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Abstract
Aim: Genetic instability represents the hallmark of carcinogenesis. For cancer, the retinoblastoma (RB) 
gene defect allowing genetic instability was successfully exploited to eliminate cancer. Similarly, this study 
aims to assess the genetic instability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
spike protein’s S1/S2 furin cleavage site in hopes of applying oligonucleotide-based therapeutics to 
suppress infectivity by exploiting hypermutability.
Methods: The Basic Local Alignment Search Tool was used to search for homology. Protein or nucleotide 
sequences were obtained from the National Center for Biotechnology Information database. BioEdit was 
used for multiple sequence alignment. Python-enhanced molecular graphics program was used for 
molecular modeling.
Results: To assess feasibility, comparative sequence alignment was performed on S1/S2 site plus 
juxtaposing residues of SARS-CoV-2 and avian infectious bronchitis virus (IBV) isolate AL/7052/97 that 
belongs to distinct genus. IBV amino acids correlating to 678-TNSPRRARSVASQS of SARS-CoV-2 spike 
protein were deciphered (nine identical, two conserved, two displaced, and one unconserved). The 
encoding nucleotides exhibited 14 identities, three transitions (C>U or U>C, two; G>A or A>G, one), and 15 
transversions (U>A or A>U, eight; C>G or G>C, six; G>U or U>G, one) with mostly complementary base 
(14/15) for transversion. Analysis of SARS-CoV-2 variants corroborates that S1/S2 site continues to evolve. 
The overall data portrays an evolutionarily dynamic nature of S1/S2 site. The potential role of intragenomic 
‘microhomology-mediated template switching’ by RNA-dependent RNA polymerase is described.
Conclusions: To apply virolytic pressure, peptide-guided oligonucleotides targeting S1/S2 site-encoding 
sequences may be deployed to trigger genomic RNA degradation. A potential consequence is that resistant 
variants (if emerge) may carry mutation(s) in S1/S2 site-encoding sequence to abrogate hybridization, 
which (by default) may encode defective substrate for furin. Thus, through ‘targeting oligonucleotides 

https://orcid.org/0000-0002-6814-4671
https://orcid.org/0000-0002-5499-5061
https://orcid.org/0000-0003-0408-9391
mailto:frank_hong@biosyn.com
https://doi.org/10.37349/edht.2025.101142
https://doi.org/10.37349/edht.2025.101142
http://crossmark.crossref.org/dialog/?doi=10.37349/edht.2025.101142&domain=pdf&date_stamp=2025-03-20


Explor Digit Health Technol. 2025;3:101142 | https://doi.org/10.37349/edht.2025.101142 Page 2

directed devolution’ of S1/S2 site, the infectivity of SARS-CoV-2 may be attenuated. An alternative strategy 
of oligonucleotide-based therapeutic editing by adenosine deaminases acting on RNA (ADAR) is mentioned.
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Introduction
Genetic instability constitutes the key driving force underlying tumoral evolution. The finding that multiple 
tumor suppressor genes function in DNA damage checkpoint to prevent mutagenesis confirmed this view. 
Therapeutically, the defect in checkpoint allowing genetic instability also represents vulnerability as it 
could be exploited to trigger genome disintegration, resulting in tumor cell death. This point has been 
successfully demonstrated in the case of a tumor suppressor gene defect (see below). Here, in a similar 
vein, we explored whether genetic instability underlying viral evolution could be exploited for the 
therapeutic purpose of suppressing infectivity.

Within cells, progression through the G1 phase is governed by the prototypic tumor suppressor 
retinoblastoma (RB) protein, a component of the DNA damage checkpoint [1]. RB also controls cell cycle 
progression across the S phase; after the cloning of the human RB gene by F. Hong (a.k.a. Frank Un, Frank D. 
Hong) et al. [2, 3] at the University of California in San Diego (United States), RB protein was found to be 
phosphorylated in vivo. His determination of the RB gene sequence was pivotal in identifying the cyclin-
dependent kinase (CDK) complex as the enzyme catalyzing RB phosphorylation [2, 3]. The cyclic 
phosphorylation pattern of RB is maintained by distinct cyclin-CDK complexes, with the least 
phosphorylated species found in the G1 phase [4]. It led to the development of various inhibitors, which 
include palbociclib (Pfizer Pharmaceutical, United States), ribociclib (Novartis Pharmaceutical, 
Switzerland), and abermaciclib (Eli Lilly Pharmaceutical, United States) approved by the U.S. Food and Drug 
Administration (FDA) for treating metastatic breast cancer.

RB protein’s role in regulating transcription was inferred from F. Hong et al. [3] finding of its ability to 
bind to DNA, which was subsequently confirmed [5]. This property was corroborated via observing the RB-
DNA complex formed by purified RB protein and double-stranded DNA [6]. Its atypical electrophoretic 
migration pattern led to his subsequent finding of RB’s oligomerizing property [7–9]. RB protein’s 
interaction with E2F confirmed RB gene’s role in transcriptional regulation. Partial proteolysis of RB by C. E. 
Hensey (University College Dublin, Ireland) et al. [7] revealed the existence of distinct domains for 
interaction with associating proteins and a separate module at the N-terminus. The prototypic 
antimetabolite drug hydroxyurea is FDA-approved for treating chronic myelogenous leukemia, and head 
and neck squamous cell carcinoma. [10]. Through the analysis of RB-associating protein, F. Hong discovered 
that the sensitivity to hydroxyurea could be restored to resistant human cancer cells at the City of Hope 
National Medical Center and Beckman Research Institute (United States) in collaboration with C. Bronner 
(Institut national de la santé et de la recherche médicale, France) et al. [11].

RB gene’s role in chromosome organization and architecture was indicated by F. Hong and W. H. Lee 
found [12]; that RB protein exhibits similarity in sequence with neurofilament L-type subunit, which was 
corroborated by R. F. Doolittle (University of California at San Diego, United States) [12]. Consistently, he 
observed RB oligomers and detected the polymerization of RB protein [7]. The association of RB with 
nuclear matrix was documented by S. Penman (University of Texas Health Science Center at San Antonio) et 
al. [13]. The finding that RB protein may self-interact to form higher-ordered structures was instrumental 
in extending RB  gene’s function to DNA replication, repair, recombination, condensation, 
heterochromatinization, epigenetics, etc. [1]. The prototypic DNA crosslinking drug cisplatin is FDA-
approved for treating ovarian cancer, testicular cancer, and bladder cancer. F. Hong [14] discovered that G1 
arrest mediated by RB represents a critical determinant of cisplatin cytotoxicity in RB-positive human 
cancers retaining DNA damage checkpoint.
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The inactivation of RB through mutation causes genetic instability [1, 15]. F. Hong observed that 
ectopic expression of RB driven by SV40 large T promoter causes transfected cells to arrest as enlarged 
cells (unpublished data). Retrovirally expressed RB suppressed the growth of human RB, prostate cancer, 
and breast cancer [16–18]. Further, purified human recombinant RB protein induced G1 arrest in 
microinjected cells [19]. These findings revealed RB gene’s function in DNA damage checkpoint in the G1 or 
S phase [20]. The prototypic antimicrotubule drug Taxol is FDA-approved for treating breast cancer, non-
small cell lung cancer, and ovarian cancer. F. Hong [15] discovered that by exploiting the defective 
checkpoint rendered by inactive RB (or p53), Taxol (paclitaxel) induces lethality via triggering chromosome 
fragmentation, i.e., ‘mitotic catastrophe’. It led to the elucidation of the tumor-specific lytic path ‘hyperploid 
progression mediated death’ targeting RB or p53-mutant human cancer cells at the University of Texas 
Southwestern Medical Center (United States), establishing a framework for developing cytotoxic cancer 
therapy devoid of side effects [15].

RB gene’s role as a therapeutic biomarker originates from F. Hong et al. [21] discovery of an RB mutant 
affecting its promoter activity [22]. Earlier, he identified and characterized the promoter of the human RB 
gene [23]. It represents the earliest RB mutant to be identified in human prostate cancer [21]. The 
mutational status of RB dictates the optimal strategy for treating advanced-stage cancer patients, e.g., 
hormone therapy [example (ex.), Enzalutamide] versus antimicrotubule chemotherapy (ex., Taxol) for 
prostate cancer.

Increasingly, modern medicine relies on targeting upstream genetic components such as mRNA or 
chromosomal DNA. Notable among them is genetic medicine using oligonucleotides to suppress translation 
by hybridizing to mRNA or degrading mRNA through RNA interference or RNase H1. The first clinical trial 
of siRNA employed siRNA targeting human ribonucleotide reductase M2 subunit contained in nanoparticles 
designed by M. E. Davis (California Institute of Technology, United States) et al. [24] to treat various types of 
human cancer. Nevertheless, oligonucleotide drugs, by themselves, cannot translocate across the cell 
membrane for delivery in a targeted manner, contributing to side effects. To facilitate delivery, the siRNA 
was conjugated to the tumor specifically internalizing peptide HN-1 for targeted delivery into the head and 
neck or solid breast tumor. HN-1 peptide was isolated via biopanning of M13 bacteriophage-based random 
peptide display library using human head and neck squamous carcinoma cells by F. Hong and G. L. Clayman 
[25] at the University of Texas M. D. Anderson Cancer Center (United States). HN-1 has been conjugated to 
various agents for cancer therapy (ex., siRNA oligonucleotide, Taxol, protein kinase C inhibitory peptide, 
diphtheria toxin, doxorubicin) or tumor imaging (ex., near-infrared dye, radioisotope) [26–34]. His 
delineation of discoidin domain tyrosine kinase receptor 1 (DDR1) as the putative receptor for HN-1 and its 
therapeutic application to breast, lung, and other cancer types was recently reviewed [35]. Its ability to 
penetrate tumor mass may be useful in delivering immunotherapeutics to the interior of solid human 
cancers. For prostate cancer, he described the role of monoamine oxidase A in modulating anticancer 
immunity at the University of Southern California (United States) [36, 37]. FDA has approved 
immunotherapeutics targeting hypermutated tumors [38].

The recent coronavirus disease 2019 (COVID-19) pandemic has affected many with underlying 
conditions [39, 40]. Among the impacted were those who have cancer, whose fatality rate increased 
markedly following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Various 
preventive measures have been developed, including mRNA vaccines expressing the modified spike protein 
[41]. These countermeasures significantly reduced COVID-19-associated mortality. Nevertheless, 
subsequently emerged variants were able to impact host immunity via acquiring a mutation in epitopes 
[42]. Adaptation by SARS-CoV-2 was not unexpected, given its high level of mutability [43, 44]. The genetic 
instability of SARS-CoV-2 gives rise to point mutation, insertion, deletion, and complex mutation [45]. The 
virally encoded RNA-dependent RNA polymerase (RDRP) incurs a high error rate during nucleotide 
incorporation despite the proofreading capacity (3’-to-5’ exoribonuclease) of nonstructural protein 14 
(NSP14). Furthermore, genetic recombination may occur due to template switching between homologous 
RNA strands by RDRP [45].
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Modulating the cell cycle via targeting its regulators represents a key replicative strategy amongst 
viruses [46]. Virally encoded oncogenic proteins that interact with RB protein include large T antigen 
(simian vacuolating virus SV40), E1A (adenovirus), and E7 (human papillomavirus) [47]. For SARS-CoV-1, 
structural protein 3a inhibits RB phosphorylation, causing G1 arrest [48]. In the case of SARS-CoV-2, NSP1 
was shown to suppress host cell protein synthesis, resulting in G1 arrest, which is regulated by RB [49]. 
SARS-CoV-2 was also shown to cause S arrest (which is controlled by RB) via depleting deoxynucleotides 
[50].

The acquisition of S1/S2 furin cleavage site in spike protein significantly expanded the tropism of 
SARS-CoV-2 (see below). The increased dissemination despite reduced virulence is a distinguishing feature 
amongst subsequently arisen variants. Here, to address this issue, the possibility of exploiting the 
hypermutability of SARS-CoV-2 to suppress its infectivity is explored. To apply virolytic pressure, 
oligonucleotides targeting the S1/S2 site-encoding sequence may be deployed to trigger genomic RNA 
degradation. A potential consequence of the above approach is that resistant variants (if they emerge) may 
carry a mutation in S1/S2 site-encoding sequence to block oligonucleotide hybridization, which may 
encode defective substrate for furin by default. Hence, the prospect of applying targeting oligonucleotides 
to direct the devolution of the S1/S2 site, delimiting tropism to attenuate the infectivity of SARS-CoV-2, is 
described. The precedent for the above comes from previous reports documenting reduced viral fitness 
conferred by resistance mutations. The approach is reminiscent, albeit distinct from the ‘directed evolution’ 
described by P. A. Romero and F. H. Arnold (California Institute of Technology, United States; Nobel Prize 
2018) [51].

Materials and methods
Homology search

The protein-protein Basic Local Alignment Search Tool (BLASTp) was used to evaluate linear sequence 
similarity between two proteins (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). To avoid 
algorithmic bias that may prioritize longer-sequenced homologies in identifying the ‘best fit’, the search 
was conducted using the peptide sequence ‘PRRAR’ (Pro-Arg-Arg-Ala-Arg) of SARS-CoV-2 spike protein as 
the query. The screening was performed using BLASTp software (version BLAST+ 2.12.0) against the 
database of avian coronavirus IBV, which belongs to genus Gammacoronavirus (https://blast.ncbi.nlm.nih.
gov/Blast.cgi?PAGE=Proteins). The database comprised of sequences from SwissProt, Protein Data Bank, 
Protein Information Resource, GenBank non-redundant coding sequence translations, and Protein Research 
Foundation (excluding environmental samples from Whole Genome Shotgun projects). For computing, the 
algorithm was set with the following parameters to execute the search for alignment. General parameters: 
max target sequences, 100; expect thresholds, 0.05; word size, 5; max matches in a query range, 0. Scoring 
parameters: matrix, BLOSUM62; gap costs, existence (11) extension (1); compositional adjustments, 
conditional composition score matrix adjustment. Filters and masking: none. Protein sequences and the 
corresponding nucleotide sequences in GenBank format were retrieved from the National Center for 
Biotechnology Information (NCBI) archived and publicly available through the PubMed (Public Medline) 
database (for protein sequence, https://www.ncbi.nlm.nih.gov/protein/; for nucleotide or protein 
sequence, https://www.ncbi.nlm.nih.gov/nucleotide/).

Multiple sequence alignment

To align multiple polypeptide sequences, the BioEdit program was employed, which performs pair-wise 
alignment to identify the best matches of statistical significance. Alternatively, sequences were parceled 
into oligopeptides prior to performing alignment to identify residues that may match in a 3-dimensional 
context, albeit not in a 2-dimensional setting due to physical separation.

Molecular modeling

The 3-dimensional structure of furin bound to a hexapeptide inhibitor was generated using the Python-
enhanced molecular graphics (PyMOL) program. After downloading the structural coordinates from the 
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National Institutes of Health (NIH) protein database (https://www.ncbi.nlm.nih.gov/Structure/index.
shtml), PyMOL software was employed to re-enter the image of the enzyme-inhibitor complex. Structure-
associated data was obtained from the National Library of Medicine (https://www.nlm.nih.gov/). The 3-
dimensional structure of Arg-Arg-Arg-Val-Arg-Amba (aminomethylbenzoic acid) peptide competitively 
bound to the furin proprotein convertase enzyme determined through X-diffraction analysis was obtained 
via searching the structural database using ‘6EQX’ as the query.

Oligonucleotide synthesis

Various types of organic chemistry underlying oligonucleotide synthesis and distinct types of chemical 
modification are used to resolve clinical issues associated with oligonucleotide therapeutics. These include 
the previously employed phosphodiester method or phosphotriester approach to synthesize 
oligonucleotides chemically. The current widely adopted solid-support-based approach utilizes nucleoside 
phosphoramidites as a precursor for oligonucleotide synthesis. For internucleosidic (backbone) 
modification, phosphorothioate may be used to reduce degradation. Alternatively, peptide nucleic acids or 
morpholino oligonucleotides may be utilized. To enhance nuclease stability or augment affinity for 
hybridization, bases may be modified (ex., methylation), or bridged nucleic acids (or locked nucleic acids) 
may be incorporated into oligonucleotides during the synthesis. Further, C2’ position of the sugar moiety 
may be modified to contain 2’-O-methyl, 2’-O-methoxyethyl, 2’-fluoro group, etc. To synthesize good 
manufacturing practice (GMP)-grade oligonucleotides for clinical application, additional works regarding 
molecular mass (as analyzed by mass spectroscopy), purity (as determined by high-performance liquid 
chromatography), sterility (as synthesized under a sterile condition), etc. will be necessary.

Results
The evolutionary trajectory of the S1/S2 furin cleavage site in SARS-CoV-2 spike protein

To assess the feasibility of the above therapeutic approach (see Introduction), the stability (or instability) of 
the amino acid sequence comprising the S1/S2 site was examined. Peptide sequences may be key to 
understanding the fitness-defining forces or requirements for protein design or evolutionary stability [52]. 
The discipline of molecular evolution was pioneered by R. F. Doolittle and B. Blombäck (Karolinska 
Institute, Sweden) [53]. However, obtaining insight into the evolutionary trajectory of the S1/S2 site of 
SARS-CoV-2 is difficult as proximally related coronaviruses lack the site in toto. Instead, we sought to gain 
insight by performing comparative sequence alignment with an avian infectious bronchitis virus (IBV) 
isolate, which belongs to a distinct genus.

IBV is the earliest coronavirus to be isolated [54–56]. IBV remains challenging to the commercial 
chicken industry globally due to the little cross-protection offered by vaccines against variants, resulting in 
a high rate of mortality. Following the IBV infection, symptoms appear within 24–48 hours [57]. The 
isolation of IBV was instrumental in identifying the causative agent for highly contagious respiratory 
disease afflicting chicks in North Dakota in 1931 [58]. The IBV strain Beaudette (IBV-Beaudette) was 
isolated by cultivating the IBV strain Massachusetts 41 (IBV-M41; isolated in the United States) in 
embryonated chicken eggs or cultured cells (primary chicken embryo kidney cells) [54, 59–61]. IBV-
Beaudette has served as an in vitro infection model and can infect Vero monkey kidney cells, baby hamster 
kidney-21 (BHK-21) baby hamster kidney cells, or human cells due to adaptability [60, 62–67]. Unlike the 
virulent IBV-M41, IBV-Beaudette is nonpathogenic to chickens, and its attenuated virulence is associated 
with a reduced capacity of the spike protein to bind to target or altered replicase [58, 59, 68, 69].

The prototypic coronavirus IBV belongs to the genus Gammacoronaviridae and infects chickens’ 
respiratory, gastrointestinal, reproductive (female), and renal tissues [70]. The genomic structure of IBV 
consists of nonsegmented positive-sense single-stranded RNA (~27.6 kb) (Figure 1A). Occupying 5’ two-
thirds of the IBV genome are the genes encoding polyproteins 1a and 1b, which generate 15 nonstructural 
proteins involved in transcription or RNA replication. The remaining 3’ portion of the IBV genome contains 
the genes encoding structural proteins (spike protein, envelope protein, membrane protein, nucleocapsid 
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protein) and accessory proteins (3a, 3b, 5a, 5b) [69]. IBV delimits interferon production upon infection by 
suppressing host protein synthesis (via accessory protein 5b) [71]. Its spike protein is comprised of the S1 
subunit, which contains the receptor binding domain, and S2 subunit containing two heptad repeat regions 
that undergo a conformational change to mediate the fusion of the viral envelope with the cell membrane. 
Though the S1 subunit binds to alpha-2,3 linked sialic acids, an additional determinant for IBV infection 
may exist [59, 63].

Figure 1. The S1/S2 furin cleavage site of spike protein in IBV isolate AL/7052/97. (A) A schematic showing structural and 
nonstructural genes of avian IBV genome (not to scale). 1a or 1b: open reading frame 1a or 1b; E: envelope protein; M: 
membrane protein; N: nucleocapsid protein; 3a, 3b, 5a, 5b: accessory proteins; SP: signal peptide; S1/S2: first furin cleavage 
site; S2’: second furin cleavage site; RBD: receptor binding domain; FP: fusion peptide; TM: transmembrane domain; HR1: 
heptad repeat 1; HR2: heptad repeat 2. The key domains of IBV spike protein are also shown. (B) The consensus sequence for 
the motif cleaved by furin is shown. The amino acid sequences of the S1/S2 site and the flanking regions of selected IBV strains 
and IBV isolate AL/7052/97 are listed. The residues that differ between the strains are indicated in blue letters. Red arrow 
denotes the predicted cleavage site by furin. Residue number corresponds to first amino acid of the peptide segment shown. 
The sources for the sequences are indicated in the text. Single letter codes are used to designate amino acids. For comparison, 
a noncovalent peptide furin inhibitor is shown, whose molecular structure is depicted in Figure 3B. A* denotes Amba 
(aminomethylbenzoic acid). IBV: infectious bronchitis virus; M41: Massachusetts 41; M42: Massachusetts 42

In the IBV-Beaudette spike protein, subunits S1 and S2 are generated through the proteolytic cleavage 
of the precursor protein (1,162 residues, including the signal peptide) [61]. In IBV-M41 spike protein, the 
N-terminal 253 residues mediate the binding of the coronavirus to the chicken respiratory tract [55]. 
Partial amino acid sequencing determined that the S2 subunit begins at residue Ser-538 [62]. The 
interconnecting peptide of Arg-Arg-Phe-Arg-Arg represents the first proteolytic cleavage site (S1/S2) in 
IBV-M41 and IBV-Beaudette [62]. Arg-Arg-Phe-Arg-Arg-Ser (residues 533–538) cleavage by furin was 
biochemically confirmed [60]. A second proteolytic cleavage site (i.e., ‘S2’) comprised of Arg-Arg-Arg-Arg-
Ser or Arg-Arg-Lys-Arg-Ser (residues 687–691) that is cleavable by furin was found in IBV-Beaudette and 
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other related strains [60]. The S2’ site arose due to the conversion of Pro-687 (IBV-M41) to Arg-687 
through mutation (in IBV-Beaudette). The S1/S2 site promotes the infectivity of IBV-Beaudette in Vero cells 
or syncytium formation; the S2’ site is obligatory for furin-dependence [60]. The subsequent acquisition of 
the S2’ furin-cleavage site has expanded the cell and tissue tropism of IBV-Beaudette [67]. In the QX-type 
IBV strain, its acquiring of the S2’ site led to a significantly increased mortality in chickens [72].

IBV is the earliest coronavirus to be reported with a furin cleavage site [73]. In 1986, F. Hong et al. [74] 
determined the genomic sequence of IBV encoding peplomer (spike protein) at the Salk Institute (San 
Diego, United States). The institute was founded by J. Salk (University of Pittsburgh, United States) in 
consultation with F. Crick (Nobel Prize 1962, double helix). In 1955, J. Salk developed a vaccine against 
poliovirus (distributed by Eli Lilly & Company, Kiehl’s Pharmacy, etc.) along with A. Sabin (University of 
Cincinnati, United States). Potential immunogenic epitopes were identified by comparing IBV-M41 (used 
for vaccinating chickens) with IBV-Beaudette strains M42-Houghton and M42-Salk. This work was done 
with W. J. Spaan (University of Utrecht, The Netherlands) [74], who was visiting B. M. Sefton (Salk Institute; 
discovered tyrosine kinase with T. Hunter, which led to its inhibitor Gleevec, which is FDA-approved for 
treating chronic myelogenous leukemia, acute lymphoblastic leukemia, gastrointestinal stromal tumor) [61, 
75]. In 2021, most vaccines developed against SARS-CoV-2 also targeted spike protein [76].

Previous comparison of SARS-CoV-2 and IBV (i.e., IBV-Beaudette) did not show homology at the S1/S2 
site despite the aligning at the S2’ site [77]. This result may have been due to algorithmic bias that 
prioritizes longer homologies (at the expense of shorter homologies) to arrive at the ‘best fit’. In a report 
where the S1/S2 site of the above two viruses have been compared side by side, only two residues matched, 
i.e., Arg at P4 and Arg at P1 (residues are denoted as P5-P4-P3-P2-P1-P1’ with cleavage occurring at P1-P1’) 
of SARS-CoV-2 (Pro-Arg-Arg-Ala-Arg-Ser) and IBV-Beaudette (‘Beaudette US’ strain; Arg-Arg-Phe-Arg-Arg-
Ser) [78].

To gain insight into the evolutionary trajectory of the S1/S2 site in SARS-CoV-2 spike protein, a novel 
search was conducted. To this end, the search was confined to the database of distantly related avian 
coronavirus IBV, which belongs to genus Gammacoronavirus (whereas SARS-CoV-2 belongs to genus 
Betacoronavirus). The IBV database consists of numerous genotypic and serotypic variants, resulting from a 
high mutation rate of RDRP and recombination [79, 80]. To avoid the algorithmic bias mentioned above, 
query consisted of merely the pentapeptide PRRAR (Pro-Arg-Arg-Ala-Arg) of SARS-CoV-2’s spike protein. 
The query sequence was screened against databases, which included non-redundant GenBank coding 
sequence translations, Protein Data Bank, SwissProt, Protein Information Resource, and Protein Research 
Foundation (excluding environmental samples from Whole Genome Shotgun projects) using BLASTp 
program.

It yielded 5 homologues that completely matched ‘RRAR’ of the query sequence. Further analysis 
revealed that the top 5 homologues, represented 3 distinct entities in essence. (1) Nucleocapsid protein 
(Infectious bronchitis virus; Seq. ID ACN82401.1) with a duplicate entry. (2) Polyprotein 1ab (Infectious 
bronchitis virus; Seq. ID QDQ69132.1), which is identical to polyprotein 1a (Infectious bronchitis virus; Seq. 
ID QDQ69120.1). These two homologues were not studied further (as they do not represent spike protein). 
(3) Spike glycoprotein S1 subunit partial (Infectious bronchitis virus; Seq ID: AAM34741.1). GenBank entry 
AAM34741.1 contained a partial coding sequence of spike glycoprotein S1 subunit of avian IBV isolate 
AL/7052/97.

Previous works have identified ‘X-R-X-K/R-R-X’ (R, arginine) as the consensus recognition motif for 
furin proteases. In ‘XBXBBX’, B and X represent basic and hydrophobic residues, respectively [81]. Furin 
proteolytically cleaves between the terminally located Arg and X residue (terminal X is serine in many 
viruses). In Figure 1B, the amino acid sequence of the S1/S2 site in spike protein of IBV-M41, IBV-Beaudette 
M42-Houghton [82], and IBV-Beaudette M42-Salk are shown [69, 74, 83]. The corresponding amino acid 
sequence of IBV isolate AL/7052/97 (GenBank entry AAM34741.1), which conforms to the consensus 
recognition motif of furin, is also shown.
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Comparative sequence alignment of the S1/S2 site in SARS-CoV-2 and the IBV isolate AL/7052/97

The results from the BLAST search revealed that Arg-Arg-Ala-Arg is identical between the spike proteins of 
SARS-CoV-2 and IBV isolate AL/7052/97. This information was used as the starting point to align peptide 
sequence containing the S1/S2 furin cleavage site of both viruses bidirectionally. The identity of amino acid 
at a given point in the protein sequence is dictated by the corresponding codon in mRNA (B. Holley, Salk 
Institute; H. G. Khorana, Massachusetts Institute of Technology; M. Nirenberg, National Institute of Health, 
United States, Nobel Prize 1968, genetic code). Hence, comparisons were made at both the nucleotide and 
amino acid levels. The nucleotide sequence comprising codons was instrumental in aligning amino acid 
sequences.

The amino acid sequence and nucleotide sequence of SARS-CoV-2 were obtained from GenBank entry 
MZ027645.1  [Severe  acute  respiratory  syndrome coronavirus  2  iso late  SARS-CoV-
2/human/USA/CR0060_spike/2020 surface glycoprotein (S) gene, complete cds]. For IBV isolate 
AL/7052/97, GenBank entry AF509583.1 (Avian infectious bronchitis virus isolate AL/7052/97 spike 
glycoprotein S1 subunit gene, partial cds) provided both nucleotide sequence and amino acid sequence 
while GenBank entry AAM34741.1 [spike glycoprotein S1 subunit, partial (infectious bronchitis virus)] 
provided amino acid sequence. In the 14-residue segment shown, Arg-Arg-Ala of the above tetrapeptide is 
encoded by CGG-CGG-GCA (note: bold letters denote identical nucleotides throughout the text) in SARS-
CoV-2 (Figure 2A). The identical residues in the IBV isolate AL/7052/97 are encoded by a closely matching 
sequence of CGG-CGU-GCU. Interestingly, the nucleotides that differ (i.e., A versus U) are complementary, a 
pattern frequently repeated amongst the rest of identical residues (see below).

Figure 2. Comparative sequence alignment of the peptide segment spanning the S1/S2 furin cleavage site in spike 
protein of SARS-CoV-2 and IBV isolate AL/7052/97. (A) IBV database was searched using the pentapeptide PRRAR (Pro-
Arg-Arg-Ala-Arg) in spike protein of SARS-CoV-2 as the query. Arg-Arg-Ala-Arg of the query completely matched the spike 
protein of IBV isolate AL/7052/97. The aligned region extended to flanking residues. The aligned amino acid sequence (capital 
letter) of SARS-CoV-2 and IBV isolate AL/7052/97 are shown. The residue number refers to the initial amino acid in the peptide 
sequence. Identical amino acids are indicated in red letter while conserved residues are designated in purple letter. Residues 
being compared are highlighted yellow or green and connected by a curved line. The nucleotide sequence (lower key letter) 
encoding the peptide sequence is also shown. Identical nucleotides are highlighted blue while complementary nucleotides are 
highlighted orange. (B) Multiple sequence alignment of the juxtaposed residues located downstream of the S1/S2 site in spike 
protein of SARS-CoV-2, RaTG13, and BANAL-20-52. The sources for the sequences listed are described in the text. Amino 
acids are designated in single letter codes. For therapeutic consideration, a noncovalent peptide furin inhibitor is shown, whose 
molecular structure is depicted in Figure 3B. A* denotes Amba (aminomethylbenzoic acid). IBV: infectious bronchitis virus
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In assessing the evolutionary relationship between distinct proteins based on the homology, a 
meaningful comparison may require aligning of the amino acid sequences comprising a common secondary 
structure of concern. Such endeavor, however, may be difficult for spike protein as its S1/S2 furin cleavage 
site is thought to assume a random coil conformation in vivo as implied from the inability to detect a 
defined structure using cryoelectron microscopy or X-ray diffraction crystallography [84]. As an alternative, 
alignment was performed using the parceled sequences to account for potential oligopeptides that may 
match in a three-dimensional context but may be separated by intervening amino acids in the linear 
peptide (thus difficult to match in a two-dimensional context).

Though not apparent at the outset, we then discovered that the alignment extends to the juxtaposed 
residues located downstream. As described above, Arg (which succeeded Arg-Arg-Ala described above) is 
also identical between the two viruses. However, the codon (CGU) for Arg-685 in SARS-CoV-2 does not 
match the codon (AGA) for Arg-543 located at the equivalent position in IBV isolate AL/7052/97. Instead, it 
matches the codon (CGU) for the subsequent residue Arg-544 in IBV isolate AL/7052/97 (Figure 2A). It 
unexpectedly led to the recognition that Arg-Ser-Val that succeeds Arg-Arg-Ala is also identical between the 
two viruses. Aside from identical nucleotides, the nucleotides that differ between the respective codons are 
also complementary: CGU-AGU-GUA in SARS-CoV-2 versus CGU-UCU-GUU in IBV isolate AL/7052/97.

Further downstream, Ser-Gln-Ser in SARS-CoV-2 nearly matched Ser-Glu-Ser of the IBV isolate 
AL/7052/97. Gln-690 of SARS-CoV-2 and Glu-548 of IBV isolate AL/7052/97 represent two amino acids 
with structurally similar side chains. In addition to identical nucleotides, complementary nucleotides are 
also found between their respective codons where sequences differed: AGU-CAA-UCC in SARS-CoV-2 versus 
AGU-GAA-AGU in IBV isolate AL/7052/97.

Intriguingly, the above alignment uncovered that SARS-CoV-2 is missing a residue at the equivalent 
position for Arg-543, which is located between Arg-Arg-Ala and Arg-Ser-Val in IBV isolate AL/7052/97. 
Instead, SARS-CoV-2 contains Ala-688 located between Arg-Ser-Val and Ser-Gln-Ser (see green highlighted 
residues connected by a curved line in Figure 2A). Potentially, the presence of Ala-688 may have 
compensated for the missing residue to keep the spatial gap between Arg-Arg-Ala and Ser-Gln-Ser in SARS-
CoV-2 in synchrony with that between Arg-Arg-Ala and Ser-Glu-Ser in the IBV isolate AL/7052/97. Thus, 
the disruptive effect on the local conformation caused by the missing residue may have been compensated 
by the presence of Ala-688 to restore the corresponding structural information. Previously, it was shown 
that compensatory mutations are often local and the second mutation undoes the insult on 3-dimensional 
structure caused by the first mutation [85]. Out of three nucleotides comprising their codons, two are 
complementary (i.e., AGA for Arg-543 in IBV isolate AL/7052/97 versus GCU for Ala-688 in SARS-CoV-2), 
with the remaining nucleotide being purine (adenine or guanine) in both viruses. A notable consequence of 
the above is its negative impact on the furin cleavage site. Hence, the displacement of the residue may have 
led to the evolution of a suboptimal substrate for furin in SARS-CoV-2. Consistently, Pro-Arg-Arg-Ala-Arg-
Ser at the S1/S2 boundary of SARS-CoV-2 poorly adheres to the consensus recognition motif of ‘X-R-X-K/R-
R-X’ (R, arginine) for furin.

A similar scenario unfolds in the sequence upstream of Arg-Arg-Ala-Arg. Of 4 residues located 
upstream, Asn and the corresponding codon AAU are identical in both viruses. The preceding residue, i.e., 
Thr (codon ACU) in SARS-CoV-2 or Ile (codon AUU) in IBV isolate AL/7052/97, differ by a single nucleotide 
(pyrimidine in both viruses) in their respective codons. The subsequent residue, i.e., Ser (codon UCU) in 
SARS-CoV-2 or Thr (codon ACA) in IBV isolate AL/7052/97, represent conserved residues, whose codons 
differ by two nucleotides, which are complementary. Interestingly, the remaining residue Pro (codon CCU) 
in SARS-CoV-2 or Gly (GGA) in IBV isolate AL/7052/97 (yellow highlighted residues connected by a curved 
line in Figure 2A) also appears displaced, i.e., positioned on the opposite sides of the conserved residue 
Ser/Thr, with their codons entirely encoded by complementary nucleotides.

In the aligned region, the nucleotides in the coding sequence of SARS-CoV-2 and IBV isolate 
AL/7052/97 displayed 14 identities, three transitions (C>U or U>C, two; G>A or A>G, one), and 15 
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transversions (U>A or A>U, eight; C>G or G>C, six; G>U or U>G, one). Transversion occurred more 
commonly than transition (15/3) for substitutions, and complementary base occurred frequently (14/15) 
for transversions. Presumably, the region may have undergone a series of complex genetic events during its 
ontogeny (see below).

The alignment of the downstream juxtaposed sequence of the S1/S2 furin cleavage site despite the 
evolutionary distance between SARS-CoV-2 and IBV isolate AL/7052/97 prompted us to examine 
coronaviruses proximally related to SARS-CoV-2 [86]. In Figure 2B, the presence of Arg-Ser-Val and Ser-
Gln-Ser in the spike protein from SARS-CoV-2 isolate Wuhan-Hu-1 is shown. The corresponding amino acid 
sequence was obtained from GenBank entry MN908947.3 (Severe acute respiratory syndrome coronavirus 
2 isolate Wuhan-Hu-1, complete genome). Other SARS-CoV-2 strains also retain the identical residues, ex., 
SARS-CoV-2-6XR8, SARS-CoV-2-7C2L, SARS-CoV-2-6XCN [77]. Arg-Ser-Val and Ser-Gln-Ser are also present 
in subsequently emerged SARS-CoV-2 variants, ex., Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron 
(B.1.1.529) [87]. The genomic sequence of RaTG13 bat coronavirus shares 96.1% identity with SARS-CoV-2 
[88–90]. Arg-Ser-Val and Ser-Gln-Ser are found in the spike protein from RaTG13 (Figure 2B). The amino 
acid sequence of RaTG13 was retrieved from GenBank entry MN996532.2 (Bat coronavirus RaTG13, 
complete genome). The genomic sequence of BANAL-20-52 bat coronavirus (isolated in Laos) shares 96.8% 
identity with SARS-CoV-2. At the protein level, 16 out of 17 residues interacting with human angiotensin 
converting enzyme-2 receptor are conserved between BANAL-20-52 and SARS-CoV-2, significantly higher 
than RaTG13 (11 out of 17). Arg-Ser-Val and Ser-Gln-Ser are present in the spike protein from BANAL-20-
52 (Figure 2B) as well as BANAL-20-103 and BANAL-20-236. Their amino acid sequences were obtained 
from the report by S. Temmam et al. [90]. Taken together, the above data, which are consistent with 
previous reports [77, 78], portray an evolutionarily dynamic nature of the S1/S2 site.

This view is supported by a high degree of recombination observed around the spike protein [91]. Of 
potential relevance is ‘microhomology-mediated template switching’ by RDRP, which is facilitated by the 
complementarity between donor and acceptor sites occurring intragenomically [45]. The S1/S2 site of 
SARS-CoV-2 spike protein exhibits a high degree of variant frequencies [45]. RDRP may cause insertion or 
multiple template-switching events followed by realignment to correct sequence, which may explain triplet 
substitution (GGG to AAC) associated with Omicron lineage. SARS-CoV-2 variant Alpha from the 20B clade 
is associated with three nucleotide substitutions (CTA), which are complementary. SARS-CoV-2 variant 
Gamma from the 20B clade features two nucleotide substitutions (TC), which are complementary [45]. 
Despite these alterations, the reading frame for translation remains intact. Additionally, RDRP may cause 
deletion via slippage at repeat sequences. Similarly, T7 RNA polymerase may undergo microhomology-
mediated template switching to generate insertion or deletion and accrue a high level of transversions 
(C>A) in transcripts [45].

Continuing evolution at the S1/S2 furin cleavage site in the spike protein of SARS-CoV-2

The medical community has recently been confronted with the latest SARS-CoV-2 coronavirus strain 
Omicron [92, 93]. A significant fraction of the mutations occurred in spike protein, with many of them in the 
receptor binding domain [94]. Mutations also affected RDRP [95]. Another report evaluated the efficacy of 
vaccines targeting spike protein against Omicron [96]. A similar study was conducted with antibody-based 
drugs targeting spike protein.

The results from the preceding sections (The evolutionary trajectory of the S1/S2 furin cleavage site in 
SARS-CoV-2 spike protein a n d  Comparative sequence alignment of the S1/S2 site in SARS-CoV-2 and the 
IBV isolate AL/7052/97) prognosticate an evolutionary continuum at the S1/S2 site. To ascertain, 
mutations documented at the S1/S2 site in subsequently arisen SARS-CoV-2 variants were interrogated. 
For this, only the naturally occurring mutations associated with variants in published articles or archived 
databases were examined. Mutations that were introduced artificially were excluded from analysis—e.g., 
mutations inserted to stabilize spike protein for X-ray diffraction study (Figure 3A). For reference sequence, 
SARS-CoV-2 strain Wuhan-Hu-1 (GenBank entry NC_045512) was used [97]. Point mutations that occurred 
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in the S1/S2 site include: P681H, P681R [98]; P681L [99]; R685S (Protein Data Bank entry QZR93666.1); 
A684S, A684T, S686G, R682W, R682Q, A684V [100]; P681S, R683P, R683Q, A684E [97]. Deletions found in 
the S1/S2 site include P681(-), A684(-), R685(-) and S686(-) [100]. The sequences listed may not represent 
the full repertoire of the S1/S2 site mutations documented to date.

Figure 3. The S1/S2 furin cleavage site mutations found in spike protein of SARS-CoV-2 variants. (A) Residue number 
corresponds to the mutated amino acid in SARS-CoV-2 spike protein. Only the mutations documented in naturally occurring 
SARS-CoV-2 variants are listed. Their order does not reflect the time point of their emergence. The S1/S2 furin cleavage site 
sequence of the reference strain Wuhan-Hu-1 is shown at top. The sources for the sequences listed are described in the text. 
Amino acids are designated in single letter codes. Mutated residues are highlighted in red. Deleted residues (denoted by 
hyphen) are highlighted in blue. The sequences listed may not represent the full repertoire of the S1/S2 site mutations accrued 
to date. (B) A 3-dimensional view of inhibitor-bound furin. The molecular structure of proprotein convertase furin bound to Arg-
Arg-Arg-Val-Arg-Amba is shown. The 3-dimensional structure of furin bound to the hexapeptide inhibitor was generated by 
downloading the structural coordinates for PDB ID 6EQX and using PyMOL to re-enter the image of the enzyme-inhibitor 
complex. Space-filling model shows the structure of the hexapeptide

We also note that, in addition to the mutations described above, multiple other mutations have been 
documented at various regions outside the S1/S2 site in spike protein amongst SARS-CoV-2 variants. These 
include K417N, E484A, N501Y, and D614G, with some of them occurring in the binding domain for the 
receptor, angiotensin-converting enzyme 2 (ACE2). The evolutionary progression of SARS-CoV-2 continues, 
and JN.1 has dominated variants derived from the XBB lineage. Among the resultant subvariants KP.2 and 
KP.3, KP.3.1.1 represents the predominantly circulating strain in the U.S. The latter is associated with the 
F456L, R346T, and Q493E mutations. The variant XEC, which arose through recombination between 
variants KS.1.1 and KP.3.3, was initially detected in Germany. It harbors the mutations T22N and Q493E, 
and its transmission potential is being assessed.

Taken together, the overall data support the view that the S1/S2 furin cleavage site of spike protein 
continues to evolve in SARS-CoV-2.
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Discussion
SARS-CoV-2 is a positive-stranded RNA virus that belongs to the subgenus Sarbecoviruses (order 
Nidovirales; family Coronaviridae; subfamily Orthocoronavirinae; genus Betacoronavirus) [101, 102]. SARS-
CoV-2 is internalized following the interaction of its spike protein with the surfacially expressed ACE2, 
which hydrolyzes the vasoconstrictor angiotensin II [103]. Internalization of SARS-CoV-2 may occur via 
distinct pathways [98]. Its spike protein contains two proteolytic cleavage sites, i.e., S1/S2 located at the 
junction between S1 and S2 subunits and S2’ located within the S2 subunit [98, 104]. Despite the cleavage 
at the S1/S2 site (priming), the S1 and S2 subunits are held together via noncovalent interactions whereas 
the cleavage at the S2’ site triggers structural rearrangement to expose the ‘fusion peptide’ to engage cell 
membrane for internalization [105]. The cleavage at the S1/S2 by furin may occur during the virus 
maturation in SARS-CoV-2-producing cells [98]. One entry route involves cleaving SARS-CoV-2 spike 
protein (internalized via clathrin-mediated endocytosis after binding to ACE2) at the S2’ site by cathepsin 
to enable membrane fusion necessary for cytosol entry. For direct entry at the cell surface, the S2’ site is 
cleaved by transmembrane protease, serine 2 (TMPRSS2) to allow fusion of the viral envelope with the cell 
membrane. Cleavage of the S2’ site by furin was also reported [106].

Multiple coronavirus species, whose genomic RNA sequences align closely with that of SARS-CoV-2, 
have been identif ied [86]. SARS-CoV-2 spike protein contains S2’  furin cleavage site 
(PSKPSKRSFIEDLLFNKV: furin recognition motif in italics), which includes Arg-815 (GenBank entry 
MN908947.3, ‘Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1’) [107]. Likewise, the 
S2’ site is also present in the spike protein of closely related coronaviruses: bat coronavirus RaTG13 
(PSKPSKRSFIEDLLFNKV, GenBank entry MN996532.2, ‘Bat coronavirus RaTG13’), human SARS-1 
coronavirus (PLKPTKRSFIEDLLFNKV, GenBank entry AY278741.1, ‘SARS coronavirus Urbani’), bat 
coronavirus Rs4231 (PLKPTKRSFIEDLLFNKV, GenBank entry KY417146, ‘Bat SARS-like coronavirus isolate 
Rs4231’), and bat coronavirus BtRs-BetaCoV/YN2018B (PLKPTKRSFIEDLLFNKV, GenBank entry 
MK211376.1, ‘Coronavirus BtRs-BetaCoV/YN2018B’). Intriguingly, most proximally related coronaviruses 
lack the S1/S2 site despite the presence of the S2’ site.

The acquisition of the S1/S2 furin cleavage site in spike protein is critical for the expanded tropism 
(plus human transmission) of SARS-CoV-2 [108]. The presence of both the S1/S2 site and the S2’ site in 
spike protein of SARS-CoV-2 was confirmed using furin inhibitors [105]. Consistently, the absence of the 
S1/S2 site reduced the pathogenicity of SARS-CoV-2 [109]. Further, ectopically introducing the S1/S2 furin 
cleavage site to the SARS-CoV-1 spike protein (which lacks the S1/S2 site) increased fusogenicity [110, 
111]. Thus, the S1/S2 site may represent a critical determinant for SARS-CoV-2 infectivity. Subsequent 
SARS-CoV-2 variants such as Omicron exhibited increased dissemination despite reduced virulence [73].

To delimit tropism, an optimal strategy for disabling the S1/S2 site was sought, which could exploit the 
hypermutability of SARS-CoV-2. Inhibiting furin may cause adverse side effects as the enzyme participates 
in various normal physiological functions. The structural analysis of furin revealed that its active site for 
catalysis consists of a groove for binding substrates, which is lined with numerous negatively charged 
amino acids—i.e., Asp and Glu. Consistently, peptides containing positively charged polyarginine represent 
potent inhibitors of furin. As prior screenings may have relied on assays that monitor the inhibition of 
furin-like activity in cell lysate, inhibitors with higher selectivity for furin were sought. The molecular 
structure of proprotein convertase furin bound to the hexapeptide Arg-Arg-Arg-Val-Arg-Amba is shown 
(Figure 3B).

Due to its random-coil secondary structure, sterically blocking access to furin by using antibodies to 
mask the S1/S2 site of spike protein may be difficult [112]. An alternative strategy is to utilize 
oligonucleotides to target the S1/S2 site for pharmacological inhibition at the nucleic acid level: (1) as the 
S1/S2 furin cleavage site is retained by SARS-CoV-2 for propagation, it represents a valid therapeutic 
target; (2) targeting RNA than protein is more efficacious as it lies upstream in genetic information flow; (3) 
oligonucleotides may confer targeting specificity at the nucleotide sequence level; (4) oligonucleotides 
could trigger genomic RNA degradation via RNA interference (ex., siRNA) or RNAse H (ex., gapmer); (5) 
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antisense oligonucleotides (ex., morpholino) can interfere with translation or RNA processing; (6) antisense 
oligonucleotides targeting SARS-CoV-2 genome have been reported, indicative of its feasibility; (7) 
oligonucleotide drugs may provide virus-specificity at the genetic level; (8) unlike conventional structure-
activity relationship-based chemical drug development, only mRNA sequence is necessary to design 
oligonucleotide drugs.

Briefly, developing the chemical method underlying oligonucleotide synthesis entailed several major 
advances. In 1955, A. Todd (University of Cambridge, England; Nobel Prize 1957, nucleotide, nucleotide 
coenzyme) and A. M. Michelson reported the synthesis of dithymidine dinucleotide, which involved 
condensing of thymidine 3’-(benzyl phosphorochloridate) 5’-(di-benzyl phosphate) with 3’-O-
acetylthymidine [113]. In 1958, H. G Khorana and P. T. Gilham (British Columbia Research Council, Canada) 
[114] introduced the phosphodiester method for oligonucleotide synthesis, which utilized N,N’-
dicyclohexylcarbodiimide as activating agent; however, branching at internucleosidic phosphate remained 
problematic. In 1969, R. L. Letsinger and K. K. Ogilvie (Northwestern University, United States) [115] 
described a phosphotriester approach to resolve the above issue by protecting the phosphate moiety and 
subsequently implemented a solid-phase synthesis method. In 1975, W. B. Lunsford (a former colleague of 
W. Letsinger; Baylor University, United States) and colleagues [116] reported phosphite triester 
methodology, which uses 3’-O-chlorophosphite containing more reactive phosphorus(III) to form 
internucleosidic linkage, with whom M. Castro and F. Hong worked on oligonucleotide synthesis. In 1981, F. 
Hong worked on cloning of E. coli genes encoding the phosphate transferase system with S. Roseman 
(discoverer of phosphate transferase system, Johns Hopkins University, United States; a former colleague of 
H. G. Khorana) [117]. In 1981, M. H. Caruther (a former colleague of W. Letsinger; University of Colorado, 
United States) and M. D. Matteucci [118] used nucleoside phosphoramidites as a precursor for 
oligonucleotide synthesis, which utilizes 2-cyanoethyl phosphite protecting group. Critical to current solid-
phase oligonucleotide synthesis using deoxynucleoside phosphoramidites was the solid support-based 
peptide synthesis methodology developed by R. B. Merrifield (Rockefeller Institute, United States; Nobel 
Prize 1984) [119] in 1963.

Synthetic oligonucleotides have been used extensively in various molecular biological applications, i.e., 
gene cloning, sequencing, site-directed mutagenesis, analytical assay (ex., microarray), gene expression 
analysis (ex., fluorescent in situ hybridization), gene synthesis, etc. These include diagnostic assays (e.g., 
polymerase chain reaction to identify genetic mutants, DNA paternity testing). The use of oligonucleotides 
has also been extended to therapy. In 1978, M. L. Stephenson and P. C. Zamecnik (Harvard University, 
United States) [120] described suppressing the translation of Rous sarcoma virus 35S RNA using 
oligonucleotides. Rous sarcoma virus, which causes chicken cancer, was discovered by P. Rous (Rockefeller 
Institute for Medical Research, United States; Nobel Prize 1966) [121] in 1911. Following the discovery of 
RNA interference by A. Fire (Carnegie Institution of Washington, United States; Nobel Prize 2006) et al. 
[122], the potential utility of siRNA as a pharmaceutical agent was investigated. Its advantages include 
targeting mRNA rather than protein, exploiting the host cell’s RNA interference complex, its repeated use 
for mRNA degradation, etc. For clinical application, multiple issues need to be addressed, i.e., inciting of 
innate immunity, degradation by ribonucleases, off-target suppression, selective delivery to intracellular 
target, etc. Critical to resolving these issues is the ability to chemically modify oligonucleotides. For 
instance, to protect from nucleases, internucleosidic phosphodiester linkage may be modified to contain 
phosphorothioate. Alternatively, sugar moiety may be replaced with locked nucleic acid (i.e., bridged 
nucleic acid) or phosphoramidate morpholino oligomer [123]. Modified nucleobases (ex., pseudouridine) 
may be incorporated to attenuate immunogenicity [124]. To reduce side effects caused by off-targeting, 
specific modifications may be introduced to the sugar moiety [125].

Various oligonucleotide-based therapeutics (ex., siRNA, gapmer, antisense oligonucleotides, aptamer, 
morpholino oligonucleotide) have been approved by FDA for clinical use. The siRNA drugs approved by 
FDA include patisiran (hereditary transthyretin-mediated amyloidosis), givosiran (acute hepatic 
porphyria), lumasiran (primary hyperoxaluria type 1). Gapmers represent single-stranded oligonucleotides 
composed of DNA and RNA, which rely on the intracellular enzyme RNase H to degrade target mRNA. 



Explor Digit Health Technol. 2025;3:101142 | https://doi.org/10.37349/edht.2025.101142 Page 14

Gapmers that have been FDA-approved include mipomersen (homozygous familial hypercholesterolemia), 
and inotersen (familial amyloid neuropathies). For targeted delivery to the liver, siRNA drugs were 
conjugated to N-acetylgalactosamine (GalNAc) [126]. For tumor-specific delivery, siRNA therapeutics 
targeting ribonucleotide reductase were conjugated to tumor-specifically internalizing peptide HN-1 [26, 
35]. Several phosphoramidate morpholino oligomers have been FDA-approved to modulate dystrophin 
exon splicing defects associated with Duchenne’s X-linked genetic disorder’s muscular dystrophy [127].

Multiple oligonucleotide therapeutics targeting viral RNA have been reported. For SARS-CoV-1, siRNAs 
have been developed that target the genomic RNA sequence encoding ORF1b (NSP12) or spike protein 
[128]. To inhibit the replication of SARS-CoV-1, its ‘leader sequence’ has been targeted using siRNA [129]. 
For SARS-CoV-2, modified antisense oligonucleotides (ex., morpholino-based oligonucleotides, gapmers) 
have been devised to suppress translation or promote degradation [130, 131]. Knockdown of TPPRSS2 
expression by using ‘cell penetrating peptide-conjugated phosphorodiamidate morpholino oligomer 
(PPMO)’ reduced the cytopathic effect of SARS-CoV-2 in vitro [78].

A potential consequence of applying the above-described virolytic pressure is that resistant variants (if 
emerge) may carry mutation in the S1/S2 site-encoding sequence to abrogate hybridizing to the 
oligonucleotides, which is facilitated by its hypermutability. The altered sequence, by default, may encode a 
degenerated S1/S2 site that is no longer recognizable to furin for proteolytic cleavage, thus delimiting the 
tropism of SARS-CoV-2. Previous reports documenting reduced viral fitness conferred by resistance 
mutations set the precedent for the above. Firstly, in the case of cancer, drug treatment may induce 
evolution in treated cells toward acquiring resistance [132]. For RNA viruses, resistance to siRNA drugs 
may be acquired via incurring mutation in the target sequence to yield a mismatched template that 
prevents hybridization. In the case of the human immunodeficiency virus (HIV), viral escape variants that 
arose following the treatment with Nef-targeting siRNA accumulated mutation in target sequence, i.e., 
partial or complete deletion, nucleotide substitution [133, 134]. Secondly, resistance mutation may reduce 
viral fitness. In the case of the influenza virus, mutations that caused resistance to Oseltamivir, which 
inhibits neuraminidase, reduced replicative fitness [135]. Decreased fitness may occur when mutations 
occur in highly conserved sequences in the viral genome [134]. The high mutation rate may cause RNA 
viruses to exist as a population of ‘quasi-species’, i.e., closely related mutants [135]. It, in turn, may elevate 
the extent of genetic variability, increasing the likelihood of yielding variants that are less competent in 
replication. Consistently, mutations occurring in functionally significant regions were detrimental to 
hepatitis C virus [136]. For highly evolving RNA viruses, antiviral drugs inhibiting critical viral proteins may 
induce mutations that impede viral replication or pathogenesis.

Significant advances have been made in our understanding of biological organisms at the genetic level. 
Nonetheless, the genetic information gained may need to be interpreted in the context of their evolving 
nature given its fluidity. Earlier, molecular evolution was examined via the analysis of fibrinogen [137]. Yet, 
our understanding of the nature of the forces driving evolution appears incomplete—as was apparent from 
the inability to predict the emergence of SARS-CoV-2 despite years of research. Presented in this report is a 
therapeutic strategy through which the genetic hypermutability of SARS-CoV-2 may be exploited to 
attenuate infectivity. ‘Targeting oligonucleotide directed devolution’ entails applying virolytic pressure by 
inducing genomic RNA degradation to drive molecular evolution towards selecting degenerative S1/S2 site 
mutations in naturally occurring resistant variants. The possibility of resistance mutations occurring at a 
distant site interfering with oligonucleotide hybridization at the S1/S2 site structurally cannot be excluded. 
Conceivably, this approach may target multiple critical domains within a single viral gene, may target 
multiple essential viral genes, or may be applied repeatedly to ensuing variants. As an alternative approach, 
oligonucleotides may be used for ‘therapeutic RNA editing’ to inactivate the S1/S2 site. Adenosine 
deaminases acting on RNA (ADAR) represent intracellular enzymes which catalyze the hydrolytic 
deamination of adenosine to inosine. To treat genetic disorders caused by base substitution, Woolf 
(Ribozyme Pharmaceuticals, Inc., United States) et al. [138] used complementary RNA oligonucleotide to 
hybridize to mutant dystrophin mRNA encoding a premature UAG stop codon. The endogenously expressed 
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double-stranded RNA adenosine deaminase recognized the duplex and converted to inosine, allowing 
translation to resume [138]. All in all, we hope these novel approaches may lead to the development of a 
potential deterrence against rapidly evolving pathogens like SARS-CoV-2 that exacerbate the disease 
burden caused by cancer [139].
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