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Abstract
Vascular aging is recognized as one of the hallmarks of atherosclerosis. Currently, a growing body of 
evidence suggests that there exists a mutual crosstalk between telomere dysfunction and mitochondrial 
dysmetabolism during the process of vascular senescence. This underscores the importance of 
comprehensively studying the molecular mediators involved in this complex and intricate connection. In 
pursuit of this goal, the “VICTORIA” protocol entails a prospective single-center cohort study aimed at 
recruiting patients undergoing coronary angiography at Niguarda Hospital in Italy. The primary objective is 
to explore potential associations between peripheral markers of cell aging (telomere length and mtDNA 
content), dysregulation of non-coding RNA [specifically lncRNA TERRA and mitochondrial microRNA 
(MitomiR)], and the varied presentations of ischemic heart disease (stable angina, unstable angina, NSTEMI, 
and STEMI). Furthermore, we aim to investigate whether these markers correlate with vulnerable plaque 
characteristics, as assessed by optical coherence tomography findings. Additionally, systemic levels of pro-
inflammatory biomarkers and novel indicators of senescence will be assessed. Patients will be followed up 
at 1 year to monitor primary outcomes including mortality, myocardial infarction, stroke, unplanned 
revascularization, and rehospitalization. The anticipated findings of this study hold promise for advancing 
our understanding of the telomere-mitochondria crosstalk, potentially paving the way for novel treatment 
modalities and refined risk stratification approaches for acute coronary syndrome.
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Introduction
In recent decades, DNA damage (telomeric, non-telomeric, and mitochondrial) has emerged as a crucial 
trigger of vascular aging and atherogenesis [1–7]. Indeed, extensive evidence revealed the presence of 
oxidative DNA lesions, telomere erosion, and mitochondrial DNA (mtDNA) damage in both experimental 
and human plaques [8–13] as well as in peripheral cells of atherosclerotic patients [14–17].

Additionally, there is a growing understanding that genomic instability can directly influence vascular 
cellular function by activating signaling pathways that induce a range of pathophysiological cellular and 
molecular alterations. These alterations facilitate inflammation, apoptosis, autophagy, and ultimately, 
cellular senescence, accompanied by the associated “senescence-associated secretory phenotype” (SASP) 
[7, 18].

Targeting DNA damage and the related molecular mechanisms of vascular aging may provide a logical 
rationale to developing comprehensive interventions aimed at mitigating age-related vascular dysfunction 
and disease [19].

Nonetheless, the precise mechanisms linking DNA damage to vascular and cellular aging, as well as to 
the pathogenesis of atherosclerosis and vulnerable atheroma, are still awaiting elucidation.

Currently, a growing body of evidence suggests that there exists a mutual crosstalk between telomere 
dysfunction and mitochondrial dysmetabolism during the process of vascular senescence. This underscores 
the importance of comprehensively studying the molecular mediators involved in this complex and 
intricate connection [20–22].

Changes in cellular aging, as measured by leukocyte telomere length (LTL) and mtDNA copy number 
(mtDNAcn), have recently gained recognition as independent biomarkers for predicting risk and prognosis 
in patients with coronary artery disease [23]. However, their potential as markers for plaque rupture and 
thrombosis leading to acute myocardial infarction has not yet been fully elucidated in detail. Moreover, 
recent findings suggest that a subclass of long noncoding RNAs (lncRNA) transcribed at telomeres, referred 
to as Telomeric Repeat-containing RNA (TERRA), plays an active role in the mechanisms governing 
telomere maintenance and chromosome end protection [24, 25]. However, the role and the expression 
levels of lncRNA TERRA in patients with cardiovascular disease have yet to be fully elucidated [26]. 
Furthermore, current research has revealed that microRNAs (miRNAs) within mitochondria, referred to as 
MitomiRs, may serve as significant mediators in the intricate crosstalk between the nucleus and 
mitochondria [27].

Some mature miRNAs are nuclear-encoded and are translocated into the mitochondrion, where they 
likely target nuclear-encoded mRNAs localized on the mitochondrial surface [28]. Others, known as 
MitomiRs, may originate from mRNA molecules derived from the mitochondrial genome, exerting post-
transcriptional modifications within the mitochondria [28]. Dysregulation of MitomiRs may disrupt 
mitochondrial homeostasis and function during cellular senescence [29]. Therefore, MitomiRs could serve 
as crucial mediators in the regulation of mtDNAcn and may represent suitable candidates for therapeutic 
intervention. However, there are currently no studies that have investigated the role of MitomiRs in 
regulating mtDNAcn and, consequently, mitochondrial function in patient populations. Additional studies 
are necessary to elucidate the underlying mechanisms through which mitochondrial dysfunction influences 
telomere length (TL) and vice versa, as well as how their interaction contributes to the vascular aging 
process and clinical outcomes [23].

The “VICTORIA” protocol aims to explore potential associations between peripheral markers of cellular 
aging (TL and mtDNA content), dysregulation of non-coding RNAs (lncRNA TERRA, MitomiR), and the 
various presentations of ischemic heart disease [stable angina, unstable angina (UA), myocardial infarction 
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without ST-segment elevation on ECG (NSTEMI), and myocardial infarction with ST-segment elevation on 
ECG (STEMI)], and to determine if they correlate with vulnerable plaque characteristics.

Materials
Study design and population

The VICTORIA study (ClinicalTrials.gov, Identifier: NCT06313645) is a prospective single-center cohort 
study involving patients suffering from chest pain undergoing coronary angiography and revascularization 
procedures at the Cardiology Department of Niguarda Hospital, Italy. The study adheres to the general 
principles outlined in the Declaration of Helsinki [30] and the rules of good clinical practice (GCP).

A total of 300 consecutive patients with acute coronary syndrome (ACS) will be enrolled, including 
those presenting with myocardial ischaemia at rest or on minimal exertion in the absence of acute 
cardiomyocyte injury/necrosis (UA), NSTEMI, and patients with acute STEMI, as defined by the European 
Society of Cardiology [31].

The study will also recruit patients with documented chronic coronary artery disease admitted for 
coronary angiography or elective revascularization (stable angina) and patients with positive stress test but 
with non-angiographically significant coronary artery disease. Exclusion criteria will include patients in 
cardiogenic shock, with congestive heart failure, valve disease, acute renal failure, undergoing coronary 
artery bypass grafting, or with active cancer.

Clinical characteristics and signs for ACS diagnosis are described in Table 1.

Table 1. Clinical symptoms and vital signs for the diagnosis of patients with acute coronary syndrome (ACS)

Resting chest pain ECG Troponin level at 0 h Troponin change within 1–3 h Diagnosis

+ Normal –/+ –/+ UA
++ No ST-elevation + ++ NSTEMI
+++ ST-elevation ++ +++ STEMI
UA: unstable angina; NSTEMI: myocardial infarction without ST-segment elevation; STEMI acute myocardial infarction with ST-
segment elevation on ECG

Patients will undergo follow-up within 12 months, either through hospital records or via in-person or 
telephone interviews, to evaluate occurrences of all-cause mortality and major adverse cardiovascular 
events (MACE).

Procedure
Data collection and biobanking

Prior to enrollment, all eligible participants will need to provide informed written consent. The study will 
document all clinical characteristics for each patient, comprising demographics, complete medical history, 
medication details, and previous diagnostic and therapeutic interventions. Upon admission, patient 
laboratory data, encompassing total blood count and standard biochemistry parameters, will be collected. 
Experienced interventional cardiologists will gather angiographic parameters, including lesion 
characteristics and coronary dominance.

Additionally, specific details concerning plaque characteristics such as thickness, type of fibrotic cap, 
presence of intraplaque hemorrhage, and inflammation, will be obtained from patients undergoing 
evaluation of plaque morphology and composition using intravascular ultrasound (IVUS) or optical 
coherence tomography (OCT).

Within 24 h of admission, an echocardiographic assessment will be performed. This assessment will 
involve quantification of cardiac chamber sizing, measurements of the left ventricle (LV), and evaluation of 
conventional LV diastolic parameters using Doppler measurements, all in accordance with current 
published criteria [32, 33].

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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Before the angiography procedure, roughly 10 mL of peripheral blood will be drawn from each 
consenting participant in the catheterization laboratory for the collection, preparation, and storage of 
different biosamples. Aliquots of samples will be promptly frozen following standardized procedures. The 
study design is illustrated in Figure 1.

Figure 1. Flowchart of patient enrollment and procedures in the VICTORIA Study. MACE: major adverse cardiovascular events; 
PBMCs: peripheral blood mononuclear cells. Created in BioRender.com

Experimental workflow and biological measurements

The biomaterials utilized for molecular analysis will comprise serum, plasma (EDTA, citrate), genomic DNA 
(gDNA), RNA from whole blood, and peripheral blood mononuclear cells (PBMCs). Specifically, we will 
assess biomarkers of cellular aging (TL and mtDNA content) and the dysregulation of specific non-coding 
RNAs (lncRNA TERRA, MitomiR). Moreover, the project will investigate the potential role of circulating 
extracellular vesicles (EVs) in modulating the telomere-mitochondria link through miRNA-sensitive 
mechanisms. To gain insight into cellular effects and communication, we will also evaluate levels of 
secreted pro-inflammatory cytokines and EV cargo in the supernatant of the whole blood culture. Figure 2 
provides an overview of the experimental workflow and planned measurements. After the collection 
process, the biological samples will undergo analysis using state-of-the-art methods to determine the levels 
of selected biomarkers.

Telomere length (TL) and mtDNA copy number (mtDNAcn)

TL and mtDNAcn will be assessed using DNA extracted from 200 µL of blood samples via quantitative real-
time PCR, following standardized protocols. Briefly, TL will be determined by measuring the ratio of 
telomere repeat copy number (T) to a single-copy gene (S) and calculating the T/S ratio. The relative TL 
will be calculated using the formula “T/S ratio = 2^(–ΔΔCt)”, where ΔCt = Ct telomere – Ct single-copy gene. 
The T/S ratio provides an average TL across all leukocytes. For the quantification of mtDNAcn, the NDI1 
gene in the undeleted region of the mtDNA reference sequence (mtNDI1) will serve as an internal control, 
while the human ß-globin gene from gDNA will be amplified by PCR in both gDNA and mtDNA. mtDNA-CN 
will be determined using the (2^ΔCt) method, where ΔCt = Ct mtNDI1 – Ct gDNA.

https://www.biorender.com/
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Figure 2. Overview of biomaterial processing and planned measurement of biomarkers. PBMCs: peripheral blood mononuclear 
cells; SASP: senescence-associated secretory phenotype; mtDNAcn: mitochondrial DNA copy number; LTL: leukocyte telomere 
length. Created in BioRender.com

Analysis of MitomiRs and TERRA lncRNAs

A panel of MitomiRs known to be linked to senescence (miR-21-5p, miR-146a-5p, miR-181a-5p, miR-210, 
and miR-34a) and the expression levels of TERRA lncRNAs will be measured following RNA extraction from 
blood. Initially, total RNA (1 µg) will be reverse transcribed into cDNA using the TaqMan miRNA Reverse 
Transcription Kit (Thermo Fisher Scientific, USA). Subsequently, RT-qPCR will be performed utilizing 
sequence-specific TaqMan MicroRNA Assays (Thermo Fisher Scientific, USA) and TaqMan Universal PCR 
Master Mix (without AmpErase® UNG). Specific oligonucleotides will be used to amplify TERRA transcripts 
from different chromosome ends. Relative transcript levels will be calculated using the ΔΔCT method and 
normalized to the reference genes.

Exosome isolation and profiling of exosome-derived miRNA

Exosomes will be isolated from serum using an Exosome Isolation Kit (Invitrogen, Life Technologies) 
according to the manufacturer’s instructions. The quality, concentration, and size of exosomes will be 
assessed by nanoparticle tracking analysis (NTA). RNA extraction from exosomes will be performed using a 
specific miRNA Kit (Qiagen, Hilden, Germany). Library preparation, quality control, and next-generation 
sequencing procedures will be outsourced to a specialized company. Finally, the expression of the selected 
dysregulated miRNAs will be confirmed by qRT-PCR analysis.

SASP mediators

Pro-inflammatory cytokines and chemokines [interleukins (IL)-2, IL-6, IL-8, IL-18, tumor necrosis factor α 
(TNFα), monocyte chemoattractant protein-1 (MCP-1)] will be measured in patient plasma or serum using 
commercially available Human ELISA Kits (FineTest, Wuhan, Hubei, China). Briefly, the microplates will be 
coated with monoclonal antibodies specific to cytokines. Standards and supernatants will be added to the 
wells of the microplate and run in duplicate. Cytokine concentrations (pg/mL) will be determined against a 

https://www.biorender.com/
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standard concentration curve. Additionally, the expression levels of cell cycle inhibitor expression (p16 and 
p21) will be quantified by RT-qPCR analysis in isolated PBMCs (p16 and p21) will be also performed by RT-
qPCR analysis in isolated PBMCs.

Sample size and statistical analysis

To detect a medium effect size (f = 0.25) in the difference of the mean LTL value between the groups, we 
estimate that a sample size of at least 232 total patients is required, with an alpha level of 0.05 and a power 
of 90% or higher. Accounting for a at least 10% dropout rate, the total number of patients to be enrolled 
should be approximately 300.

In terms of statistical tests, normal distribution of data will be assessed using the Kolmogorov-Smirnov 
test. Continuous variables will be presented as mean, standard deviation, median, first, and third quartiles. 
Categorical variables will be expressed as numbers and percentages.

Comparisons between two groups will be conducted using Student’s t-test for independent samples for 
continuous variables, and the chi-square test or Fisher’s exact test for categorical variables. Comparisons 
between more than two groups will be tested with one-way analysis of variance (ANOVA) followed by 
Bonferroni post-hoc tests for pairwise comparisons. If the assumption of normal data distribution is not 
met, equivalent non-parametric tests will be employed.

Pearson’s or Spearman’s coefficient will be calculated to investigate univariate correlations between 
variables. Event-free survival curves will be constructed using the Kaplan-Meier model and tested with the 
log-rank test between different groups. The Cox proportional hazards model, both univariate and 
multivariate, will be used to identify the predictive value of each variable vs. MACE events; data will be 
expressed with hazard ratios and their 95% confidence intervals.

Data management and statistical analyses will be conducted using SPSS software, version 26 (IBM SPSS 
Statistics) and StatView statistical package, version 5.0.1 (Abacus Concepts, Berkeley, CA, USA).

Expected results
Vascular aging is recognized as one of the hallmarks of the atherosclerotic disease and its acute thrombotic 
events. While chronological aging is an inevitable risk factor for atherosclerotic vascular disease, age-
related vascular damage can also be influenced by lifestyle, environment, and extrinsic stimuli, leading to a 
gradual decline in structure and function within the vascular system. The identification of novel risk 
markers holds promise for enhancing risk stratification and facilitating the development of innovative 
treatment strategies.

Telomere and mitochondrial dysfunctions are recognized as crucial triggers in the pathogenesis of 
vascular aging and atherosclerosis, making them potential targets for the treatment of age-related vascular 
diseases.

In this context, the prospective, non-interventional cohort study involving patients hospitalized with 
ACS has the potential to significantly advance our understanding of how telomere function and 
mitochondrial metabolism influence the clinical presentation of ischemic heart disease (including stable 
angina, UA, NSTEMI, and STEMI) and plaque phenotypes. Progress in this field has the capacity to uncover 
therapeutic targets and define novel, more accurate diagnostic, and prognostic indicators.

Abbreviations
ACS: acute coronary syndrome

ANOVA: one-way analysis of variance

EVs: extracellular vesicles

GCP: good clinical practice

gDNA: genomic DNA
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IL: interleukins

IVUS: intravascular ultrasound

lncRNA: long noncoding RNAs

LTL: leukocyte telomere length

LV: left ventricle

MACE: major adverse cardiovascular events

MCP-1: monocyte chemoattractant protein-1

miRNA: microRNA

MitomiR: mitochondrial microRNA

mtDNA: mitochondrial DNA

mtDNAcn: mitochondrial DNA copy number

NSTEMI: myocardial infarction without ST-segment elevation on ECG

OCT: optical coherence tomography

PBMCs: peripheral blood mononuclear cells

SASP: senescence-associated secretory phenotype

STEMI: myocardial infarction with ST-segment elevation on ECG

TERRA: Telomeric Repeat-containing RNA

TL: telomere length

TNFα: tumor necrosis factor α

UA: unstable angina
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