
Explor Digit Health Technol. 2025;3:101138 | https://doi.org/10.37349/edht.2025.101138 Page 1

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution 
and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Exploration of Digital Health Technologies

Open Access Perspective

Artificial intelligence driven real-time digital oral microscopy for 
early detection of oral cancer and potentially malignant disorders
Simon A. Fox1,2 , Camile S. Farah1,2*
1Optiscan Imaging Ltd, Melbourne 3170, Australia
2Australian Centre for Oral Oncology Research & Education, Perth 6009, Australia

*Correspondence: Camile S. Farah, Optiscan Imaging Ltd, Melbourne 3170, Australia. ceo@optiscan.com
Academic Editor: Andy Wai Kan Yeung, The University of Hong Kong, China
Received: September 10, 2024  Accepted: November 21, 2024  Published: January 22, 2025

Cite this article: Fox SA, Farah CS. Artificial intelligence driven real-time digital oral microscopy for early detection of oral 
cancer and potentially malignant disorders. Explor Digit Health Technol. 2025;3:101138. https://doi.org/10.37349/edht.
2025.101138

Abstract
Confocal laser endomicroscopy (CLE) enables real-time diagnosis of oral cancer and potentially malignant 
disorders by in vivo microscopic tissue examination. One impediment to the widespread clinical adoption 
of this technology is the need for operator expertise in image interpretation. Here we review the application 
of AI to automatic tissue classification of CLE images and discuss the opportunities for integrating this 
technology to advance the adoption of real-time digital pathology thus improving speed, precision and 
reproducibility.
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Introduction
Current management of oral potentially malignant disorders (OPMD) using clinical examination in 
conjunction with investigative biopsy and histopathology with long-term monitoring has remained 
essentially the same for many decades. The deficiencies in these approaches are well recognised and the 
way forward to improving patient outcomes in oral squamous cell carcinoma (OSCC) is earlier detection 
and better assessment of malignant transformation risk [1]. While biopsy and histopathological assessment 
are the gold standard, due to invasiveness such sampling must be used judiciously. Although the 
subjectivity of pathological assessment is well documented the clinicians’ selection of biopsy site is also a 
source of variability. Clinicians must make decisions about biopsy site(s) based upon conventional 
examination. Non-invasive microscopic imaging of tissues could significantly assist in surveying mucosal 
tissue for monitoring abnormality, reduce unnecessary biopsies, optimise site selection, and ultimately may 
supplant conventional biopsies. New technologies in non-invasive tissue imaging and computer-based 
image recognition are the key to driving these improvements. This applies not only to the application of 
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artificial intelligence (AI) to enhance conventional histopathology techniques but also the introduction of 
clinical imaging technologies which synergise with AI for assessment of abnormality. Here, we discuss how 
AI image recognition can escalate the application of probe-based confocal laser endomicroscopy (CLE) to 
improve the diagnosis and management of OPMD, diagnosis of OSCC in the clinic, and determination of 
margins in surgery.

Diagnostic applications of CLE
A number of in-clinic optical adjuncts have been shown to have efficacy in the clinical assessment and 
management of OPMD, including autofluorescence reflectance spectroscopy [2, 3] and wide-field narrow-
band spectroscopy [4], but have not been widely adopted in clinical practice. These adjuncts provide 
clinicians with further guidance for assessment of oral mucosal lesions, however, they do not provide 
information on the cellular and architectural structures that are traditionally used to diagnose pathology 
[5]. One non-invasive tool that can survey tissue microarchitecture is CLE which combines endoscopic 
imaging with confocal microscopy [6]. In this fluorescence-based imaging method, excitation and image 
capture are achieved using a miniaturised probe which can be applied to the tissue surface to be imaged 
(Figure 1A). A fluorophore contrast dye (usually fluorescein) is typically applied topically prior to imaging 
in order to stain cellular structures such as nuclei and cell membranes. Commercially available hand-held 
CLE devices such as single-fibre distal scanning devices (Optiscan Imaging Ltd, Melbourne, Australia) 
enable real-time in vivo microscopic assessment of tissue at 1,000× magnification. An advantage of this 
method is that it provides microstructural assessment of tissues based upon similar criteria to those used in 
conventional histopathology (Figure 1B). Thus, interpretation of CLE images is based upon diagnostic 
principles already developed, refined, and widely accepted for oral epithelial dysplasia (OED) and OSCC.

Figure 1. Principles and example images of probe-based CLE. (A) Diagram of the essential elements of single-fibre distal 
scanning CLE [confocal laser endomicroscopy (Optiscan Imaging Ltd, Melbourne Australia)]. Em: emission; Ex: excitation. 
Reprinted with permission from [7], © 2021 Microscopy Society of America. (B) Optical CLE sections obtained with ViewnVivo® 
by Optiscan and corresponding conventional hematoxylin and eosin histopathology show the ability of CLE to visualise cancer 
and precancerous tissue architecture. Reprinted with permission from Optiscan Imaging Ltd, internal instrument data, © 2025 
Optiscan Imaging Ltd
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In clinical practice CLE has been successfully applied in diagnostics in the intestine [8], oesophagus [9], 
colon [10], and neurosurgery [11]. Earlier pilot studies have demonstrated the feasibility of applying CLE 
imaging to oral lesions including oral leukoplakia and OSCC (reviewed in [12]). More recently, 
intraoperative CLE with an intravenous fluorescein contrast agent has been used to develop a scoring 
system based upon cellular morphology for classification of malignant tissue in the oral cavity [13]. In a 
recent clinical study, we have shown that in the oral cavity, CLE is a highly accurate (88.9%), easy-to-use, 
and rapid point-of-care technology for assisting clinicians in the diagnosis of OED/OSCC and discriminating 
between dysplastic and non-dysplastic pathology when measured against gold-standard histopathology 
using accepted World Health Organisation (WHO) architectural and cytological features of OED [14]. These 
specific features including nuclear pleomorphism, cellular pleomorphism, cellular crowding, and increased 
nuclear cytoplasmic ratio were used to make the CLE assessment. CLE imaging can also inform the presence 
of inflammatory infiltrate, keratinization, ulceration, or presence of micro-organisms such as fungal hyphae 
[14].

Despite the clear benefits of this technology in a number of settings, there are some impediments to its 
wider adoption. Interpretation of CLE images requires specific expertise which must be acquired through 
training and supervised experience just like histopathological interpretation of hematoxylin and eosin 
stained tissue samples. There is evidence that with appropriate training, surgeons and clinicians can reach a 
high level of competency in interpretation of CLE images [15, 16]. CLE generates digital images in a 
continuous fashion and therefore the ability of the operator to interpret a large number of images is crucial 
to its utility. This is an advantage in terms of diagnosis or detection of malignancy since CLE permits the 
operator to survey a large area of tissue or surgical margin but is limited by the operator’s capabilities to 
assess all images. In addition, because of the acquisition of images via a hand-held probe, this can lead to 
motion artefacts which can hamper diagnostic interpretation. One solution to these issues is telepathology 
where pathologists can interpret CLE findings for clinicians/surgeons by live-streaming CLE datasets [11]. 
While such an approach will enhance the uptake of CLE technology it still requires the availability of 
specialist expertise in image interpretation. It is for these reasons that the application of AI-based image 
recognition using machine learning (ML) algorithms for enhanced diagnostic imaging has been proposed 
and investigated to assist the non-specialist clinician/pathologist operator. Furthermore, such technology 
offers the opportunity to reduce subjectivity by standardisation of diagnostic features and facilitating 
interpretation. A potential added benefit is that AI-based image analysis may not only recognise established 
diagnostic features but may also identify visual characteristics not recognised by human visual analysis. In 
the clinical setting AI-assisted CLE imaging can assist not only in diagnosis but also in determining the 
extent of the abnormal tissue and be used to screen other anatomical locations where abnormality might be 
suspected upon examination.

Computational approaches to CLE diagnostics
The terminology around AI can be confusing since the terms AI, ML, and deep learning (DL) are often used 
interchangeably although it is best to consider ML as a subset of AI, and DL as a subset of ML. There are 
many excellent primers in this area [17–19]. The most common approach for application of AI to image 
analysis is by DL based upon various types of deep neural networks (NN) which consist of multiple layers of 
interconnected nodes trained by learning [17, 19]. NN can be applied to automatic classification and 
segmentation of cellular features. NN must be by definition functionally trained using data and most 
commonly in microscopy supervised learning is applied where NN are trained using labelled data. This 
requires a large number of diverse images which have been labelled and curated by human experts and is a 
significant barrier to the development of diagnostic NN models. If the training dataset is insufficiently large 
and diverse then the model may not be generalizable to real-world data [17]. Alternatively, in unsupervised 
learning the model identifies patterns and features using unlabelled data although a large dataset is still 
required, and this approach is less developed than supervised learning in pathology.
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Because of the potential of AI to improve objectivity of current diagnostic approaches using visual 
examination in medical imaging and pathology, computer-aided diagnosis has been widely investigated in 
these fields [20, 21]. Recent reviews have examined the application of AI in the context of digital pathology 
[17], and specifically for the diagnosis of epithelial dysplasia [22]. The algorithmic approaches to visual 
analysis developed in these studies provide the basis for the development of AI tools for analysis of CLE 
images. The application of DL to CLE will be less complex in some respects than similar efforts in digital 
pathology. High-quality scanned whole-slide images (WSI) are too large and must be divided into smaller 
areas, a process known as image patch sampling [17]. This restriction does not apply to CLE images which 
are smaller, acquired continuously and can be used directly for training NN. One type of supervised NN that 
has been very successfully and broadly applied to medical image analysis and segmentation are 
convolutional NN (CNN) [17, 19], and this computational approach has been most commonly used for 
model development in CLE imaging.

In addition, computational tools developed for analysis of confocal microscopy in biomedical research 
where this technique is widely used also have relevance and applicability to clinical CLE diagnostics. For 
example, in one study the authors used sequential application of multiple NN to process raw images, to first 
denoise and then reduce artefacts by deconvolution and then perform segmentation to identify and analyse 
features [23]. Such AI-based systems developed to allow researchers to analyse large datasets of many 
complex confocal images indicate feasibility for clinical CLE image analysis.

Application of AI to clinical CLE imaging
A number of studies have reported application of supervised or semi-supervised ML methods to clinical 
CLE imaging of a variety of tissues. Many of these studies have used ex vivo tissue CLE imaging of resected 
specimens as proof of principle for in vivo applications although ex vivo examination does have utility for 
margin assessment in the surgical setting. In Barrett’s oesophagus where tissue surveillance is critical to 
clinical management, one recent study used DL models for diagnosis of dysplasia/cancer, finding 
performance consistent with reported human diagnostic accuracy [24]. In the gastrointestinal tract, where 
CLE-based methods are well established, promising results have been achieved with CLE images from 
animal models of colon cancer [25] and ex vivo gastric cancer tissue [26] using computational NN to 
identify malignant tissue. In the latter study, real-time evaluation using an AI-based method distinguished 
not only malignant from non-malignant tissue but also the histological subtype in gastric cancer [26]. In 
colon cancer and metastases, a CNN gave similar diagnostic performance in interpretation of CLE images to 
trained clinical observers suggesting that this approach could assist in intraoperative implementation of 
CLE [15]. In neurosurgery, AI-based classification has also been applied to identify glioblastoma or 
metastases in resected brain tumour tissue specimens, building a model with high accuracy (94%) [27]. 
Other neurosurgical studies using NN have similarly shown accurate classification of features in brain 
tissue CLE imaging (90% and 98.5%, respectively) [28, 29].

For OSCC there have been a number of reports of the development of ML tools to automate and 
improve consistency for interpretation of CLE images in the diagnostic [30] and surgical [31] settings. 
Aubreville et al. [30] successfully applied a CNN to in vivo CLE images of oral epithelium for identification of 
OSCC, reporting 88.3% accuracy. In the surgical setting, ML has been applied to ex vivo confocal imaging of 
resected OSCC as a means for in theatre assessment of surgical margins [31]. Large language models such as 
GPT have been explored in one pilot study of 5 patients for classification of CLE images in the diagnosis of 
oropharyngeal squamous cell carcinoma with a reported accuracy of 71.2% [32]. In a related field of high-
resolution microendoscopy (HRME) with similar fluorescence images to CLE, a CNN-based approach has 
been used to quantify nuclear features and diagnose malignancy in oral epithelial images [33].

Apart from the histological classification of tissues, computational methods have been applied to 
artefactual features which can commonly impact the diagnostic utility of CLE images. To date, only a few 
studies have reported on the processing of CLE images although in the broader field of confocal microscopy, 
the literature is extensive. The automatic assessment and filtering of image quality using a DL model 
allowed the processing of a large dataset of oral cavity and vocal fold CLE images to distinguish those that 
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were non-diagnostic and improve subsequent diagnostic accuracy to 94.8% [34]. Recently an approach 
based on a self-supervised algorithm incorporating multiple NN has been used to denoise CLE images and 
enhance image quality [35]. This essentially unsupervised method has advantages over supervised learning 
since it avoids the need to curate a large set of labelled training data. Examples of the applications of NN to 
CLE are illustrated in Figure 2.

Figure 2. Examples of NN (neural network) application to imaging using single-fibre distal scanning CLE [confocal 
laser endomicroscopy (Optiscan Imaging Ltd, Melbourne Australia)]. (A) In supervised DL (deep learning) the model 
training process requires a large data set of expert-labelled images which can be developed for different image analysis tasks. 
An original captured image (B) can be enhanced and denoised by image pre-processing, filtering and masking for preparation of 
input (C). Morphological features and image features such as nuclei (D), cell boundaries (E) and optical vector intensity (F) can 
be labelled and mapped. Algorithms can use cell and nuclear size, pleomorphism, nuclear: cytoplasmic ratio, cell crowding, 
presence of inflammatory cells, and other features (G) to provide a diagnostic readout. Figures 2B–G are adapted with 
permission from Optiscan Imaging Ltd, internal instrument data, © 2025 Optiscan Imaging Ltd

These results show that computational automatic image analysis can yield results consistent with 
expert diagnosis and is likely to accelerate the application of CLE technology in OPMD and oral malignancy 
diagnosis and management. However, these investigations are generally pilot studies, and for wider 
acceptance of the integration of AI-based diagnostics and CLE imaging more extensive validation studies 
are required incorporating larger data sets with greater diversity than those reported to date.

A key determinant in the application of AI diagnostics in CLE is the quality of output images which may 
vary significantly between CLE technology platforms (single-fibre vs bundled-fibre). Most of the studies 
described thus far in the development of AI diagnostic models for application to CLE have used bundled-
fibre-based systems which have some practical advantages but are disadvantaged by limited image 
resolution [7, 36]. Developing AI-based models for diagnosis of OED using such images has required the 
development of scoring systemswhich may not recapitulate commonly accepted cellular features of OED, 



Explor Digit Health Technol. 2025;3:101138 | https://doi.org/10.37349/edht.2025.101138 Page 6

such as those of the WHO. In contrast, single-fibre distal-scanning CLE has a number of technical 
advantages including superior image resolution and improved visualisation of cellular and nuclear features 
[7, 36]. Such CLE imaging platforms with high-quality image outputs are likely to be more amenable to AI 
diagnostics and require less image preprocessing. In addition, higher image quality greatly facilitates the 
training of ML models since expert labelling of training datasets is more straightforward. Furthermore, such 
AI diagnostic models are likely to be more acceptable to regulators and adopted by clinicians because they 
are readily explainable due to their alignment with existing diagnostic practice.

Future developments
For CLE, AI is a transformative technology since it transforms CLE from an image acquisition device which 
requires expert interpretation to a true diagnostic device capable of providing a real-time point-of-care 
diagnostic readout during tissue examination. AI-based diagnostics of CLE images requires multiple NN 
integrated to perform sequential tasks to denoise/enhance images, label cellular features and generate 
diagnostic output. Computationally, the greatest requirements are in the development phase, where models 
must be trained using large, curated datasets. However, at the clinical application phase, sufficient 
computational resources must be integrated into the CLE platform so that the clinician or surgeon receives 
an immediate indication of abnormality as the probe is moved around the tissue surface. Prospectively, the 
availability of real-time digital pathology based upon CLE will have a significant impact on diagnostic and 
surgical workflows. Clearly, future studies will be needed to quantify the benefits of such workflows on 
patient outcomes and health care costs to provide objective evidence for adoption of this technology. To 
date there have been few studies of the health economic and workflow impacts of CLE imaging, however, 
those to date indicate that CLE in some settings can improve diagnostic accuracy, reducing costs and 
suggest that one of the principal barriers to the adoption of this technology which is the need for specific 
diagnostic expertise is one that can be addressed using AI [37, 38].

Looking to the future, one aspect of CLE imaging which has received some investigation and which 
could be integrated into AI-based workflow is the use of fluorescently labelled molecules to target and 
visualise specific biomarkers in vivo [39, 40]. Many studies have reported the application of AI assistance to 
bring greater objectivity and sensitivity to immunohistochemistry-based diagnostic applications (for 
example [41, 42]). Application of specific probes for biomarkers has been explored in CLE and in at least 
one study of direct relevance to OSCC, AI has been successfully applied to CLE image segmentation in 
oesophageal adenocarcinoma labelled with fluorescently labelled epidermal growth factor receptor binding 
peptides [43].

Taken further, development of AI models of disease for OED and OSCC with or without fluorescently 
labelled molecules could be pursued in animal models such as the 4-Nitroquinoline-1-oxide (4NQO) mouse 
model or the hamster cheek pouch carcinogenesis model utilising CLE images obtained from longitudinal 
studies of oral carcinogenesis in these animal models. Not only is this approach valuable for developing AI 
useable data, but it also assists in understanding the natural history of oral carcinogenesis taking a systems 
biology approach not otherwise possible in cross-sectional studies requiring animal sacrifice at interval 
timepoints and examination of tissues using traditional approaches on glass slides.

Conclusions
AI is already broadly demonstrating that it will revolutionise pathology workflows and improve 
reproducibility. The studies to date have shown the capability of AI in the diagnostic interpretation and 
classification of CLE images. Integration of AI into the CLE workflow can enable the adoption of real-time 
digital pathology directly in the clinic to empower clinical and surgical decision-making. The integration of 
AI into CLE is in its infancy and the size and scope of studies to date have been small. Technical 
developments and acceptance of clinical AI in related pathology and medical image analysis fields will help 
to drive application to CLE. The keys to advancing application to CLE will be the development of reliable 
and platform-specific AI tools and the demonstration of their diagnostic performance in large robust 
clinical studies.
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