

ADAS-Cog, 
ADCS-ADL.

The formulation AC-1204 (caprylic triglyceride) 
failed to improve cognition or functional ability 
in AD patients.

KD: ketogenic diet; MCT: medium-chain triglyceride; MAD: modified Atkins diet; MDD: major depression disorder; GAD: 
generalized anxiety disorder; ASD: autism spectrum disorder; PD: Parkinson’s disease; AD: Alzheimer’s disease; ACE: 
Addenbrookes Cognitive Examination; ADAS-Cog: Alzheimer’s disease Assessment Scale-Cognitive Subscale; ADCS-ADL: 
Alzheimer’s disease Cooperative Study-Activities of Daily Living Inventory; ADOS-2: Austism Diagnostic Observation Schedule-
2; ALS: Affective Lability Scale; BDI: Beck’s Depression Inventory; BL-VAS: Bond-Lader Visual Analog Scales; BPRSS: Brief 
Psychiatric Rating Scale Scores; CARS: Childhood Autism Rating Scale; CCB: Cambridge Cognitive Battery; CESD: Center for 
Epidemiologic Studies Depression Scale; CESDR: Center for Epidemiologic Studies Depression Scale-Revised; CGI: Overall 
Clinical Global Impression; Cogstate: Psychological Computer-based Test Battery; DASS-21: Depressive Anxiety Stress Scale-
21; GAD-7: Generalized Anxiety Disorder Scale-7; HDRS: Hamilton Depression Rating Scale; MADRS: Montgomery-Asberg 
Depression Rating Scale; MCS: Memory Composite Score; MMSE: Mini-Mental State Examination; MoCA: Montreal Cognitive 
Assessment; MRI: magnetic resonance imaging; PANSS: Positive and Negative Syndrome Scale; PAS: Parkinson’s Anxiety 
Scale; PHQ-9: Patient Health Questionnaire-9; PSQI: Pittsburg Sleep Quality Index; QoL-AD: Quality of Life in Alzheimer’s 
disease; SMC: Cognitive Change Index; UPRS: United Parkinson’s Disease Rating Scale; WISC-R: Wechsler Intelligence Scale 
for Children-Revised; WTRUQ: Within Trial Resource Use Questionnaire; YMRS: Young Mania Rating Scale

Discussion
The potential of dietary interventions as a therapeutic tool in the treatment of diverse health conditions is 
immense and widely recognized [10, 120]. This review summarizes studies related to the effects of KD 
therapy on various physiological and mental disorders, as well as those on the changes provoked by this 
diet on the composition and function of the gut microbiome. From the studies reviewed, it is clear that KD 
exerts a reduction in seizure frequency in refractory epileptic patients; therefore, the diet and its 
modifications may be considered as the primary feeding choice for intractable epilepsy in children. In 
addition, KDs support neural stability, neuroplasticity, and brain bioenergetics [121], prompting preclinical 

Table 2. Role of the ketogenic diets therapy in several mental disorders (continued)
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and clinical trials to explore their capability in treating psychiatric, psychological, and neurodegenerative 
disorders [122].

KD plays a neural protective role through various mechanisms at the mitochondrial level, including 
increased levels of uncoupling proteins, enhanced antioxidant activity [reduced production of reactive 
oxygen species (ROS)], and ATP synthesis in the brain and brain mitochondria [123]. KD exerts its 
antioxidant effects on mitochondria mainly by regulating the function of mitochondrial respiratory 
complexes, decreasing ROS, and increasing antioxidant levels [124].

Several studies have reported that KDs and KBs confer neuroprotective effects by supplying alternative 
energy substrates to neurons and enhancing mitochondrial structure and function [123]. Additionally, KBs 
and KDs exhibit positive impacts by reducing oxidative stress and apoptosis [125, 126], promoting 
autophagic flux, and regulating gene expression and other cellular functions through epigenetic and post-
translational modifications of histones and non-histone proteins [123]. KBs and KD also suppress 
neuroinflammation, and modulate neurotransmitter systems and the gut microbiota [123, 127].

Collectively, the encouraging findings from existing preclinical studies, case reports, and uncontrolled 
clinical trials suggest a clinically significant potential for KD therapy in the treatment of mental illnesses of 
varying severity, providing hope to millions of individuals globally affected by these conditions. However, 
randomized controlled clinical trials are necessary to determine the impact of the ketotic metabolic state on 
the desired outcomes. Additionally, extensive long-term clinical research on mental disorders is essential to 
assess the adverse effects, efficacy, and sustainability of the KD. Furthermore, addressing potential 
methodological limitations in studies on dietary effects is pivotal, as such limitations can compromise the 
validity of results, similar to issues observed in research on other dietary patterns [128, 129].

Considering the potential of KD in treating neuropsychiatric and psychological disorders [96], 
understanding its impact on the gut microbiome is crucial. Changes in microbiome composition and 
function may underlie some of the observed therapeutic effects, providing insights into how KD modulates 
brain function and mental health. The field of omics encompasses a range of high-throughput 
methodologies, including genomics, transcriptomics, proteomics, and metabolomics, along with their 
corresponding meta-omics derivatives, such as meta-proteomics, metagenomics, and meta-transcriptomics 
[130]. These methodologies will constitute an essential strategy to know the influence of the gut 
microbiome and its metabolites on the effects of the KD on mental disorders. Multi-omics approaches, in 
fact, could enhance our understanding of the changes and interactions occurring within the gut microbial 
community following the consumption of a diet, such as KD [131]. Ultimately, integrating these advanced 
techniques could lead to novel insights into the therapeutic potential of dietary interventions in mental 
health and support the development of more effective, personalized treatment strategies.

Beyond individual metabolic effects, the KDs seem to show important implications for public health, 
clinical practice, and dietary policy. Given its potential to influence physiological and mental health, KDs 
could be particularly beneficial for populations with limited success using conventional diets, especially 
individuals with metabolic syndrome, diabetes, epilepsy, and neuropsychiatric disorders. This dietary 
approach also has potential relevance for aging populations vulnerable to neurodegenerative diseases, 
where the neuroprotective properties of KDs may improve quality of life and reduce healthcare burdens, 
and may also complement other interventions with relatively limited effectiveness [132]. Additionally, 
practitioners in mental health, neurology, endocrinology, and nutrition could benefit from a robust 
understanding of KD principles to apply in therapeutic contexts, while healthcare systems, public health 
organizations, and policymakers should consider the KDs in the context of broader dietary frameworks and 
interventions. Comparative studies with other diet plans, such as Mediterranean or vegetarian diets, could 
be essential to elucidate the long-term sustainability of KDs, as well as their efficacy and feasibility for 
diverse populations. Ethical and educational initiatives will be necessary to ensure it is accessible, 
equitable, and aligned with individual health needs, maximizing its therapeutic potential while 
acknowledging the challenges of widespread adoption. In this respect, given that the KD relies heavily on 
animal-based fats and proteins, raising critical concerns for both environmental sustainability and animal 
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well-being, its application should be restricted to specific populations with a demonstrated therapeutic 
need.

This narrative review presents several limitations: (i) the studies reviewed encompass different types 
of KDs, making it difficult to generalize the reported results; (ii) many of the studies included both animal 
models and human subjects, which complicates direct comparisons and the establishment of a clear 
relationship between KDs and the gut microbiome; (iii) the microbiological methodologies employed in the 
reviewed studies varied widely, with different omics techniques potentially offering varying degrees of 
precision in bacterial taxonomy, which may explain the contradictory findings observed; (iv) most of the 
studies focused on short-term KD intake, and there has been limited investigation into long-term dietary 
effects and follow-up; (v) the inclusion of studies with small sample sizes, either in terms of participants or 
animals, undermines the statistical power of the reported results; (vi) the heterogeneity of the included 
studies in terms of design, sample characteristics, and methodology may have influenced the ability to make 
direct comparisons, thereby limiting the interpretation of the findings; and (vii) several of the studies 
reviewed focused on patients with epilepsy or other medical conditions, who already exhibit gut 
microbiome alterations inherent to these disorders, which constitute a significant source of bias and 
confounding factors.

Conclusions
In general terms, KDs promote weight loss, enhance insulin sensitivity, and may reduce dyslipidemia. That 
is why KDs are used as a therapeutic tool for a variety of metabolic-related conditions, including obesity, 
diabetes, and skin diseases. In addition, the beneficial effects of KDs on epilepsy symptoms, particularly in 
refractory epilepsy, are well known due to the antiepileptic efficacy and reduced toxicity of these diets. By 
raising KBs, KDs boost mitochondrial function, reduce oxidative stress, modulate autophagy, and impact 
neurotransmitters and neuroinflammation. KDs also offer benefits by reducing appetite and enhancing fat 
consumption and lipolysis while decreasing lipogenesis. Furthermore, KDs boost gluconeogenesis, leading 
to increased energy expenditure. Their low-glucose composition has the potential to restrict cancer cell 
metabolism and inhibit neovascularization, hypoxia response, and angiogenesis. KDs also have the 
capability of shaping the gut microbiome, potentially managing autoimmune diseases by reducing 
inflammation, despite they may lower beneficial bacteria levels. The alteration of the gut microbiome 
composition produced by KDs depends on the KD type, and existing controversial results of the 
consequence of this dysbiosis. In this regard, it has been reported that the administration of these diets 
exacerbated the inflammatory state of the intestinal mucosa, whereas it has been also noted that these diets 
induce a reduction of pro-inflammatory Th17 cells. In mental health, KDs seem to stabilize neural networks, 
enhance neuroplasticity, and improve brain energy use, with possible benefits for neurodegenerative 
diseases, as well as for other psychiatric and psychological disorders. Within this context, KDs appear to 
exert an influence due to their antioxidant properties and low carbohydrate content, which open a new 
window for the implementation of these diets in dietary protocols within hospital and geriatric settings. 
Thus, KDs may serve as promising tools both as adjuvant therapies and as dietary patterns for specific 
populations across physiological, metabolic, and mental conditions. However, more randomized, long-term 
studies are required to assess their efficacy, sustainability, and safety, including methodological rigor to 
strengthen findings on dietary impacts.

Despite the potential benefits and growing attention focused on KDs, it remains premature to draw 
definitive conclusions regarding their overall feasibility for widespread clinical application. Their use 
should be targeted at specific medical conditions rather than promoted as a general dietary pattern. 
Moreover, ethical and environmental considerations should not be overlooked, as KDs often rely on animal-
derived resources. In this respect, KDs do not necessarily have to be based on animal products, as the key 
principle is to maintain a low carbohydrate intake while prioritizing a sufficient supply of healthy fats, 
regardless of their source.
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