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Abstract
Congenital adrenal hyperplasia due to 21-hydroxylase deficiency leads to high morbidity and mortality, 
despite the availability of life-saving corticosteroid replacement therapy. Gene therapy represents a 
promising potential treatment for monogenic disorders such as congenital adrenal hyperplasia, overcoming 
the limitations of corticosteroid replacement approaches. Adeno-associated viral vectors are currently the 
leading vector for direct in vivo gene delivery. However, physiological properties of the adrenal gland limit 
the application of adeno-associated viral vector-based gene addition strategies. To achieve durable 
correction in the adrenal gland, gene editing must be employed to stably introduce a genetic modification 
into the CYP21A2 locus. The safety of this and other gene editing approaches could be greatly improved by 
using lipid nanoparticles for the delivery of editing machinery mRNA. While little data exists regarding 
adrenocortical lipid nanoparticle targeting, physiological features of this organ (such as high relative blood 
flow, fenestrated endothelium, and cholesterol uptake) indicate the promise of these delivery vectors for 
the treatment of monogenic diseases of the adrenal cortex. This review discusses the complexities of 
developing gene therapy for congenital adrenal hyperplasia and explores the viability of novel gene therapy 
strategies in this application.
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Introduction
Congenital adrenal hyperplasia (CAH) encompasses a group of seven monogenic endocrine disorders 
affecting the adrenocortical production of steroid hormones. CAH can lead to life-threatening adrenal 
crises, poor health outcomes, and low quality of life [1]. Steroid replacement therapy is the current 
standard of care for CAH, but it is unsatisfactory, in part due to inadequate biomarkers for disease 
monitoring [2]. Dosing regimens are unable to replicate the variability in endogenous corticosteroid levels, 
leading to both suboptimal treatment and a high incidence of side effects. Emerging pharmacological 
approaches are similarly imperfect [3]. CAH represents an excellent candidate for gene therapy. The most 
frequently used tools for in vivo gene delivery are recombinant adeno-associated virus (rAAV) vectors, 
which have been shown to transduce the adrenal cortex [4, 5]. While the application of rAAV-based gene 
addition strategies has demonstrated that phenotypic improvement can be achieved, rAAV genomes are 
predominantly episomal and so these approaches have been unable to provide a long-term benefit [4]. This 
is due to both the biology of adrenocortical cellular turnover and the choice of a gene addition strategy [3]. 
To provide a long-term benefit to individuals with CAH, a new durable strategy must be employed.

In contrast to gene addition approaches, gene editing permanently corrects pathogenic variants in the 
genome of a patient’s cells, allowing the cell to produce corrected progeny [6]. In the highly regenerative 
adrenal cortex, it will also be critical to target a gene editing therapy to the adrenocortical stem and/or 
progenitor cells, as the commonly targeted differentiated cells are relatively short-lived [7]. In this way, the 
adrenal cortex could be continuously repopulated with corrected cells, permanently improving the 
steroidogenic function of treated individuals.

However, gene editing faces challenges associated with the inadvertent creation of off-target double-
stranded breaks (DSBs) in the host genome. Gene editing tools such as clustered regularly interspaced 
palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) carry the risk of creating off-target 
editing events, which can lead to cell cycle arrest and/or mutagenesis of host genes and the risk of 
eliminating any residual function in a hypomorphic allele if editing efficiency is inadequate [8]. While rAAVs 
have been used to carry both donor cassettes and editing reagents, their propensity to persist in the host 
cell for long periods increases the risk of off-target events [9, 10]. To improve safety, the gene therapy field 
is moving towards the use of lipid nanoparticles (LNPs) for the delivery of mRNA-encoded editing reagents 
[11–13].

There is a paucity of data regarding the efficacy of LNPs for delivering editing reagents to the adrenal 
glands. However, existing data hints at excellent prospects for adrenocortical LNP targeting [14–16]. This 
review outlines the prospects for a gene editing therapy for CAH using an LNP-AAV approach. The 
justification, practical aspects, and feasibility of such a strategy will be discussed in detail with a focus on 
the unique contexts of CAH and the adrenal glands.

Congenital adrenal hyperplasia
In > 90% of cases, CAH is due to deficiency of the 21-hydroxylase (21OH) enzyme [17], and classical CAH 
occurs in 1:14,000–1:22,000 live births [18, 19]. 21OH deficiency is caused by mutations in the CYP21A2 
gene [20]. 21OH is a cytochrome P450 enzyme that catalyses multiple reactions in the steroidogenic 
pathway. In the zona glomerulosa, 21OH converts progesterone to 11-deoxycorticosterone as part of 
aldosterone synthesis, and in the zona fasciculata, 17-hydroxyprogesterone is converted by 21OH to 11-
deoxycortisol for cortisol synthesis [21]. Deficiency in 21OH therefore affects the production of both 
aldosterone and cortisol, leading to a build-up of the upstream metabolites of these reactions [22]. Reduced 
cortisol-mediated negative feedback on the hypothalamus and anterior pituitary gland leads to 
overproduction of adrenocorticotropic hormone (ACTH), stimulating hyperplasia and hypertrophy of the 
adrenal cortex, a feature that gives CAH its name [23]. ACTH stimulation also leads to excess 17-
hydroxyprogesterone and progesterone, which are then shunted through to the 17-hydroxylase pathway, 
resulting in overproduction of adrenal androgens and consequential virilisation [1].
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CAH phenotypes correlate with the level of residual 21OH function. Presentations are divided into two 
main groups; classical CAH, which encompasses both salt-wasting (SW) and simple-virilising (SV) 
phenotypes, and non-classical CAH (NCCAH) [24]. Although divided into these theoretically discrete groups, 
the phenotype occurs on a continuous spectrum, and most have compound heterozygosity with the 
phenotype tending to correlate with the less severe allele [25, 26]. Classical SWCAH occurs in patients with 
up to 1–2% residual enzyme activity and is the most severe phenotype [18]. In SWCAH, the production of 
aldosterone and cortisol is insufficient to sustain life, and there is an overproduction of adrenal androgens. 
Disease phenotypes become progressively less severe with increased residual enzyme activity. Higher 
levels of residual enzyme activity (up to 5–10%) result in the SVCAH phenotype, where aldosterone 
production is (generally) sufficient but severe cortisol deficiency and androgen overproduction remain 
[18]. However, relative aldosterone deficiency may still occur in people with SVCAH [27]. NCCAH occurs 
with up to 50% residual 21OH activity [28–30]. In NCCAH, sufficient cortisol can be synthesised to adapt to 
most physiological stressors, though there may occasionally be mild cortisol deficiency [29]. Adrenal crises 
are often precipitated by physiologically stressful events such as infectious illness [31, 32], and were found 
to be the leading cause of all-cause mortality in people with CAH [33].

Overproduction of adrenal androgens is a hallmark of all forms of 21OH deficient CAH, with effects 
most evident in female infants with classical CAH, who experience varying levels of genital virilisation 
evident at birth [34]. In childhood, adrenal androgen overproduction can lead to premature adrenarche and 
precocious puberty, as well as rapid growth and tall stature in childhood with early growth plate closure 
and short final height [35]. Women also experience fertility issues, hirsutism, and acne, while men are at 
risk of developing testicular adrenal rest tumours [36].

Limitations of current treatment for CAH

Aside from the immediate effects posed by a lack of sufficient corticosteroids, individuals with CAH 
experience a wide range of symptoms from both CAH itself and the treatment required. Even with optimal 
treatment, there are higher rates of adverse long-term outcomes than the general population. Overall, there 
is an increased risk of death from all-cause mortality, with estimates of mean age of death ranging from 6.5 
to 18 years earlier than the general population [33, 37]. Significant mental health comorbidities can also 
present, with a higher lifetime incidence of depression in individuals with CAH [37]. Additionally, adrenal 
crises precipitated by physiological stress cannot always be prevented by increased steroid dosing [38].

Life-saving corticosteroid replacement therapy was first introduced in the 1950s [39–41], and this 
remains the current standard treatment for classical CAH [2]. Deficiencies in aldosterone and cortisol are 
corrected by administering fludrocortisone and hydrocortisone, respectively [2]. Hydrocortisone is 
administered 3–4 times daily in children, complemented by mineralocorticoid replacement when required. 
In adults, treatment is similar, though hydrocortisone may be swapped for longer-acting glucocorticoids for 
regimen simplification [2]. Treatment goals include the avoidance of adrenal crises, as well as reducing the 
overproduction of adrenal androgens by decreasing ACTH stimulation of steroidogenesis, particularly in 
women [42]. Steroid doses are increased during times of physiological stress (such as illness and surgery), 
and mildly supraphysiological doses are used to suppress androgen overproduction [2].

However, current treatment is unsatisfactory for several reasons. Steroid replacement therapy results 
in a variety of negative side effects such as short stature, loss of bone mineral density, and fertility issues 
[1]. Natural glucocorticoid hormone levels fluctuate significantly with physiological demand and circadian 
rhythm [43]. Given the early timing of the peak and the short half-life of hydrocortisone, it is very difficult 
to appropriately mimic physiological variation in cortisol levels [1]. Thus, both under- and over-treatment 
commonly occur within a single day. Overtreatment increases the incidence of negative side effects, while 
undertreatment risks adrenal crisis and cannot adequately control androgen overproduction [1].

Novel treatments for CAH include delayed-release oral corticosteroids, co-opting insulin pumps for 
continuous administration of hydrocortisone, and drugs to suppress adrenal androgen overproduction [44–
46]. Delayed-release hydrocortisone (Efmody®, marketed for individuals with CAH over 12 years of age) 
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has not been shown to be superior to standard therapy [47]. The use of an insulin pump for delivery of a 
continuous infusion of subcutaneous hydrocortisone may be able to replicate the circadian rhythm more 
accurately, but this solution is likely too expensive and complex for widespread use [48], and there is a risk 
of adrenal crisis in cases of pump failure. Finally, drugs to suppress adrenal androgen production (such as 
abiraterone acetate, which inhibits 17-hydroxylase) [46] are being trialled in pre-pubertal children 
(NCT02574910). While these approaches may be useful to reduce the effects of androgenisation, 
corticosteroid therapy is still required, and they cannot be used in pubertal adolescents or adults.

Gene therapy for CAH
Gene therapy involves the use of nucleic acid or nucleic acid analogue to modify disease by regulating, 
restoring, replacing, or removing the expression of a gene. Due to the unsatisfactory treatment options and 
the monogenic basis of CAH, gene therapy treatments are being explored to restore or correct the defective 
CYP21A2 gene. An ideal gene therapy approach for CAH would allow synthesis of corticosteroids under 
complete physiological control, allowing serum concentrations to adjust to biological requirements [3]. CAH 
is also a good candidate for gene therapy due to the large phenotypic improvements conferred by very 
minimal increases in 21OH activity. For example, SWCAH and SVCAH phenotypes differ by only 1–2% in 
total 21OH activity [18]. As such, restoration of even a small amount of total 21OH activity by gene therapy 
could confer a large clinical benefit. Furthermore, the adoption of a ‘one-and-done’ treatment for CAH is 
made more feasible by the widespread implementation of newborn screening programs [2, 49], providing a 
unique window of opportunity for the administration of curative treatments prior to the onset of adrenal 
crisis.

Recombinant adeno-associated virus-mediated gene therapy

Recombinant adeno-associated virus is the leading vector for efficient in vivo gene delivery [50]. 
Vectorology exploits the ability of a virus to insert genetic material into a host cell nucleus. AAV is a 
parvovirus first discovered in 1965 [51], which is 20–25 nm in diameter and consists of a protein capsid 
encapsulating a 4.7 kb single-stranded DNA genome [52]. The AAV genome consists of two genes, rep and 
cap, which are flanked by inverted terminal repeat sequences that are required for genome packaging 
during viral assembly [52]. In rAAV vectors, rep and cap are removed and replaced with a therapeutic 
cassette which contains the transgene, and may contain other regulatory elements such as promoters, 
enhancers, and polyadenylation sequences. The resultant virus is replication-incompetent while retaining 
the capacity to efficiently deliver its cargo to the host cell nucleus.

rAAV vectors are a flexible platform for gene delivery. A crucial advantage of AAV is the ability for the 
rAAV2 genome to be packaged into different capsid variants in a process known as pseudo-serotyping. As 
the capsid directs tissue tropism, a variety of species-specific tissue-targeted vectors can be created with 
relative ease [53]. A wide variety of naturally occurring AAV capsid variants have been discovered [52] and, 
by directed evolution or mutagenesis of capsid sequences, novel variants can be generated to enhance 
interaction with a target tissue [54]. The liver is particularly amenable to rAAV-mediated gene delivery. 
This is in part due to the physiological characteristics of the liver including fenestrated endothelium and 
high relative blood flow which provides opportunity for interaction with relevant endocytic receptors [55]. 
However, rAAV capsids have been engineered to target other organs, such as the lungs, brain, and heart 
[56].

In gene addition strategies, a replacement copy of a target gene is delivered with its own promoter and 
regulatory elements [52]. When rAAV is used, the vector genome containing the transgene remains 
predominantly episomal and in a stable cell population is continually expressed for at least 10 years [9]. 
However, episomal rAAV genomes are lost with cell replication, so rAAV gene addition is generally only 
stable in post-mitotic tissues such as the brain, heart, muscle, and adult liver [9, 57, 58].
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Studies of gene therapy for CAH

Thus far, all published preclinical studies of CAH gene therapy have used gene addition strategies (Table 1). 
Most studies use the H-2aw18 mouse model, which accurately recapitulates CAH, with the exception of 
adrenal androgen overproduction as mice lack 17-hydroxylase expression in the adrenal cortex [59, 60]. 
Vector administration via intra-adrenal injection has been attempted [61, 62], but may not be a viable 
strategy due to technique difficulty [63], and low prospects for clinical translation. Delivering ectopic 21OH 
expression in muscle via local injection has not led to a significant measurable benefit [64]. Intravenous 
administration of rAAV vectors containing either the human or murine 21OH gene has shown promise, with 
biochemical phenotype correction observed post-treatment [4, 5]. ACTH, progesterone, and corticosterone 
levels can be improved, sometimes to near-wildtype levels [4, 5], by rAAV delivery of the human CYP21A2 
gene [65]. When measured, improvements in adrenocortical morphology and adrenal mass were 
sometimes [62], but not always [5], observed.

Table 1. Preclinical studies of gene therapy for CAH to date

Vector and 
transgene

Model Dose and route Key outcome(s) Longest 
benefit 
duration

Reference

Adenovirus

CYP21A2

H-2aw18 mice

(Cyp21a1-/-)

1 × 108 pfu/adrenal

Open bilateral intra-
adrenal injections

CYP21A2 mRNA expressed in ~ 30% of cortex 
and medulla, peaking at 2–7 days and still 
detectable at 14 days.

Normalised corticosterone production to 
40 days.
Improved progesterone/deoxycorticosterone 
ratio at 7 days but not at 40 days.
Transduced adrenals still produced 
corticosterone ex vivo at 40 days.

Improvement in adrenocortical ultrastructure at 
7 days.

40 days Tajima et al. 
1999
[62]

Retrovirus
Cyp21a1

H-2aw18 mice
(Cyp21a1-/-) 
fibroblasts

5 × 105 cells/mouse
Autologous 
subcutaneous 
transplantation of ex 
vivo transduced 
fibroblasts

Four weeks post-implantation, 4 of 6 
experimental mice had reduction in 
progesterone/deoxycorticosterone ratio.

4 weeks

AAV2

Cyp21a1

H-2aw18 mice

(Cyp21a1-/-)

1 × 1011 vgc/mouse

Intra-muscular injection

All mice (n = 4) had reduction in 
progesterone/deoxycorticosterone ratio 
(statistically insignificant).
One mouse followed to 8 months retained 
“relatively low” 
progesterone/deoxycorticosterone ratio until 
7 months.

7 months

Naiki et al. 
2016

[64]

AAVRh10
CYP21A2

H-2aw18 mice
(Cyp21a1-/-)

2 × 1013 vgc/kg
Intravenous injection

Correction in body weight up to 15 weeks.
Correction of kidney renin expression at 18 
weeks.
Urinary progesterone near WT levels up to 15 
weeks.

Correction in stress response behavioural traits.
No correction in adrenocortical morphology.

18 weeks Perdomini et 
al. 2017

[5]

AAVRh10
CYP21A2-
HA

H-2aw18 mice
(Cyp21a1+/+)

6.5 × 1011 vgc/mouse
Intravenous injection

Left adrenal showed waning CYP21A2 
expression, from 65% positive cells (2 weeks) to 
2.1% positive cells (32 weeks).

Liver retained CYP21A2 expression at 32 
weeks, while adrenal gland lost expression.

16 weeks

AAVRh10
CYP21A2-
HA

H-2aw18 mice
(Cyp21a1-/-)

6.5 × 1011 vgc/mouse
Intravenous injection

Progesterone significantly decreased at 2 
weeks, no effect by 10 weeks.

ACTH decreased from 2–8 weeks, no significant 
effect by 32 weeks.

8 weeks

Markmann 
et al. 2018

[4]
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Vector and 
transgene

Model Dose and route Key outcome(s) Longest 
benefit 
duration

Reference

AAVRh10
CYP21A2

Cynomolgus 
macaques

5 × 1012, 1.5 × 1013, or 
4.5 × 1013 vgc/kg

Intravenous injection

Detectable vector genomes in adrenals and liver 
up to 24 weeks (high dose).

Transgene expression increased from 4 to 12 
weeks, decline evident at 24 weeks (high dose).

24 weeks Eclov et al. 
2020

[66]

AAV9

CYP11B1

Cyp11b1-/- 
mice

1 × 1010 vgc/adrenal

Intra-adrenal injection

All mice (n = 4) had significant decrease in 
serum deoxycorticosterone/corticosterone ratio 
at 4 weeks.

Serum deoxycorticosterone/corticosterone ratio 
remained low in 2 mice followed to 5 months.

No apparent transgene expression in adrenal 
glands of injected mice
11B-hydroxylase activity did not improve (data 
not shown).

22 weeks Naiki et al. 
2022
[61]

AAV8

CYP21A2

H-2aw18 mice

(Cyp21a1-/-)

5 × 1011 vgc/mouse

Intravenous injection

All mice (n = 10) normalised serum aldosterone 
and renal renin expression.

All mice increased serum corticosterone and 
reduced adrenal hyperplasia.

4 weeks Graves et al. 
2024

[67]

AAV: adeno-associated virus; ACTH: adrenocorticotropic hormone; CAH: congenital adrenal hyperplasia; pfu: plaque-forming 
units; vgc: vector genome copies; WT: wild-type

A nonhuman primate (NHP) study of an AAV capsid serotype 5 (AAV5)-CYP21A2 gene addition vector 
(BBP-631) developed by Adrenas Therapeutics led to a low but measurable expression of human 21OH 
[65]. Stable transgene expression for 6 months was reported [66], however, only 2 animals were followed 
up to this time point, both having received the highest vector dose studied (4.5 × 1013 vgc/kg), and 
declining mean transgene expression was already evident at 6 months. Furthermore, the reported data was 
not separated by sex, despite the inclusion of both sexes in the study. This would have masked any 
variations in transgene durability or therapeutic efficacy that may have resulted from sexual dimorphism, 
which is known to affect the adrenal glands in mice [7].

None of these approaches have shown durability of therapeutic benefit over time. In the study that best 
exemplifies this issue, serum progesterone and ACTH levels returned to near-normal for a short period 
post-treatment, but the effect was lost by 10 or 32 weeks, respectively [4]. Immunohistochemical staining 
showed progressive loss of 21OH expression, with 21OH-negative cells gradually repopulating the cortex in 
a centripetal manner. It is also possible that observed durability may have been a result of unintentional 
liver transduction, as liver-specific expression of 21OH following AAVRh10-CYP21A2 delivery has been 
shown to significantly improve biochemical phenotype in H-2aw18 mice [67].

Despite the evident difficulty of stably transducing the adrenal cortex with rAAV gene addition therapy 
[4, 62], BBP-631 has entered Phase I/II clinical trials (NCT04783181), representing the first-in-human 
administration of CAH gene therapy [65]. By January 2024, seven participants had been treated at four 
different dose rates with good safety outcomes [65, 68, 69]. One patient showed an increase in cortisol 
levels from 104.8 nmol/L at baseline to 234.5 nmol/L at 12 weeks post-injection [69]. Due to the known 
durability issues in previous adrenal-targeted gene addition strategies, the initiation of human clinical trials 
for BBP-631 has been criticised as premature [70]. The recurrent loss of therapeutic benefit observed 
across studies employing rAAV gene addition strategies, coupled with the timing and inward progression of 
this loss within the adrenal glands, foreshadows several critical issues with this approach to CAH gene 
therapy.

Limitations of rAAV gene addition strategies in CAH

While rAAV gene delivery can have long-term clinical benefit in post-mitotic or slowly dividing tissues, the 
adrenal cortex is highly regenerative, undergoing constant cellular renewal [71], with proliferation of 
adrenocortical stem and progenitor cells at the periphery of the cortex [7, 72–74], inward movement of 
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differentiated daughter cells [72, 75–77] which undergo lineage conversion to populate the deeper zones 
[78], and eventual apoptosis of the differentiated cells at the border of the medulla. While the presence of 
several populations of adrenocortical stem and progenitor cells has been confirmed, they are poorly 
characterised and cannot yet be readily isolated.

The regenerative nature of the adrenal gland has posed the largest challenge to achieving sustained 
benefit with an rAAV gene addition strategy for CAH. As discussed previously, while gene addition 
strategies have been applied to CAH in numerous preclinical studies [4, 5, 61, 62, 64, 66], none have 
achieved a duration of clinical benefit lasting beyond the cellular turnover time of the adrenal gland. The 
murine adrenal cortex is completely replaced after 3 months in the female mouse and estimated after 
9 months in the male [71]. Adrenocortical turnover has been strongly implicated as the cause of waning 
therapeutic efficacy in preclinical gene therapy studies, exemplified by the inward movement and eventual 
disappearance of corrected cells at the corticomedullary border [4]. The sexual dimorphism of 
adrenocortical turnover in mice provides an additional explanation for the variable durability of effect 
between studies, as most existing work has not reported sex or has grouped analyses for both male and 
female mice.

While these studies have clearly demonstrated the difficulty of achieving a durable effect, they have 
also shown that if a functional CYP21A2 gene is supplied in sufficient quantity to 21OH deficient animals, 
biochemical and phenotypic disease markers can be improved. The quantity of corrected cells needed for 
phenotypic benefit may be relatively low, as improvements have been observed in these studies with 39% 
adrenocortical cells corrected [5]. Therefore, if the hurdle of durability could be overcome, a highly effective 
CAH gene therapy could be developed.

Novel approaches to gene therapy for CAH

To confer a permanent clinical benefit using gene therapy for CAH, it is likely that a gene editing approach 
targeting the adrenocortical stem and/or progenitor cells will be necessary (Figure 1) [3].

Gene editing

The term “gene editing” can encompass several therapeutic strategies, which are selected based on the 
disease and mutation. In gene disruption, expression of a gene is reduced by creating a DSB which is 
repaired non-faithfully to induce a frameshift mutation [79]. In gene correction, a pathogenic variant in a 
gene is permanently corrected, either by alteration of a single base (base editing) or insertion of a 
replacement therapeutic gene cassette. Over 350 variants in the CYP21A2 locus span the promoter region 
and all 10 exons (and introns) [80], so the most viable strategy is to insert a partial or complete functional 
gene sequence into the host genome. To do so, a targeted DSB is induced in the genome in the presence of a 
“template” gene. The break is then repaired by endogenous mechanisms, and during the repair process the 
template gene is used to correct the mutation.

Early gene editing tools such as transcription activator-like effector nucleases (TALENs) and zinc-
finger nucleases have been largely superseded by CRISPR/Cas based editing tools [6, 81]. Cas9 is part of the 
Cas family of proteins, which are programmable nucleases that use RNA guidance to target a site in the host 
genome. Cas9 has generally been used to create DSBs at the target site, though non-cutting or ‘nicking’ 
variants have also been developed [82]. The cutting activity of the Cas9 protein can be easily directed 
through the co-delivery of a single guide RNA (sgRNA), allowing targeting based on simple Watson-Crick 
base pairing rules. The only restriction on Cas9 targetable sites is that they must possess a protospacer 
adjacent motif, a short and enzyme-specific sequence that is required for Cas9-DNA binding [6].

CYP21A2, which encodes 21OH, lies in a highly complex region of the human genome on chromosome 
6p21.3, as part of a tandem arrangement of repeated CYP21A and complement 4 genes. A non-functional 
pseudogene (CYP21A1-P), which has 98% exonic and 96% intronic homology with CYP21A2, is located 
approximately 30 kb from CYP21A2 [83–86]. The high degree of homology between gene and pseudogene 
results in the majority of CAH-causing mutations, as mutations from CYP21A1-P can be transferred to 
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Figure 1. Comparison of traditional (A) and novel (B) gene therapy approaches for congenital adrenal hyperplasia. In traditional 
rAAV gene addition approaches targeting differentiated adrenocortical cells, clinical benefit as a result of transgene expression 
is gradually lost due to adrenocortical turnover and episome loss. In a proposed novel rAAV-LNP genome editing treatment for 
CAH, adrenocortical progenitor cells are stably corrected at the genomic level with a functional copy of CYP21A2, and thus the 
adrenal cortex is repopulated with corrected steroidogenic daughter cells. 21OH: 21-hydroxylase; CAH: congenital adrenal 
hyperplasia; LNP: lipid nanoparticle; rAAV: recombinant adeno-associated virus; sgRNA: single guide RNA; zF: zona 
fasciculata; zG: zona glomerulosa; zR: zona reticularis
Note. Adapted with permission from “Future directions for adrenal insufficiency: cellular transplantation and genetic therapies” 
by Graves LE, Torpy DJ, Coates PT, Alexander IE, Bornstein SR, Clarke B. J Clin Endocrinol Metab. 2023;108:1273–89 (https://
academic.oup.com/jcem/article/108/6/1273/6972401). © Oxford University Press 2023.

CYP21A2 or large regions may be deleted during crossing over [87]. Over 90% of pathogenic variants in 
CYP21A2 occur due to recombination events between CYP21A2 and CYP21A1-P, and it is this mechanism 
that explains the predominance of 21OH deficiency as a cause of CAH [87].

An important limitation in the use of CRISPR/Cas9 in CYP21A2 is that the chosen sgRNA binding site 
must be unique to CYP21A2 and not also present in CYP21A1-P. Selection of a unique and specific sgRNA 
targeting site will be critical to ensuring the safety of an editing strategy, as the creation of DSBs in both 
gene and pseudogene could result in the loss of the ~30 kb between them. This task is made more difficult 
by the high level of intronic and exonic homology between CYP21A2 and CYP21A1-P.

In CAH, the functionality of 21OH is attenuated to different extents depending on the mutation [30, 88]. 
As pathogenic 21OH variants can still have minimal residual function [88], a sgRNA selected for CAH gene 
editing should undergo extensive testing to ensure that it will not knock out the function of a potentially 
hypomorphic allele. Targeting the sgRNA deep within a non-coding sequence may decrease the chances of 
such an event.

Following a DSB, host DNA repair mechanisms repair the break. Several gene correction approaches 
have been developed that take advantage of these endogenous repair pathways, which can be broadly 
divided into non-homologous end joining (NHEJ) and homologous repair (HR) pathways (Figure 2). In 
NHEJ, the ends of a DSB are directly ligated in an efficient but error-prone process [89]. NHEJ is active 
throughout all stages of the cell cycle and is the most efficient DSB repair pathway [90]. NHEJ repair is 
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mainly employed in gene disruption, where the generation of small insertions and deletions (‘indels’) is 
desirable to induce frameshift mutations [79]. NHEJ can also be exploited for gene correction, in the case 
where the most common predicted indel also happens to correct the mutation [91, 92]. HR repairs DSBs 
with much higher fidelity than NHEJ using a homologous template strand [89]. In the endogenous HR 
pathway, the sister chromatid that acts as a template is only present after DNA replication, so HR is 
restricted mostly to the late S/G2 phase [93]. In homology-directed repair (HDR) editing strategies, in 
addition to the CRISPR/Cas9 and sgRNA, a template gene flanked by sequences homologous to the target 
region is also delivered to act as a template for HR [94]. However, HDR strategies are inefficient in cells that 
are not actively dividing, restricting their efficient use in highly mitotic tissues [95].

Figure 2. Comparison of homology-directed repair (HDR)-based and homology-independent targeted integration (HITI) gene 
editing strategies. A target site (dark grey pentagon) is selected in the host genome and Cas9 is directed to the site by a 
complementary single guide RNA (sgRNA). After a Cas9/sgRNA-induced double-stranded break (DSB) is made in the target 
site (1), host repair pathways can include both HDR and non-homologous end joining (NHEJ). HDR-mediated repair strategies 
exploit HDR by providing a donor vector with homology arms (HA) (purple) flanking the gene to be inserted (blue). This 
homology allows the donor sequence to be used as a template for the synthesis of repair DNA in the host genome (2). HITI 
strategies exploit the NHEJ pathway by including gRNA target sequences on either side of the donor cassette. When donor 
DNA is inserted in the incorrect orientation (3), the gRNA target sites are reconstituted and Cas9-mediated cutting can reoccur 
(4). When the donor is inserted correctly (5), the gRNA sites are destroyed, leaving the donor unable to be re-excised [96]
Note. Adapted with permission from “Genome editing in the human liver: Progress and translational considerations” by Ginn SL, 
Christina S, Alexander IE. Prog Mol Biol Transl Sci. 2021;182:257–88 (https://www.sciencedirect.com/science/article/abs/pii/
S1877117321000417). © Elsevier 2021.

Homology-independent targeted integration (HITI) overcomes some of the limitations of HDR. The 
HITI approach was developed to exploit the more active NHEJ pathway while still allowing the insertion of 
a therapeutic gene [97]. The donor transgene is flanked by sgRNA binding sites that match the sites selected 
in the host genome. Both host genome and template DNA are cleaved by Cas9, and the donor fragment is 
inserted into the DSB of the host genome upon NHEJ repair. While the donor can be inserted in either 
direction, the sgRNA sites are designed so that they are reconstituted when the gene is inserted in the 
incorrect orientation and are destroyed when it is inserted correctly. Thus, incorrectly inserted genes are 
re-excised, while correctly inserted genes remain.

A HITI approach would be optimal for correcting CAH for a number of reasons. The CYP21A2 coding 
sequence is approximately 1.5 kb [83], compatible with the 4.7 kb packaging capacity of the rAAV 
backbone. This means it would be feasible to deliver and insert the entire CYP21A2 coding sequence, 
creating an opportunity for the development of a therapy that could treat most or all existing pathogenic 
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variants. CAH has highly heterogenous causative variants, so this type of universal or near-universal 
treatment approach would be required for financial and practical feasibility. While HDR could also be used 
to insert a large transgene sequence, the increased efficiency of a HITI approach will be necessary to 
achieve clinical benefit, especially when considering the difficulty of adrenocortical progenitor cell 
targeting. The genetic heterogeneity of CAH also limits the practicality of HDR, as different therapies would 
need to be developed with homology arms that matched each individual’s set of genetic variants.

rAAVs are efficient for delivery of Cas9 editing reagents to a wide variety of tissues. However, episomal 
rAAV genomes can persistently express Cas9 within the host cell, leading to potential safety issues. In 
addition, rAAV genomes can integrate non-specifically into the host’s genome [98]. Therefore, delivery of 
Cas9/sgRNA sequences via rAAV is likely to result in long-term Cas9 expression and activity and off-target 
DSBs [10, 99]. This non-specific cutting is a safety risk, as it can lead to cell cycle arrest [100] and 
mutagenesis of off-target genes [8]. Furthermore, promoter/enhancer elements are necessary for 
Cas9/sgRNA expression from the episome, and the integration of these elements into the host genome 
creates further mutagenic risk [101]. Finally, a dual-AAV editing approach would necessitate a high total 
rAAV dose, as two distinct vectors must be used. In clinical trials using high-dose rAAV, immune responses 
and hepatotoxicity have been observed, which in some cases have led to participant death [102, 103].

LNP-rAAV approaches

Due to the mounting issues identified in the use of dual-AAV Cas9 editing strategies, alternate delivery 
methods are sought. LNPs are composed of both lipids and nucleic acids, and measure 60–150 nm in 
diameter [104]. Originally developed to enhance chemotherapeutic drug delivery, LNPs have been more 
recently adopted for the delivery of nucleic acids such as silencing RNA (siRNA) and mRNA [105]. The 
clinical use of LNPs for mRNA delivery was accelerated by the recent development of LNP-mRNA SARS-
CoV-2 vaccines [106].

To exert a therapeutic effect, mRNA must enter the cytoplasm of a target cell. As naked RNA is rapidly 
degraded in the bloodstream, LNPs are used to envelop the nucleic acids and protect them from 
degradation [107]. Additionally, LNP encapsulation allows mRNA molecules to cross the cell membrane, as 
they are otherwise too large and negatively charged to effectively do so [108, 109]. A successful LNP-mRNA 
therapeutic agent must reach its target organ while avoiding clearance, must interact with and be taken up 
by the correct cell type, and must then efficiently escape the endosome. Ideally, mRNA-containing LNPs for 
gene therapy should also be minimally immunogenic.

Modern LNP formulations consist of four lipid components: an ionisable lipid, a ‘helper’ phospholipid, 
cholesterol, and a poly(ethylene)glycol-functionalised (PEGylated) lipid. The identities and ratios of these 
lipid components can be tuned to optimise delivery characteristics (“passive targeting”), or the LNP can be 
functionalised with ligands specific to a given cell type or tissue (“active targeting”) [110].

Advantages of an LNP-rAAV strategy

In an LNP-rAAV gene editing approach, mRNA encoding the Cas9 protein is delivered via LNP (Figure 3). If 
required, a donor cassette is delivered via rAAV, as LNPs are currently inefficient for delivery of large DNA 
cassettes to the nucleus [111]. Guide RNA can either be delivered in the LNP or can be transcribed from the 
rAAV-delivered cassette.

LNP-rAAV gene editing strategies have several advantages over dual-rAAV approaches.

LNPs do not have the same strict packaging capacity as AAVs [112]. For example, the coding 
sequence of SaCas9 will take up 3.1 kb of the total 4.7 kb rAAV packaging capacity, leaving minimal 
flexibility for the addition of promoter and regulatory elements. While the length of mRNA 
correlates with the number of encapsulated molecules [113], this varies with formulation 
parameters, so there is no strict packaging capacity. This increases the flexibility of LNP delivery.

1)

The synthesis and purification of LNPs is much less labor-, time-, and cost-intensive than that of 
rAAVs, significantly reducing the cost per dose of a potential gene therapy [114, 115].

2)
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mRNA delivered by LNP is degraded quickly after entering the cytoplasm, so the protein is only 
expressed for hours to days [116], in comparison to the extended expression resulting from rAAV 
use. As the prolonged presence of DNA-encoded Cas9 protein in the host cell is more likely to lead 
to off-target cutting [10], delivery of Cas9 as an mRNA provides a safety benefit through shorter 
duration of expression.

3)

It is possible that rAAV-delivered Cas9 DNA could integrate into the host genome [98], a risk which 
is removed with Cas9 mRNA delivery.

4)

An rAAV transgene encoding Cas9 must contain a promoter to express it, and in the case of rAAV 
genome integration, this creates a further risk of insertional mutagenesis [101]. When both Cas9 
and sgRNA are delivered via LNP, the strategy can become completely free from 
promoter/enhancer elements, greatly reducing mutagenic risk.

5)

LNPs are much less immunogenic than rAAVs [117, 118]. Additionally, LNPs carry a much lower 
risk of pre-existing host immunity. The reduced immunogenicity also opens possibilities for repeat 
administration of the LNP, which is not currently possible for rAAVs [117].

6)

Evidence of LNP suitability for the adrenal glands

There is no published work which describes the deliberate targeting of LNPs to the adrenal cortex, either by 
rational design or screening approaches. The adrenal gland is not frequently included in the analysis of LNP 
biodistribution and functional activity, leaving a paucity of data regarding adrenocortical targeting 
prospects. However, several studies have reported incidental adrenal LNP transfection.

Several lipid-based nanocarrier formulations (“lipidots”) composed of soybean oil, PEGylated lipid, 
phospholipids, and esterified cholesterol were tested for delivery of fluorescent dye or a radioactive tracer 
to steroidogenic organs in female mice [16]. The adrenal glands and ovaries had levels of radioactive LNP 
association equivalent to or above that of the liver, depending on the formulation. Upon histological 
examination of the adrenal glands following fluorescent dye delivery, it was found that the border of the 
medulla had a bright signal, and patches of dim fluorescence were visible throughout the zona fasciculata 
and zona glomerulosa. The ovaries, which share an embryological origin with the adrenal cortex, had the 
highest signal in several tested formulations, which increased in a dose-dependent manner [16]. The 
authors hypothesised that low-density lipoprotein (LDL) mimicry contributed to the steroidogenic organ 
targeting of the nanoparticles, as cholesterol uptake is required for steroidogenesis and the adrenal 
expresses high levels of the LDL receptor (LDLR) [119, 120].

OnpattroTM (patisiran) is an approved LNP-siRNA therapeutic for the treatment of hereditary 
transthyretin-mediated amyloidosis and is formulated to deliver the therapeutic cargo to the liver [105]. In 
preclinical rat studies, radiolabelled liver-targeted LNPs were found to associate with the adrenal gland, 
with evidence that they received between 0.03% and 0.14% of the total LNP dose [15]. In NHPs, 
adrenocortical vacuolation was reported in a repeat-dosing toxicity evaluation 6 weeks post-treatment 
[15]. Adrenocortical vacuoles often represent an accumulation of excess steroidogenic precursors, 
including cholesterol [121]. While it is possible that the vacuolation seen in this study represented an 
accumulation of LNP-derived lipids, vacuolation can also occur due to external stressors or HPA axis 
perturbation [122]. Regardless, this study provides evidence that the OnpattroTM LNP formulation (or 
products of its degradation) interacts with the adrenal cortex.

Further evidence of adrenal LNP tropism has arisen from the testing of a liver-targeted LNP base-
editing approach for the treatment of familial hypercholesterolaemia [14]. Base edits of PCSK9 occurred in 
the adrenal gland at a rate of 1–5%, and the left and right adrenal glands were the 2nd and 3rd most edited 
off-target organs, respectively. While the ionisable lipid is proprietary, the formulation used in this study 
appears to closely mimic the OnpattroTM formulation in terms of lipid ratio and the identity of the other 
three components [116].

Given that most evidence of LNP activity in the adrenal gland has come from studies of liver-targeted 
LNPs, it is unsurprising that several characteristics hypothesised to improve LNP uptake are shared by both 
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Figure 3. Cellular entry and nucleic acid delivery mechanisms of rAAV (purple) and LNP (orange) delivery vectors. Both vectors 
must be internalized via endosome encapsulation, and subsequently escape the endosome to enter the cytoplasm. rAAV 
vectors are still intact at this stage and go on to enter the nucleus, where the single-stranded viral genome is released and 
concatemerises to form a double-stranded episome. The episome is transcribed by host polymerase systems. Conversely, upon 
endosomal escape, LNPs deliver their mRNA cargo into the cytoplasm directly, where it is translated to protein. This mechanism 
bypasses the need for nuclear entry. AAV: adeno-associated virus; LNP: lipid nanoparticle
Note. Adapted from “AAV Vector Infection”, by BioRender.com (2023). Retrieved from https://www.biorender.com/template/aav-
vector-infection

the liver and the adrenal. Both organs contain a fenestrated endothelium, a feature of the blood vessels 
which facilitates the passage of nanoparticles from the bloodstream into the organ [123, 124]. Both organs 
receive a high proportion of blood flow relative to their size, with the adrenal gland (in rats) receiving 7× 
total blood flow relative to its size and the liver (in humans) receiving 10× [125–127], increasing the 
likelihood of LNP interactions. Finally, ApoE uptake is high in both organs, and they share a high expression 
of LDLR [119, 128]. Given that nanocarriers formulated without cholesterol could still associate strongly 
with the adrenal gland [16], it is possible that ApoE-independent mechanisms may also contribute to 
adrenal LNP accumulation. While data on adrenal tropism of LNPs is minimal, extensive data supports liver 
tropism of these along with other nanoparticles. The similarities between these organs, along with the 
supporting data from studies outlined above, show that the adrenals are promising but under-studied 
target organs for LNP-mRNA therapeutics.

Conclusions
The work examined in this review points toward the promise of CAH and the adrenal glands as targets for 
an LNP-AAV gene editing therapeutic. Prior work has shown that rAAV-based CYP21A2 gene addition can 
restore normal physiology in 21OH deficient animal models. However, durability remains the largest hurdle 
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to clinical viability. A successful LNP-AAV gene editing approach targeted toward the adrenocortical stem 
and progenitor cells would overcome this hurdle, while improving greatly on the safety outcomes of dual-
AAV editing approaches. The increasing adoption of LNP-AAV gene editing strategies, coupled with 
improvements in the genetic and phenotypic characterisation of CAH, will continue to provide valuable 
information in the application of these approaches to CAH.
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