Supplementary materials

Fructose treatment induces metabolic reprogramming in liver cancer cells, promoting aggressiveness and platin therapy failure

Gene	Forward	Reverse
<i>khk-a</i> (3a exon)	5'- tattetgtggacetaegeta	5'- ccgcaccatcctatactatg
<i>khk-c</i> (3c exon)	5'- catgttgctgacttcctgg	5'- tgcatcatcaacaactccaa
rps18	5'- gaggatgaggtggaacgtgt	5'- agaagtgacgcagccctcta

Table S1. P	rimers used	in	the	study
-------------	-------------	----	-----	-------

Figure S1. Chorioallantoic Membrane (CAM) model in chick embryo. Followed protocol for in vivo studies with CAM model and chemoresistance properties of Huh-7 cells treated with High Glc media (11 mM) and fructose (1mM) five days before the grafting. On Embryonic Development Day 14 (EDD14), tumors from NT or fructose-treated cells were treated with PBS, fructose (Fru, 1mM), Cisplatin (CDDP, 100 μ M) or CDDP + Fru (100 μ M and 1 mM). The treatments finished on EDD17.

Figure S2. Cells in a glucose-free medium change their morphology and reduce their metabolism. (A) Huh-7 cell line morphology treated in a DMEM Glucose-free media at $200\times$; (B) HepG2 cell line morphology before the Glycolytic Rate Assay at $200\times$, Black arrows show dead cells; (C) Viability of Huh-7 and (D) HepG2 cells treated in a High Glc media; (E) Viability of Huh-7 and (F) HepG2 cells treated in a Low Glc media. Treatments: High Glucose: DMEM complete media with Glucose (11 mM); Low Glucose: DMEM complete media with Glucose (11 mM); Low Glucose; Fructose 1 mM for 48 h. DMSO (30%) was used as a positive control for viability.

Figure S3. Metabolic rewiring sustains the proliferation and survival of liver cancer cells. (A) Wound-healing assay to address HepG2 cells migration with High Glc media; (B) Wound-healing assay to address HepG2 cells migration with Low Glc media; (C) Quantification of the rate of gap closure. Treatments: we used 1 mM of fructose in DMEM complete media with High Glc (11mM) or Low Glc (0.4 mM). Images are representative of at least three independent experiments. * $p \le 0.05$, *** $p \le 0.001$, **** $p \le 0.0001$.