SUPPORTING INFORMATION

From canonical to unique: extension of a lipophilicity scale of amino acids to non-standard residues

Antonio Viayna^{1*}, Paulina Matamoros², David Bl*á*zquez-Ruano³, William J. Zamora^{2,4,5*}

¹Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain

²CBio³ Laboratory, School of Chemistry, University of Costa Rica, 11501-2060 San Jos é, Costa Rica

³CIC bioGUNE, Basque Research and Technology Alliance, 48160 Derio, Spain

⁴Laboratory of Computational Toxicology and Biological Testing Laboratory (LEBi), University of Costa Rica, 11501-2060 San Jos é Costa Rica

⁵Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), 10109 San Jos é, Costa Rica

*Correspondence: Antonio Viayna, Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain toniviayna@ub.edu | William J. Zamora, CBio³ Laboratory, School of Chemistry, University of Costa Rica, 11501-2060 San Jos é, Costa Rica william.zamoraramirez@ucr.ac.cr. **Table S1**. Dataset of methionine amino acids examined in this article derived from the research conducted by Kubyshkin. Chemical scaffolds based on Figure 1 from main text.

Amino acid code	Amino acid name	Side chain (R1)
Met	Methionine	-CH ₂ -CH ₂ -S-CH ₃
Nle	Norleucine	-CH ₂ -CH ₂ -CH ₂ -CH ₃
Tfnle	Trifluoronorleucine	-CH ₂ -CH ₂ -CH ₂ -CF ₃
Eth	Ethionine	-CH ₂ -CH ₂ -S-CH ₂ -CH ₃
Nva	Norvaline	-CH ₂ -CH ₂ -CH ₃
Aha	Azidohomoalanine	-CH ₂ -CH ₂ -N ₃
Mox	Methoxinine	-CH ₂ -CH ₂ -O-CH ₃
MetO	Methionine sulfoxide	-CH ₂ -CH ₂ -SO-CH ₃

Table S2. Dataset of lysine amino acids examined in this article derived from the researchconducted by Kubyshkin. Chemical scaffolds based on Figure 1 from main text.

Amino acid code	Amino acid name	Side chain (R ₁)
(Boc)I vs	tert-hutoxycarbonyllysine	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -
(Doc)Lys	ent-butoxyearbonynysme	NH-CO-CH ₂ -C-(CH ₃) ₃
Sac	S-alylcysteine	-CH ₂ -S-CH ₂ -CH=CH ₂
		-CH ₂ -CH ₂ -CH ₂ -CH ₂ -
(Pro)Lys	N-propargyloxycarbonyllysine	NH-CO-CH ₂ -CH ₂ -
		C=CH
$(\Delta c)I$ vs	N_acetyllysine	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -
(nc)Lys		NH-CO-CH ₃

Amino acid code	Amino acid name	Side chain (R1)
Tyr	Tyrosine	-СН ₂ -ОН
2,3,5,6-tetraFTyr	2,3,5,6-tetrafluorotyrosine	-CH ₂ -CH ₂ -OH
3-F-Tyr	3-fluorotyrosine	-CH ₂ -OH
3-NO2-Tyr	3-nitrotyrosine	-CH ₂ -OH
Dopa	Levodopa	-СH ₂ —ОН

Table S3. Dataset of tyrosine amino acids examined in this article derived from the research conducted by Kubyshkin. Chemical scaffolds based on Figure 1 from main text.

Amino acid code	Amino acid name	Side chain (R1)
Phe	Phenylalanine	-CH2
4-AcNH-Phe	4-acetylamidophenylalanine	-CH ₂ -CH ₂ -C-CH ₃
4-NH2-Phe	4-aminophenylalanine	-CH ₂ -NH ₂
4-N3-Phe	4-azidophenylalanine	-CH ₂ -CH ₂ -N ₃
4-Br-Phe	4-bromophenylalanine	-CH ₂ -CH ₂ -Br
4-CN-Phe	4-cyanophenylalanine	-CH ₂ -CN
4-Cl-Phe	4-chlorophenylalanine	-CH ₂ -CI

Table S4. Dataset of phenylalanine amino acids examined in this article derived from theresearch conducted by Kubyshkin. Chemical scaffolds based on Figure 1 from main text.

4-F-Phe	4-fluorophenylalanine	-CH ₂ -F
4-CF3-Phe	4-trifluoromethylphenylalanine	-CH ₂ -CF ₃
(Me)Tyr	Methyltyrosine	-CH ₂ -O-CH ₃

Table S5. Dataset of tryptophan amino acids examined in this article derived from the research conducted by Kubyshkin. Chemical scaffolds based on Figure 1 from main text.

Amino acid code	Amino acid name	Side chain (R1)
Trp	Tryptophan	-CH ₂ -CH
1-CH3-Trp	1-methyltryptophan	-CH ₂ -CH ₂ -CH ₃
5-NH2-Trp	5-aminotryptophan	-CH ₂ -CH ₂ -NH

5-Br-Trp	5-bromotryptophan	-CH ₂ -CH ₂ -NH
5-Cl-Trp	5-chlorotryptophan	-CH ₂ -CH ₂ -NH
5-F-Trp	5-fluorotryptophan	-CH ₂ -CH ₂ -NH
5-OH-Trp	5-hydroxytryptophan	-CH ₂ -CH ₂ -NH
5-CH3-Trp	5-methyltryptophan	-CH ₂ -CH ₂ -NH
6-Br-Trp	6-bromotryptophan	-CH ₂

Amino	Amino acid name	R1
acid code		
(Bn)Hyp	<i>O</i> -benzyl- hydroxyproline	CH ₃ O H ₃ C O N
Oic	Octahydroindole-2- carboxylic acid	$H_3C - O$ $H_3C - O$ $H_3C - O$
(Boc)Amp	4-N-Bocproline	H_{3C} H
2TfmPro	2- trifluoromethylproline	F F O CH ₃ H ₃ C
3TfmPro	3- trifluoromethylproline	CH ₃ O F H ₃ C
4TfmProA	4- trifluoromethylproline A	CH ₃ O H ₃ C F F

Table S6. Dataset of proline amino acids examined in this article derived from theresearch conducted by Kubyshkin. Chemical scaffolds based on Figure S1.

		Model 1		
Amino acid code	Molecular Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)
Met	204.29	5	4	2
Nle	186.25	5	4	2
Tfnle	240.22	6	4	2
Eth	218.32	6	4	2
Nva	172.23	4	4	2
Aha	200.22	5	7	3
Mox	188.23	5	5	2
MetO	222.31	5	5	3
		Model 2		
	Molecular			
Amino acid code	Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)
Amino acid code Met	Weight (MW) (g/mol) 205.28	Rotatable Bonds (RB) 6	Hydrogen Bond Acceptors (HBA) 4	Hydrogen Bond Donors (HBD) 1
Amino acid code Met Nle	Weight (MW) (g/mol) 205.28 187.24	Rotatable Bonds (RB) 6 6	Hydrogen Bond Acceptors (HBA) 4 4	Hydrogen Bond Donors (HBD) 1 1
Amino acid code Met Nle Tfnle	Weight (MW) (g/mol) 205.28 187.24 241.21	Rotatable Bonds (RB) 6 6 7	Hydrogen Bond Acceptors (HBA) 4 4 4 4	Hydrogen Bond Donors (HBD) 1 1 1
Amino acid code Met Nle Tfnle Eth	Weight (MW) (g/mol) 205.28 187.24 241.21 219.30	Rotatable Bonds (RB) 6 6 7 7 7	Hydrogen Bond Acceptors (HBA) 4 4 4 4 4 4	Hydrogen Bond Donors (HBD) 1 1 1 1 1 1
Amino acid code Met Nle Tfnle Eth Nva	Weight (MW) (g/mol) 205.28 187.24 241.21 219.30 173.21	Rotatable Bonds (RB) 6 6 7 7 7 7 5	Hydrogen Bond Acceptors (HBA) 4 4 4 4 4 4 4 4 4	Hydrogen Bond Donors (HBD) 1 1 1 1 1 1 1 1
Amino acid code Met Nle Tfnle Eth Nva Aha	Weight (MW) (g/mol) 205.28 187.24 241.21 219.30 173.21 201.21	Rotatable Bonds (RB) 6 6 7 7 7 7 5 6	Hydrogen Bond Acceptors (HBA) 4 4 4 4 4 4 4 4 4 7	Hydrogen Bond Donors (HBD) 1 1 1 1 1 1 1 2
Amino acid code Met Nle Tfnle Eth Nva Aha Mox	Weight (MW) (g/mol) 205.28 187.24 241.21 219.30 173.21 201.21 189.21	Rotatable Bonds (RB) 6 7 7 5 6 6	Hydrogen Bond Acceptors (HBA) 4 4 4 4 4 4 4 4 7 5	Hydrogen Bond Donors (HBD) 1 1 1 1 1 1 2 1 1

Table S7. Summary of molecular descriptors of studied methionine derivatives forModels 1 and 2, estimated with DataWarrior.

		Model 1		
Amino acid code	Molecular Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)
Tyr	236.27	4	5	3
2,3,5,6-tetraFTyr	308.23	4	5	3
3-F-Tyr	254.26	4	5	3
3-NO2-Tyr	281.27	5	7	3
Dopa	252.27	4	6	4
		Model 2		
Amino acid code	Molecular Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)
Tyr	237.25	5	5	2
2,3,5,6-tetraFTyr	309.21	5	5	2
3-F-Tyr	255.24	5	5	2
3-NO2-Tyr	282.25	6	7	2
Dopa		_	-	-

Table S8. Summary of molecular descriptors of studied tyrosine derivatives for Models1 and 2, estimated with DataWarrior.

		Model 1			
Amino acid code	Molecular Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)	
Phe	220.27	4	4	2	
4-AcNH-Phe	277.32	5	6	3	
4-NH2-Phe	235.29	4	5	3	
4-N3-Phe	262.29	5	7	3	
4-Br-Phe	299.17	4	4	2	
4-CN-Phe	245.28	4	5	2	
4-Cl-Phe	254.72	4	4	2	
4-F-Phe	238.26	4	4	2	
4-CF3-Phe	288.27	5	4	2	
(Me)Tyr	250.30	5	5	2	
(Me) 1 yr 250.30 5 5 2					
	1	Model 2	<u> </u>		
Amino acid code	Molecular Weight (MW) (g/mol)	Model 2 Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)	
Amino acid code Phe	Molecular Weight (MW) (g/mol) 221.26	Model 2 Rotatable Bonds (RB) 5	Hydrogen Bond Acceptors (HBA) 4	Hydrogen Bond Donors (HBD) 1	
Amino acid code Phe 4-AcNH-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31	Model 2 Rotatable Bonds (RB) 5 6	Hydrogen Bond Acceptors (HBA) 4 6	Hydrogen Bond Donors (HBD) 1 2	
Amino acid code Phe 4-AcNH-Phe 4-NH2-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31 236.27	Model 2 Rotatable Bonds (RB) 5 6 5 5	Hydrogen Bond Acceptors (HBA) 4 6 5	Hydrogen Bond Donors (HBD) 1 2 2	
Amino acid code Phe 4-AcNH-Phe 4-NH2-Phe 4-N3-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31 236.27 263.28	Model 2 Rotatable Bonds (RB) 5 6 5 6 5 6	Hydrogen Bond Acceptors (HBA) 4 6 5 7	Hydrogen Bond Donors (HBD) 1 2 2 2 2 2	
Amino acid code Phe 4-AcNH-Phe 4-NH2-Phe 4-N3-Phe 4-Br-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31 236.27 263.28 300.15	Model 2 Rotatable Bonds (RB) 5 6 5 6 5 6 5 5	Hydrogen Bond Acceptors (HBA) 4 6 5 7 4	Hydrogen Bond Donors (HBD) 1 2 2 2 2 1	
Amino acid code Phe 4-AcNH-Phe 4-NH2-Phe 4-N3-Phe 4-Br-Phe 4-CN-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31 236.27 263.28 300.15 246.27	Model 2 Rotatable Bonds (RB) 5 6 5 6 5 5 5 5	Hydrogen Bond Acceptors (HBA) 4 6 5 7 4 5	Hydrogen Bond Donors (HBD) 1 2 2 2 2 1 1 1 1	
Amino acid code Phe 4-AcNH-Phe 4-NH2-Phe 4-N3-Phe 4-Br-Phe 4-Br-Phe 4-CN-Phe 4-CI-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31 236.27 263.28 300.15 246.27 255.70	Model 2 Rotatable Bonds (RB) 5 6 5 6 5 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 4 6 5 7 4 5 4 5 4	Hydrogen Bond Donors (HBD) 1 2 2 2 2 1 1 1 1 1 1	
Amino acid code Phe 4-AcNH-Phe 4-NH2-Phe 4-N3-Phe 4-Br-Phe 4-Br-Phe 4-CN-Phe 4-C1-Phe 4-F-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31 236.27 263.28 300.15 246.27 255.70 239.25	Model 2 Rotatable Bonds (RB) 5 6 5 6 5 5 5 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 4 6 5 7 4 5 4 5 4 4 4	Hydrogen Bond Donors (HBD) 1 2 2 2 2 1 1 1 1 1 1 1 1	
Amino acid code Phe 4-AcNH-Phe 4-NH2-Phe 4-N3-Phe 4-Br-Phe 4-Br-Phe 4-CN-Phe 4-CI-Phe 4-F-Phe 4-CF3-Phe	Molecular Weight (MW) (g/mol) 221.26 278.31 236.27 263.28 300.15 246.27 255.70 239.25 289.25	Model 2 Rotatable Bonds (RB) 5 6 5 6 5 5 5 5 5 6 6	Hydrogen Bond Acceptors (HBA) 4 6 5 7 4 5 4 5 4 4 4 4 4	Hydrogen Bond Donors (HBD) 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	

Table S9. Summary of molecular descriptors of studied tyrosine derivatives for Models1 and 2, estimated with DataWarrior.

		Model 1		
Amino acid code	Molecular Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)
Trp	259.31	4	5	3
1-CH3-Trp	273.34	4	5	2
5-NH2-Trp	274.32	4	6	4
5-Br-Trp	338.20	4	5	3
5-Cl-Trp	293.75	4	5	3
5-F-Trp	277.30	4	5	3
5-OH-Trp	275.31	4	6	4
5-CH3-Trp	273.34	4	5	3
6-Br-Trp	338.20	4	5	3
			•	
	1	Model 2	I	L
Amino acid code	Molecular Weight (MW) (g/mol)	Model 2 Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)
Amino acid code Trp	Molecular Weight (MW) (g/mol) 260.29	Model 2 Rotatable Bonds (RB) 5	Hydrogen Bond Acceptors (HBA) 5	Hydrogen Bond Donors (HBD) 2
Amino acid code Trp 1-CH3-Trp	Molecular Weight (MW) (g/mol) 260.29 274.32	Model 2 Rotatable Bonds (RB) 5 5	Hydrogen Bond Acceptors (HBA) 5 5	Hydrogen Bond Donors (HBD) 2 1
Amino acid code Trp 1-CH3-Trp 5-NH2-Trp	Molecular Weight (MW) (g/mol) 260.29 274.32 275.31	Model 2 Rotatable Bonds (RB) 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 5 5 5 6	Hydrogen Bond Donors (HBD) 2 1 3
Amino acid code Trp 1-CH3-Trp 5-NH2-Trp 5-Br-Trp	Molecular Weight (MW) (g/mol) 260.29 274.32 275.31 339.19	Model 2 Rotatable Bonds (RB) 5 5 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 5 5 6 6 5	Hydrogen Bond Donors (HBD) 2 1 3 2 2
Amino acid code Trp 1-CH3-Trp 5-NH2-Trp 5-Br-Trp 5-Cl-Trp 5-Cl-Trp	Molecular Weight (MW) (g/mol) 260.29 274.32 275.31 339.19 294.74	Model 2 Rotatable Bonds (RB) 5 5 5 5 5 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 5 5 5 6 5 5 5 5	Hydrogen Bond Donors (HBD) 2 1 3 2 2 2 2
Amino acid code Trp 1-CH3-Trp 5-NH2-Trp 5-Br-Trp 5-Br-Trp 5-Cl-Trp 5-F-Trp	Molecular Weight (MW) (g/mol) 260.29 274.32 275.31 339.19 294.74 278.28	Model 2 Rotatable Bonds (RB) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 5 5 5 6 5 5 5 5 5 5	Hydrogen Bond Donors (HBD) 2 1 3 2 2 2 2 2 2
Amino acid code Trp 1-CH3-Trp 5-NH2-Trp 5-Br-Trp 5-Br-Trp 5-Cl-Trp 5-F-Trp 5-F-Trp 5-OH-Trp	Molecular Weight (MW) (g/mol) 260.29 274.32 275.31 339.19 294.74 278.28 276.29	Model 2 Rotatable Bonds (RB) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 5 5 6 5 5 5 5 5 5 5 6 6	Hydrogen Bond Donors (HBD) 2 1 3 2 2 2 2 2 2 3
Amino acid code Trp 1-CH3-Trp 5-NH2-Trp 5-Br-Trp 5-CI-Trp 5-CI-Trp 5-F-Trp 5-OH-Trp 5-CH3-Trp	Molecular Weight (MW) (g/mol) 260.29 274.32 275.31 339.19 294.74 278.28 276.29 274.32	Model 2 Rotatable Bonds (RB) 5 5 5 5 5 5 5 5 5 5 5 5 5	Hydrogen Bond Acceptors (HBA) 5 5 5 6 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5	Hydrogen Bond Donors (HBD) 2 1 3 2 2 2 2 2 2 3 2 3 2

Table S10. Summary of molecular descriptors of studied tryptophan derivatives forModels 1 and 2, estimated with DataWarrior.

		Model 1		
Amino acid code	Molecular Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)
Lys	301.39	9	7	3
(Boc)Lys	216.30	6	4	2
Sac	269.30	8	7	3
(Pro)Lys	243.31	7	6	3
(Ac)Lys	301.39	9	7	3
		Model 2		
Amino acid code	Molecular Weight (MW)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors	Hydrogen Bond Donors (HPD)
	(g/mol)	(112)	(HBA)	(HBD)
Lys	(g/mol) 302.37	10	(HBA) 7	2
Lys (Boc)Lys	(g/mol) 302.37 217.29	10 7	(HBA) 7 4	(HBD) 2 1
Lys (Boc)Lys Sac	(g/mol) 302.37 217.29 270.28	10 7 9	(HBA) 7 4 7	(HBD) 2 1 2
Lys (Boc)Lys Sac (Pro)Lys	(g/mol) 302.37 217.29 270.28 244.29	10 7 9 8	(HBA) 7 4 7 6	(HBD) 2 1 2 2 2

Table S11. Summary of molecular descriptors of studied lysine derivatives for Models 1and 2, estimated with DataWarrior.

Model 1						
Amino acid code	Molecular Weight (MW) (g/mol)	Rotatable Bonds (RB)	Hydrogen Bond Acceptors (HBA)	Hydrogen Bond Donors (HBD)		
(Bn)Hyp	276,.34	4	5	1		
Oic	224.30	1	4	1		
(Boc)Amp	285.34	4	7	2		
2TfmPro	238.21	2	4	1		
3TfmPro	238.21	2	4	1		
4TfmProA	238.21	2	4	1		
4TfmProB	238.21	2	4	1		
5TfmPro	238.21	2	4	1		
Ash	196.25	1	4	1		
cF2Ash	232.23	1	4	1		
tF2Ash	232.23	1	4	1		
2Mep	184.24	1	4	1		
ЗМер	184.24	1	4	1		
Мер	184.24	1	4	1		
5Mep	184.24	1	4	1		
Cys[ΨPro]	188.25	1	4	1		
Dfp	206.19	1	4	1		
(Me)rPrc	228.25	3	6	1		
Dhp	168.20	1	4	1		
Flp	188.20	1	4	1		
(Me)mPdc	228.25	3	6	1		
flp	188.20	1	4	1		
(Ac)Amp	227.26	2	6	2		
НурА	186.21	1	5	2		
НурВ	186.21	1	5	2		
Model 2						

Table S12. Summary of molecular descriptors of studied proline derivatives for Models1 and 2, estimated with DataWarrior.

	Molecular	Dotatabla	Hydrogen	Hydrogon Bond
Amino acid	Weight	Ronds	Bond	Donors
code	(MW)	(DD)	Acceptors	
	(g/mol)	(KD)	(HBA)	(HBD)
(Bn)Hyp	277.32	5	5	0
Oic	225.29	2	4	0
(Boc)Amp	286.33	5	7	1
2TfmPro	239.19	3	4	0
3TfmPro	239.19	3	4	0
4TfmProA	239.19	3	4	0
4TfmProB	239.19	3	4	0
5TfmPro	239.19	3	4	0
Ash	197.23	2	4	0
cF2Ash	233.21	2	4	0
tF2Ash	233.21	2	4	0
2Mep	185.22	2	4	0
ЗМер	185.22	2	4	0
Мер	185.22	2	4	0
5Mep	185.22	2	4	0
Cys[ΨPro]	189.23	2	4	0
Dfp	207.18	2	4	0
(Me)rPrc	229.23	4	6	0
Dhp	169.18	2	4	0
Flp	189.19	2	4	0
(Me)mPdc	229.23	4	6	0
flp	189.19	2	4	0
(Ac)Amp	228.25	3	6	1
НурА	187.19	2	5	1
НурВ	187.19	2	5	1

Amino acid	log P	log P backbone
GLY	-1.26	-1.04
ALA	-0.56	-0.82
LEU	0.90	-0.62
ILE	1.51	-0.55
MET	0.31	-0.49
VAL	-0.54	-0.52
PRO	-0.23	-0.58
РНЕ	1.26	-0.55
TYR	0.16	-0.66
TRP	1.02	-0.54
HIS	-0.95	-0.71
SER	-1.25	-0.50
THR	-0.78	-0.44
CYS	0.42	-0.77
ASN	-2.15	-0.75
GLN	-1.73	-0.66
ARG	-1.68	-0.81
GLU	-0.79	-0.63
LYS	0.17	-0.94
ASP	-1.57	-0.63

 Table S13. log P n-octanol/water for the 20 N-acetyl-L-amino-acid-N-methyl amides.

Model 1					
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^a	(exptl – calc. corr.)	
Met	0.13	-0.16	0.01	0.12	
Nle	0.93	0.47	0.64	0.29	
Tfnle	0.72	0.42	0.59	0.13	
Eth	0.56	0.03	0.20	0.36	
Nva	0.40	0.43	0.60	-0.20	
Aha	-0.11	-1.37	-1.20	1.09	
Mox	-0.65	-0.82	-0.65	0.00	
MetO	-1.79	-1.27	-1.10	-0.69	
		Model 2			
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^b	(exptl – calc. corr.)	
Met	0.13	1.05	0.27	-0.14	
Nle	0.93	1.61	0.83	0.10	
Tfnle	0.72	2.60	1.82	-1.10	
Eth	0.56	1.99	1.21	-0.65	
Nva	0.40	1.82	1.04	-0.64	
Aha	-0.11	-0.12	-0.90	0.79	
Mox	-0.65	1.24	0.46	-1.11	
MetO	-1.79	-0.36	-1.14	-0.65	

Table S14. Summary of logP values performed for methionine derivatives for Models 1 and 2.

Model 1					
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^a	(exptl – calc. corr.)	
Tyr	0.29	-0.19	-0.02	0.31	
2,3,5,6-tetraFTyr	0.98	1.49	1.66	-0.68	
3-NO2-Tyr	0.76	0.93	1.10	-0.34	
3-F-Tyr	0.48	0.19	0.36	0.12	
Dopa	-0.21	-0.95	-0.78	0.57	
		Model 2			
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^b	(exptl – calc. corr.)	
Tyr	0.29	1.30	0.52	-0.23	
2,3,5,6-tetraFTyr	0.98	2.88	2.10	-1.12	
3-NO2-Tyr	0.76	2.20	1.42	-0.66	
3-F-Tyr	0.48	1.37	0.59	-0.11	
Dopa	-0.21	0.55	0.52	-0.23	

Table S15. Summary of logP values performed for tyrosine derivatives for Models 1 and2.

Model 1					
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^a	(exptl – calc. corr.)	
Phe	0.92	0.44	0.61	0.31	
4-CF3-Phe	1.96	1.75	1.92	0.04	
4-Br-Phe	1.92	2.75	2.92	-1.00	
4-Cl-Phe	1.76	1.65	1.82	-0.06	
4-N3-Phe	1.58	-0.72	-0.55	2.13	
4-F-Phe	1.16	1.35	1.52	-0.36	
(Me)Tyr	0.92	1.25	1.42	-0.50	
4-CN-Phe	0.58	-0.30	-0.13	0.71	
4-AcNH-Phe	0.02	-0.52	-0.35	0.37	
4-NH2-Phe	-0.33	-1.07	-0.90	0.57	
		Model 2			
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^b	(exptl – calc. corr.)	
Phe	0.92	2.38	1.60	-0.68	
4-CF3-Phe	1.96	3.59	2.81	-0.85	
4-Br-Phe	1.92	4.70	3.92	-2.00	
4-Cl-Phe	1.76	3.09	2.31	-0.55	
4-N3-Phe	1.58	1.04	0.26	1.32	
4-F-Phe	1.16	2.57	1.79	-0.63	
(Me)Tyr	0.92	2.26	1.48	-0.56	
4-CN-Phe	0.58	1.18	0.40	0.18	
	0.50	1110			
4-AcNH-Phe	0.02	1.96	1.18	-1.16	

Table S16. Summary of logP values performed for phenylalanine derivatives for Models1 and 2.

Model 1					
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^a	(exptl – calc. corr.)	
Trp	1.20	1.20	1.37	-0.17	
6-Br-Trp	2.37	3.54	3.71	-1.34	
5-Br-Trp	2.34	3.90	4.07	-1.73	
5-Cl-Trp	2.17	1.83	2.00	0.17	
5-CH3-Trp	1.65	1.20	1.37	0.28	
1-CH3-Trp	1.53	2.07	2.24	-0.71	
5-F-Trp	1.48	1.60	1.77	-0.29	
5-OH-Trp	0.24	0.25	0.42	-0.18	
5-NH2-Trp	-0.26	-0.41	-0.24	-0.02	
		Model 2			
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^b	(exptl – calc. corr.)	
Trp	1.20	2.49	1.71	-0.51	
6-Br-Trp	2.37	5.44	4.66	-2.29	
5-Br-Trp	2.34	4.68	3.90	-1.56	
5-Cl-Trp	2.17	2.57	1.79	0.38	
5-CH3-Trp	1.65	2.81	2.03	-0.38	
1-CH3-Trp	1.53	3.27	2.49	-0.96	
5-F-Trp	1.48	3.13	2.35	-0.87	
5-OH-Trp	0.24	1.06	0.28	-0.04	
5-NH2-Trp	-0.26	0.79	0.01	-0.27	

Table S17. Summary of logP values performed for tryptophan derivatives for Models 1 and 2.

Model 1					
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^a	(exptl – calc. corr.)	
Lys	0.97 ^c	0.17 ^d	1.11 ^d	-0.14	
(Boc)Lys	1.15	0.75	0.92	0.23	
Sac	0.61	1.17	1.34	-0.73	
(Pro)Lys	0.17	-0.62	-0.45	0.62	
(Ac)Lys	-0.89	-1.81	-1.64	0.75	
		Model 2			
Amino acid	logP	logP	logP	Δlog P	
code	(exptl.)	(calc.)	(calc. corr.) ^b	(exptl – calc. corr.)	
Lys	0.97°	-	0.97 ^c	-	
(Boc)Lys	1.15	1.65	0.87	0.28	
Sac	0.61	2.07	1.29	-0.68	
(Pro)Lys	0.17	1 35	0.57	-0.40	
	0.17	1.55	0.57	0.10	

Table S18. Summary of logP values performed for lysine derivatives for Models 1 and2.

^alogP corrected by adding +0.17 logP units. Difference of calculated Glycine reported in Zamora et al. 2019 against experimental value reported by Fauchere and Pliska in 1983. ^blogP corrected by subtracting -0.78 logP units. Difference comparing IEFPCM/MST calculated Glycine derivate against experimental value reported by Kubyshkin.

^cExperimental value of logP for butylamine (similar to side chain of Lys) reported in ref. 18 from the main text

^dFor Lysine in Model 1, +0.17 value is obtained by taking the logP value (considering capping groups) from Table S19 and subtracting the value -0.94 (referring to the backbone) from Table S19. Therefore, the value +1.11 refers only to the side chain.

Model 1						
Amino acid	logP	logP	logP	Δlog P		
code	(exptl.)	(calc.)	(calc. corr.) ^a	(exptl – calc. corr.)		
Pro	-0.50	-0.23 ^c	0.35°	-0.85		
(Bn)Hyp	1.09	1.93	1.15	-0.06		
Oic	1.03	2.46	1.68	-0.65		
(Boc)Amp	0.66	0.59	-0.19	0.85		
2TfmPro	0.41	1.78	1.00	-0.59		
3TfmPro	0.35	1.25	0.47	-0.12		
4TfmProA	0.23	1.24	0.46	-0.23		
4TfmProB	0.24	0.81	0.03	0.21		
5TfmPro	0.28	0.52	-0.26	0.54		
Ash	0.19	0.85	0.07	0.12		
cF2Ash	0.18	1.19	0.41	-0.23		
tF2Ash	0.03	0.94	0.16	-0.13		
2Mep	-0.06	0.78	0.00	-0.06		
ЗМер	-0.04	0.83	0.05	-0.09		
Мер	-0.06	0.64	-0.14	0.08		
5Mep	-0.14	0.44	-0.34	0.20		
Cys[ΨPro]	-0.31	-0.09	-0.87	0.56		
Dfp	-0.29	0.61	-0.17	-0.12		
(Me)rPrc	-0.43	0.12	-0.66	0.23		
Dhp	-0.47	-1.95	-2.73	2.26		
Flp	-0.66	0.13	-0.65	-0.01		
(Me)mPdc	-0.74	1.96	1.18	-1.92		
flp	-0.84	-0.34	-1.12	0.28		
(Ac)Amp	-1.23	-0.63	-1.41	0.18		
НурА	-1.24	-0.87	-1.65	0.41		
НурВ	-1.43	-0.93	-1.71	0.28		
	1	Model 2				
Amino acid	logP	logP	logP	Δlog P		

Table S19. Summary of logP values performed for proline derivatives for Models 1 and2.

code	(exptl.)	(calc.)	(calc. corr.) ^b	(exptl – calc. corr.)
Pro	-0.50	1.36	0.58	-1.08
(Bn)Hyp	1.09	3.14	2.36	-1.27
Oic	1.03	2.83	2.05	-1.02
(Boc)Amp	0.66	1.18	0.40	0.26
2TfmPro	0.41	2.03	1.25	-0.84
3TfmPro	0.35	2.04	1.26	-0.91
4TfmProA	0.23	1.82	1.04	-0.81
4TfmProB	0.24	2.17	1.39	-1.15
5TfmPro	0.28	2.39	1.61	-1.33
Ash	0.19	1.99	1.21	-1.02
cF2Ash	0.18	2.03	1.25	-1.07
tF2Ash	0.03	2.48	1.70	-1.67
2Мер	-0.06	2.06	1.28	-1.34
ЗМер	-0.04	1.59	0.81	-0.85
Мер	-0.06	1.30	0.52	-0.58
5Mep	-0.14	1.72	0.94	-1.08
Cys[ΨPro]	-0.31	1.28	0.50	-0.81
Dfp	-0.29	0.64	-0.14	-0.15
(Me)rPrc	-0.43	1.08	0.30	-0.73
Dhp	-0.47	1.30	0.52	-0.99
Flp	-0.66	0.86	0.08	-0.74
(Me)mPdc	-0.74	1.71	0.93	-1.67
flp	-0.84	0.89	0.11	-0.95
(Ac)Amp	-1.23	-0.15	-0.93	-0.30
НурА	-1.24	0.22	-0.56	-0.68
НурВ	-1.43	-0.70	-1.48	0.05

^cFor Proline in Model 1, +0.35 value is obtained by taking the logP value (considering capping groups) from Table S19 and subtracting the value -0.58 (referring to the backbone) from Table S19. Therefore, the value +0.35 refers only to the side chain.

studied in this article: N-methyl (in blue), O-methyl (in green) and Acetyl group (in red).

Figure S2. Distribution of values of molecular weight (MW) (in g/mol) from the studied compounds regarding Model 1, estimated with DataWarrior.

Figure S3. Distribution of values of number of rotatable bonds (RB) from the studied compounds, regarding Model 1, estimated with DataWarrior.

Figure S4. Distribution of values of number of hydrogen bond acceptors (HBA) from the studied compounds regarding Model 1, estimated with DataWarrior.

Figure S5. Distribution of values of number of hydrogen bond donors (HBD) from the studied compounds regarding Model 1, estimated with DataWarrior.

Figure S6. Water conformational landscape for amino acid methionine performed in this article. The rest of conformational families in water and n-octanol for both models can be found in the Github repository facilitated in the main text.