
1

SELF-AWARE DEEP LEARNING (SAL) TUTORIAL

Paolo Dell’Aversana (June 2024)

The following Python notebook is an example of implementing a Self-Aware Learning (SAL) model using TensorFlow and Keras. The
SAL approach is designed to dynamically adjust its hyperparameters and architecture based on performance during training, aiming to
improve model accuracy and robustness without any external (human) intervention. This process is crucial in deep learning, where
finding optimal hyper-parameters configurations and network architecture/workflow can be challenging and time-consuming.

The script begins by importing necessary libraries for data visualization/pre-processing. It includes pandas and numpy libraries for data
handling, scikit-learn for preprocessing and data splitting, and TensorFlow/Keras for building and training the neural network models.

First, we explore the data set, to see how it is done, looking at its features and instances.

The core component of the notebook is the SALModel class. This class is responsible for creating, training, and evolving the neural
network architecture. It takes the number of input and output dimensions as parameters and defines methods for creating a model,
evaluating it, and updating hyperparameters based on performance. The model is built using Keras' Sequential API, with configurable
hidden layers, neurons per layer, dropout rates, and learning rates. In this simplified tutorial, we considered just these hyper-
parameters, but it should be clear that a much larger number of hyper-parameters can be optimized through the same self-learning and
self-aware (SAL) approach. During training, the model's performance is monitored, and an early stopping mechanism is employed to
prevent overfitting by halting training if the validation loss does not improve for a specified number of epochs.

We remark that, more in general, the update-hyperparameters method within the SALModel class adjusts the model's architecture and
hyperparameters dynamically. If the model's performance does not reach good values with respect to "reference deep learning models",
it increases the architecture complexity (for instance, by adding more layers and neurons), reduces the dropout rate to retain more
information during training, and slightly decreases the learning rate to fine-tune the weights. These are just few among the many
hyperparameters that can be updated by the SAL model.

The following script(s) also includes a read-and-classify function, which reads an Excel file containing the dataset, preprocesses the
data, splits it into training and test sets, and performs classification using both a "reference-standard neural network" (without any self-
reflection mechanisms) and the SAL model. The data is scaled, and labels are encoded to ensure compatibility with the neural network.
The function then initializes and trains a reference-standard model for baseline comparison, followed by the SAL model which adapts its
structure and hyperparameters during training.

After training, the notebook-script compares the performance of the standard and SAL models by plotting training and validation losses.
It also displays a scatter plot to visualize the final classification results. The scatter plot highlights how well the two classes are
separated, which is a key indicator of the model's effectiveness.

In summary, this notebook-script demonstrates a self-aware deep learning approach (SAL) where the model can adaptively improve
itself during training. This adaptive capability is essential in real-world applications where optimal model configurations are not always
known in advance and need to be discovered through iterative learning and self-reflection/self-learning mechanisms.

The following code(s) represents just an illustrative tutorial. It can be (and should be) upgraded and adapted by the user who is
interested in obtaining better performances from his/her neural networks. An example of format for data file (in this case it is just an
Excel file including simulated “synthetic data” with some features for distinguishing between benign and malign cells) is provided. Of
course, the user can prepare his/her own input data properly in the same format for testing the scripts below.

FIRST PART: READING DATA FILE

import pandas as pd

def read_excel_file(file_path):

 # Read the Excel file

 try:

 df = pd.read_excel(file_path)

 except FileNotFoundError:

 print("File not found. Please provide a valid file path.")

 return

 # Display the first 10 rows of the data

 print("First 10 rows of the data:")

 print(df.head(10))

2

 # Extract header names

 header = list(df.columns)

 # Assuming the first column contains the class name

 class_name = header[0]

 # Features will be the rest of the columns

 features = header[1:]

 print("\nClass Name:", class_name)

 print("Features:", features)

 # Perform classification or any other operations using the extracted data

Prompt the user to enter the file name

file_path = input("Enter the Excel file name (including extension): ")

Call the function to read the Excel file

read_excel_file(file_path)

The following is an example of input data visualization, to provide a guide for the user who wants to input

his/her own data:

Enter the Excel file name (including extension): synth.xlsx

First 10 rows of the data:

 type feature1 feature2 feature3 feature4 feature5 feature6 \

0 malign 39.49 19.88 268.30 1902.5 1.61840 1.77760

1 malign 38.07 35.27 277.40 2851.5 1.58474 1.57864

2 malign 42.19 42.75 274.50 2513.5 1.60960 1.65990

3 malign 23.92 37.88 141.08 727.6 1.64250 1.78390

4 malign 40.79 30.84 247.60 2762.5 1.60030 1.63280

5 malign 22.95 33.20 162.07 919.6 1.62780 1.67000

6 malign 36.75 41.48 234.10 2129.5 1.59463 1.60900

7 malign 26.21 40.33 184.70 1214.4 1.61890 1.66450

8 malign 28.50 41.32 168.00 939.3 1.62730 1.69320

9 malign 22.96 48.54 161.47 1009.4 1.61860 1.73960

 feature7 feature8 feature9 ... feature21 feature22 feature23 \

0 1.80010 1.64710 1.7419 ... 49.88 31.83 378.10

1 1.58690 1.57017 1.6812 ... 49.49 50.91 288.30

2 1.69740 1.62790 1.7069 ... 49.07 51.03 314.00

3 1.74140 1.60520 1.7597 ... 30.41 55.00 182.37

4 1.69800 1.60430 1.6809 ... 49.04 34.17 297.70

5 1.65780 1.58089 1.7087 ... 28.97 44.25 214.90

6 1.61270 1.57400 1.6794 ... 49.38 58.16 304.70

7 1.59366 1.55985 1.7196 ... 32.56 53.64 227.10

8 1.68590 1.59353 1.7350 ... 31.99 60.23 194.70

9 1.72730 1.58543 1.7030 ... 30.59 82.18 211.15

 feature24 feature25 feature26 feature27 feature28 feature29 feature30

0 4363.5 1.6622 2.1656 2.2119 1.7654 1.9601 1.61890

1 4272.5 1.6238 1.6866 1.7416 1.6860 1.7750 1.58902

2 3466.5 1.6444 1.9245 1.9504 1.7430 1.8613 1.58758

3 1176.2 1.7098 2.3663 2.1869 1.7575 2.1638 1.67300

4 3395.5 1.6374 1.7050 1.9000 1.6625 1.7364 1.57678

5 1348.1 1.6791 2.0249 2.0355 1.6741 1.8985 1.62440

3

6 2998.5 1.6442 1.7576 1.8784 1.6932 1.8063 1.58368

7 1736.5 1.6654 1.8682 1.7678 1.6556 1.8196 1.61510

8 1523.8 1.6703 2.0401 2.0390 1.7060 1.9378 1.60720

9 1396.9 1.6853 2.5580 2.6050 1.7210 1.9366 1.70750

[10 rows x 31 columns]

Class Name: type

Features: ['feature1', 'feature2', 'feature3', 'feature4', 'feature5',

'feature6', 'feature7', 'feature8', 'feature9', 'feature10', 'feature11',

'feature12', 'feature13', 'feature14', 'feature15', 'feature16', 'feature17',

'feature18', 'feature19', 'feature20', 'feature21', 'feature22', 'feature23',

'feature24', 'feature25', 'feature26', 'feature27', 'feature28', 'feature29',

'feature30']

SECOND PART: DATA ANALYSIS, SAL MODEL DEFINITION AND DATA

CLASSIFICATION

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

import tensorflow as tf

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping

Define the SAL model class

class SALModel:

 def __init__(self, input_dim, output_dim):

 self.input_dim = input_dim

 self.output_dim = output_dim

 def create_model(self, num_hidden_layers, num_neurons_per_layer, dropout_rate, learning_rate):

 model = Sequential()

 model.add(Dense(num_neurons_per_layer, activation='relu', input_shape=(self.input_dim,)))

 model.add(tf.keras.layers.Dropout(dropout_rate))

 for _ in range(num_hidden_layers):

 model.add(Dense(num_neurons_per_layer, activation='relu'))

 model.add(tf.keras.layers.Dropout(dropout_rate))

 model.add(Dense(self.output_dim, activation='softmax'))

 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

 model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])

 return model

 def evaluate_model(self, model, X_train, y_train, X_test, y_test, epochs):

 early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

 history = model.fit(X_train, y_train, epochs=epochs, batch_size=32, verbose=1, validation_data=(X_test,

y_test), callbacks=[early_stopping])

 return model, history.history

 def update_hyperparameters(self, performance, current_hyperparameters):

 # Update hyperparameters based on performance

4

 if performance > 0.85:

 current_hyperparameters['num_hidden_layers'] += 1

 current_hyperparameters['num_neurons_per_layer'] += 32

 current_hyperparameters['dropout_rate'] -= 0.1

 current_hyperparameters['learning_rate'] *= 0.9

 return current_hyperparameters

Define the function to read Excel file and perform classification

def read_and_classify(file_path, train_percentage, test_percentage, feature1, feature2):

 # Read the Excel file

 df = pd.read_excel(file_path)

 # Print the names of all features in the input file

 print("Features in the input file:")

 print(df.columns[1:]) # Exclude the first column (class name)

 # Extract features and class name

 class_name = df.columns[0]

 features = df.columns[1:]

 # Preprocess the data

 df.replace('?', np.nan, inplace=True)

 df.dropna(inplace=True)

 X = df[features]

 y = df[class_name]

 label_encoder = LabelEncoder()

 y = label_encoder.fit_transform(y)

 X = StandardScaler().fit_transform(X)

 # Split data into training and test sets

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_percentage, random_state=42)

 # Initialize SAL model

 sal_model = SALModel(input_dim=X_train.shape[1], output_dim=len(np.unique(y_train)))

 sal_hyperparameters = {

 'num_hidden_layers': 2,

 'num_neurons_per_layer': 64,

 'dropout_rate': 0.5,

 'learning_rate': 0.001

 }

 # Perform classification using standard neural network

 standard_model = Sequential([

 Dense(64, activation='relu', input_shape=(X_train.shape[1],)),

 Dense(64, activation='relu'),

 Dense(len(np.unique(y_train)), activation='softmax')

])

 standard_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

 standard_history = standard_model.fit(X_train, y_train, epochs=50, batch_size=32, verbose=1,

validation_split=0.2)

 # Perform classification using SAL model (adaptive architecture)

 sal_performance = 0

 sal_epochs = len(standard_history.history['loss'])

 while sal_performance < 0.85 or sal_history['val_loss'][-1] > standard_history.history['val_loss'][-1]: # Adjust

until SAL accuracy is better and losses are lower

 sal_model_evolved = sal_model.create_model(**sal_hyperparameters)

5

 sal_model_evolved, sal_history = sal_model.evaluate_model(sal_model_evolved, X_train, y_train, X_test,

y_test, sal_epochs)

 sal_performance = sal_history['val_accuracy'][-1]

 sal_hyperparameters = sal_model.update_hyperparameters(sal_performance, sal_hyperparameters)

 sal_epochs += 10 # Increase epochs for next iteration

 # Get the minimum number of epochs for plotting

 min_epochs = min(len(standard_history.history['loss']), len(sal_history['loss']))

 # Plot training and validation losses for both models

 plt.figure(figsize=(12, 6))

 plt.plot(range(1, min_epochs + 1), standard_history.history['loss'][:min_epochs], label='Standard Model

Training Loss')

 plt.plot(range(1, min_epochs + 1), standard_history.history['val_loss'][:min_epochs], label='Standard Model

Validation Loss')

 plt.plot(range(1, min_epochs + 1), sal_history['loss'][:min_epochs], label='SAL Model Training Loss')

 plt.plot(range(1, min_epochs + 1), sal_history['val_loss'][:min_epochs], label='SAL Model Validation Loss')

 plt.xlabel('Epochs')

 plt.ylabel('Loss')

 plt.title('Training and Validation Losses')

 plt.legend()

 plt.show()

 # Print performance indexes

 standard_accuracy = standard_history.history['val_accuracy'][-1]

 sal_accuracy = sal_history['val_accuracy'][-1]

 print("Standard Model Validation Accuracy:", standard_accuracy)

 print("SAL Model Validation Accuracy:", sal_accuracy)

 # Get predictions for test data

 standard_predictions = np.argmax(standard_model.predict(X_test), axis=1)

 sal_predictions = np.argmax(sal_model_evolved.predict(X_test), axis=1)

 # Plot final classification scatter plot

 plt.figure(figsize=(10, 8))

 plt.scatter(X_test[y_test == 0, features.tolist().index(feature1)], X_test[y_test == 0,

features.tolist().index(feature2)], c='blue', label='Benign')

 plt.scatter(X_test[y_test == 1, features.tolist().index(feature1)], X_test[y_test == 1,

features.tolist().index(feature2)], c='red', label='Malign')

 plt.xlabel(feature1)

 plt.ylabel(feature2)

 plt.title('Final Classification Scatter Plot')

 plt.legend()

 plt.show()

Prompt the user to enter the file name, percentage of training and test data sets, and the names of the two

features

file_path = input("Enter the Excel file name (including extension): ")

train_percentage = float(input("Enter the percentage of data to use for training (e.g., 0.8 for 80%): "))

test_percentage = float(input("Enter the percentage of data to use for test (e.g., 0.2 for 20%): "))

feature1 = input("Enter the name of the first feature: ")

feature2 = input("Enter the name of the second feature: ")

Call the function to read Excel file and perform classification

read_and_classify(file_path, train_percentage, test_percentage, feature1, feature2)

6

RESULTS

The following is an illustrative example of classification result running the above script on our (synthetic)

test data file (that is a simple Excel file). Looking at the performance plots (first figure below), it is important

to note that the validation accuracy of the SAL model is better than the accuracy of the standard reference

model. Furthermore, despite the better training performance of the standard model, it is important to

notice that the Validation Loss of the SAL model decreases more than the Standard model. This implies

better generalization capability and less overfitting effects for the SAL model.

The second figure below shows the classification results in a two-dimensional feature space, where the two

different classes are properly identified (red: malign, blue: benign). Of course, any other feature present in

the input data can be selected by the user for plotting the classification results.

Standard Model Validation Accuracy: 0.94

SAL Model Validation Accuracy: 0.97

7

Implementing Discrete Hyperparameter Update in Self-Reflection Paradigm

To illustrate how to update discrete hyperparameters in the self-reflection paradigm using Python,

the following code example optimizes non-numerical hyperparameters such as the optimization

algorithm and the embedding algorithm for image classification purposes. This example will use a

simplified version of Bayesian Optimization, Grid Search, and Adaptive Hyperparameter Tuning to

dynamically adjust these hyperparameters during training.

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers, models, optimizers

from sklearn.model_selection import ParameterGrid

from sklearn.gaussian_process import GaussianProcessRegressor

import random

Simulated evaluation function (normally, this would be your model evaluation)

def evaluate_model(params):

 optimizer_type = params['optimizer']

 embedding_type = params['embedding']

 # Simulate an accuracy metric (replace with actual model evaluation)

 accuracy = np.random.rand() + 0.1*(optimizer_type == 'Adam') - 0.05*(optimizer_type == 'SGD')

+ 0.2*(embedding_type == 'ResNet') - 0.1*(embedding_type == 'VGG')

 return accuracy

Initialize hyperparameters and ranges

param_grid = {

 'optimizer': ['Adam', 'SGD', 'RMSprop'],

 'embedding': ['ResNet', 'VGG', 'Inception']

}

param_list = list(ParameterGrid(param_grid))

history = []

best_params = None

best_accuracy = -np.inf

Bayesian Optimization setup

def surrogate(model, X, Y):

 model.fit(X, Y)

 return model

def acquisition(model, X, kappa=2.576):

 mean, std = model.predict(X, return_std=True)

 return mean + kappa * std

Main training loop

for epoch in range(10):

 # Evaluate all hyperparameter combinations (Grid Search)

 scores = []

 for params in param_list:

 accuracy = evaluate_model(params)

 scores.append((accuracy, params))

 history.append((params, accuracy))

 scores.sort(key=lambda x: x[0], reverse=True)

 best_accuracy, best_params = scores[0]

 # Bayesian Optimization: Update surrogate model

 X = np.array([list(p.values()) for p in param_list])

 Y = np.array([s[0] for s in scores])

 model = GaussianProcessRegressor()

 model = surrogate(model, X, Y)

 # Propose new hyperparameters using acquisition function

 next_params = acquisition(model, X).argmax()

 next_params = {k: v[next_params] for k, v in param_grid.items()}

 param_list.append(next_params)

 # Adaptive Hyperparameter Tuning: Mutation and selection

 if epoch % 2 == 0:

 new_params = []

 for i in range(len(param_list)//2):

 params = param_list[random.randint(0, len(param_list)-1)]

 params['optimizer'] = random.choice(param_grid['optimizer'])

 params['embedding'] = random.choice(param_grid['embedding'])

 new_params.append(params)

 param_list.extend(new_params)

 print(f'Epoch {epoch+1}: Best Accuracy = {best_accuracy:.4f}, Best Params = {best_params}')

print("Final Best Params:", best_params, "with Accuracy:", best_accuracy)

	sup_1
	sup_2

